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Abstract
We investigate the problem when the tensor functor by a bimodule yields a singular equiv-
alence. It turns out that this problem is equivalent to the one when the Hom functor given
by the same bimodule induces a triangle equivalence between the homotopy categories of
acyclic complexes of injective modules. We give conditions on when a bimodule appears
in a pair of bimodules, that defines a singular equivalence with level. We construct an
explicit bimodule in a combinatorial manner, which yields a singular equivalence between a
quadratic monomial algebra and its associated algebra with radical square zero. Under cer-
tain conditions which include the Gorenstein cases, the bimodule does appear in a pair of
bimodules defining a singular equivalence with level.

Keywords Singularity category · Singular equivalence · Dg category ·
Quadratic monomial algebra · Bimodule
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1 Introduction

Let k be a field, and A be a finite dimensional k-algebra. Following [3, 19], the singularity
category Dsg(A) of A is defined to be the Verdier quotient category of the bounded derived
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category of A-modules with respect to the full subcategory of perfect complexes; see also
[12]. The singularity category is a fundamental homological invariant for an algebra with
infinite global dimension.

The dg singularity category Sdg(A) [16, 17] is a canonical dg enhancement of Dsg(A):
it is a pretriangulated dg category whose zeroth cohomology coincides with Dsg(A). The
homotopy category Kac(A-Inj) of acyclic complexes of injective modules is a compact-
completion of the singularity category [18]. To be more precise, the category Kac(A-Inj)
is compactly generated and its full subcategory of compact objects is triangle equivalent to
Dsg(A). As is expected, the category Kac(A-Inj) is triangle equivalent to D(Sdg(A)), the
derived category of right dg Sdg(A)-modules.

Let B be another finite dimensional algebra. By a singular equivalence between A and
B, we mean a triangle equivalence between Dsg(A) and Dsg(B). As in [9, 24, 25], the
question when the tensor functor by an A-B-bimodule M yields a singular equivalence is
of interest. We assume that M is projective on each side. Indeed, this situation is not so
restricted, as replacing M by a bounded complex will not give rise to more functors between
singularity categories; see Lemma 4.1. Moreover, such a tensor functor lifts automatically
to a dg functor between the dg singularity categories. The Hom functor given by M induces
a triangle functor between the compact-completions Kac(A-Inj) and Kac(B-Inj).

Let us mention the useful notion of a singular equivalence with level in [24], as a singu-
lar analogue to the well-known notion of a stable equivalence of Morita type [2]. Recently,
it is proved in [7] that Keller’s conjecture for singular Hochschild cohomology is invariant
under singular equivalences with levels. Therefore, we are interested in constructing sin-
gular equivalences with levels. We mention that related results in the Gorenstein cases are
obtained in [9].

In [5], the first author constructs an explicit singular equivalence between a quadratic
monomial algebra A and its associated algebra B with radical square zero. We are moti-
vated by the following natural question: is the singular equivalence in [5] induced by some
bimodule?

We answer the above question affirmatively by constructing an explicit A-B-bimodule
M , which induces the mentioned singular equivalence. Moreover, under certain conditions,
the bimodule M does appear in a pair (M,N), which defines a singular equivalence with
level; see Theorem 6.2 and Proposition 7.3. Combining these results with [7], we conclude
that Keller’s conjecture holds for a certain class of quadratic monomial algebras, which
include the Gorenstein cases (for example, gentle algebras [11]).

The paper is structured as follows. We study general results on singularity categories in
Sections 2-4, and concentrate on quadratic monomial algebras in Sections 5-8. As indicated
above, the main results are Theorem 6.2 and Proposition 7.3.

In Section 2, we prove that the homotopy category of acyclic complexes of injective mod-
ules is triangle equivalent to the derived category of right dg modules over the dg singularity
category; see Theorem 2.2. In Section 3, we prove that if a bimodule induces a singular
equivelence, then its Hom functor induces a triangle equivalence between the homotopy
category of acyclic complexes of injective modules; see Proposition 3.1. In Section 4, we
give sufficient conditions on when a bimodule appears in a pair that defines a singular
equivalence with level; see Propositions 4.8 and 4.10.

In Section 5, we recall from [5] a singular equivalence between a quadratic monomial
algebra A and its associated algebra B with radical square zero. In Section 6, we construct
an explicit A-B-bimodule M , which realizes the mentioned singular equivalence by a tensor
functor; moreover, in the Gorenstein cases, we obtain a singular equivalence with level;
see Theorem 6.2. In Section 7, by analyzing the A-dual bimodule of M , we go beyond



Singular Equivalences Induced...

the Gorenstein cases in Proposition 7.3. In the final section we study the B-dual bimodule
of M .

We work over a fixed field k, that is, we require that all categories and functors are k-
linear. By default, modules mean left modules. For any bimodule, we require that k acts
centrally.

2 Singularity Categories and Related Categories

In this section, we recall basic facts on singularity categories and dg singularity categories.
We prove that the homotopy category of acyclic complexes of injective modules is triangle
equivalent to the derived category of right dg modules over the dg singularity category. This
result is known to experts. Throughout, we fix a left noetherian k-algebra A.

Denote by A-mod the abelian category of finitely generated left A-modules, and by
A-proj the full subcategory formed by projective modules. Denote by Db(A-mod) its
bounded derived category. By convention, an A-module is viewed as a stalk complex
concentrated in degree zero.

Recall that an object X in Db(A-mod) is called a perfect complex, provided that it is
isomorphic to a bounded complex of finitely generated projective A-modules. Denote by
per(A) ⊆ Db(A-mod) the full subcategory formed by perfect complexes; it is a thick trian-
gulated subcategory. Moreover, the quotient functor Kb(A-mod) → Db(A-mod) induces a
triangle equivalence

Kb(A-proj)
∼−→ per(A).

Following [3, 19], the singularity category of A is defined to be the following Verdier
quotient

Dsg(A) = Db(A-mod)/per(A).

The terminology is justified by the following fact: Dsg(A) vanishes if and only if each
finitely generated A-module has finite projective dimension.

Denote by A-mod the stable category of A-mod modulo morphisms factoring through
projective modules. There is a canonical functor

can : A-mod −→ Dsg(A) (2.1)

sending a module to the corresponding stalk complex concentrated in degree zero. It is well
defined since projective modules are isomorphic to zero in Dsg(A).

For an additive category A, we denote by A� its idempotent completion [1]. The canon-
ical embedding ι : A ↪→ A� is dense if and only if A is idempotent-complete. Each
additive functor F : A → A′ induces in a straightforward manner an additive functor
F� : A� → A′�.

If A is triangulated, then A� is uniquely triangulated such that ι is a triangle functor [1].
In general, Dsg(A) is not idempotent-complete [20]. However, if A is finite dimensional
over k, then Dsg(A) is idempotent-complete; see [4, Corollary 2.4].

Let T be a triangulated category with arbitrary coproducts. As usual, we denote by � the
translation functor of T . An object X is compact if HomT (X,−) commutes with arbitrary
coproducts. Denote by T c the full subcategory formed by compact objects; it is a thick
triangulated subcategory. In particular, T c is always idempotent-complete. The triangulated
category T is compactly generated, provided that there is a set S of compact objects such
that each nonzero object X satisfies HomT (�i(S),X) �= 0 for some S ∈ S and i ∈ Z.
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For a small triangulated category A, its compact-completion means a compactly gener-
ated triangulated category T with a triangle embedding A ↪→ T which induces a triangle
equivalence

A� ∼−→ T c.

The uniqueness of compact-completions is not known in general; compare [18, Section 2].
Let C be a small dg category [10, 13]. Its homotopy category H 0(C) is defined to be a

category with the same objects as C such that its Hom spaces are the zeroth cohomology of
the corresponding Hom complexes in C. We denote by D(C) the derived category of right
dg C-modules. Then we have the Yoneda embedding

Y : H 0(C) −→ D(C), C �→ C(−, C).

Recall that D(C) is compactly generated such that the smallest thick subcategory containing
the essential image of Y coincides with the full subcategory D(C)c of compact objects.

Recall that a dg category C is pretriangulated, provided that the essential image of Y
is a triangulated subcategory. In this situation, the homotopy category H 0(C) inherits a
canonical triangulated structure. Then Y induces a triangle equivalence

H 0(C)�
∼−→ D(C)c. (2.2)

In other words, the Yoneda embedding yields a canonical compact-completion of H 0(C).
For a full dg subcategoryD of C, we denote by C/D the corresponding dg quotient. Since

we work over a field, the dg category C/D is simply constructed from C by freely adding
new morphisms εD : D → D of degree −1 for each object D in D, such that d(εD) = 1D;
see [10, Section 3.1] and compare [14, Section 4]. Denote by q : C → C/D the quotient
functor, which acts on objects by the identity.

The following results summarize basic properties of dg quotient functors.

Theorem 2.1 Keep the notation as above. Then the following statements hold.

(1) The natural functor D(C/D) −→ D(C), sending M to Mq, is fully faithful; moreover,
a right dg C-module X lies in the essential image if and only if X(D) is acyclic for each
D ∈ D.

(2) Assume that both C andD are pretriangulated. Then C/D is pretriangulated. Moreover,
the quotient functor q induces a triangle equivalence

H 0(C)/H 0(D)
∼−→ H 0(C/D).

Proof The first result is contained in [14, Section 4] and [10, Proposition 4.6], and the
second one is a direct consequence of [10, Theorem 3.4].

For two complexes X = (Xn, dn
X)n∈Z and Y = (Y n, dn

Y )n∈Z of A-modules, the Hom
complex HomA(X, Y ) is given such that

HomA(X, Y )n =
∏

p

HomA(Xp, Yp+n)

with differential
d(f ) = dY ◦ f − (−1)|f |f ◦ dX .

Here, |f | denotes the degree of f . This defines the dg category Cb
dg(A-mod) of bounded

complexes of A-modules; it is pretriangulated. We observe that

H 0(Cb
dg(A-mod)) = Kb(A-mod)
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as triangulated categories. In other words, the dg category Cb
dg(A-mod) is a canonical dg

enhancement of the usual homotopy category Kb(A-mod).
We recall from [15, Section 9.8] a canonical dg enhancement of Db(A-mod). Consider

the full dg subcategory C
b,ac
dg (A-mod) of Cb

dg(A-mod) formed by acyclic complexes. The
bounded dg derived category of A-mod is defined to be the dg quotient

Db
dg(A-mod) = Cb

dg(A-mod)/Cb,ac
dg (A-mod).

In view of Theorem 2.1(2), the bounded dg derived categoryDb
dg(A-mod) is pretriangulated,

and there is a canonical isomorphism of triangulated categories

Db(A-mod)
∼−→ H 0(Db

dg(A-mod)),

which acts on objects by the identity. Consequently, we have a canonical compact-
completion

Db(A-mod)
∼−→ H 0(Db

dg(A-mod))
Y−→ D(Db

dg(A-mod)),

where Y denotes the Yoneda embedding. Indeed, it induces a triangle equivalence

Db(A-mod)
∼−→ D(Db

dg(A-mod))c. (2.3)

Here, we use the fact that Db(A-mod) is idempotent-complete; see [1, Corollary 2.10].
Consider perdg(A) the full dg subcategory ofDb

dg(A-mod) formed by perfect complexes.
It is natural to define the dg singularity category [16, 17] of A as the following dg quotient

Sdg(A) = Db
dg(A-mod)/perdg(A).

By the same reasoning as above, we have a canonical isomorphism of triangulated
categories

Dsg(A)
∼−→ H 0(Sdg(A)).

Consequently, we have a canonical compact-completion of the singularity category

Dsg(A)
∼−→ H 0(Sdg(A))

Y−→ D(Sdg(A)).

It induces a triangle equivalence

Dsg(A)�
∼−→ D(Sdg(A))c. (2.4)

We recall from [18] another compact-completion of the singularity category. For this,
we denote by A-Inj the category of all injective A-modules. Denote by K(A-Inj) the homo-
topy category of unbounded complexes of injective A-modules, and by Kac(A-Inj) the full
subcategory formed by acyclic complexes. The following triangle functor is well defined

� : K(A-Inj) −→ D(Cb
dg(A-mod)), I �→ HomA(−, I ).

In view of [13, Theorem 4.3], the following results are expected by experts. The left
equivalence is due to [18, Proposition A.1] in a slightly different form, and the right one is
suggested by [18, Corollary 5.4]; compare [7, Proposition 3.1].

Theorem 2.2 The above triangle functor � induces triangle equivalences

K(A-Inj)
∼−→ D(Db

dg(A-mod)) and Kac(A-Inj)
∼−→ D(Sdg(A)).
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Proof Denote by X the full subcategory of D(Cb
dg(A-mod)) formed by those dg modules

M such that M(X) is acyclic for any bounded acyclic complex X of A-modules. By Theo-
rem 2.1(1), we identify D(Db

dg(A-mod)) with X . Recall that HomA(X, I) is acyclic for any
bounded-below acyclic complex X and any complex I of injective A-modules. It follows
that the functor

� : K(A-Inj) −→ X = D(Db
dg(A-mod)) (2.5)

is well defined.
By [18, Proposition 2.3(1)], the homotopy category K(A-Inj) is compactly generated.

The above functor � respects arbitrary coproducts; moreover, by [18, Proposition 2.3(2)],
it restricts to an equivalence

K(A-Inj)c
∼−→ D(Db

dg(A-mod))c = Db(A-mod)

between the subcategories of compact objects. Here, the rightmost equality means the
canonical equivalence (2.3). It follows immediately that � is a triangle equivalence.

Denote by Y the full subcategory of D(Db
dg(A-mod)) formed by those dg modules N

such thatN(P ) is acyclic for any perfect complex P . In view of Theorem 2.1(1), we identify
Y withD(Sdg(A)). It is well known that a complex I of injectiveA-modules is acyclic if and
only if �(I)(P ) = HomA(P, I ) is acyclic for any perfect complex P ; compare [18, (2.1)].
Then the equivalence (2.5) restricts an equivalence

Kac(A-Inj)
∼−→ Y = D(Sdg(A)), (2.6)

as required.

3 Singular Equivalences Induced by Bimodules

In this section, we investigate the situation where a bimodule induces a tensor functor
between singularity categories and a Hom functor between the homotopy categories of
complexes.

Throughout, we assume that both A and B are left noetherian k-algebras. Let M = AMB

be an A-B-bimodule, on which k acts centrally. We require further that both AM and MB

are finitely generated projective.
The projectivity assumption on M implies that

M ⊗B −: Db(B-mod) −→ Db(A-mod)

is well defined, which preserves perfect complexes. It induces uniquely a triangle functor

M ⊗B −: Dsg(B) −→ Dsg(A).

We are interested in when this induced functor is a singular equivalence, meaning a triangle
equivalence between the singularity categories.

The above two triangle functors lift to dg functors between the corresponding dg
enhancements:

M ⊗B −: Db
dg(B-mod) −→ Db

dg(A-mod) and M ⊗B −: Sdg(B) −→ Sdg(A).

For each injective A-module E, HomA(M,E) is an injective B-module. Then we have the
following well-defined triangle functors:

HomA(M,−) : K(A-Inj) −→ K(B-Inj) and HomA(M,−) : Kac(A-Inj) −→ Kac(B-Inj).
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We apply Theorem 2.2 to A and B, and obtain the corresponding triangle equivalences
�A and �B . We claim that the following diagram is commutative.

K(A-Inj)

�A

��

HomA(M,−) �� K(B-Inj)

�B

��
D(Db

dg(A-mod))
(M⊗B−)∗ �� D(Db

dg(B-mod))

Here, the bottom arrow sends a right dg Db
dg(A-mod)-module X to the composition X ◦

(M ⊗B −), which is a right dg Db
dg(B-mod)-module. Indeed, the commutativity follows

from the following standard fact: for any complex I of injective A-modules and a bounded
complex Y of B-modules, there is a canonical isomorphism of complexes

HomB(Y,HomA(M, I)) � HomA(M ⊗B Y, I ).

As the equivalence (2.6) is restricted from the equivalence (2.5), the above commutative
diagram restricts to the following commutative diagram.

Kac(A-Inj)

�A

��

HomA(M,−) �� Kac(B-Inj)

�B

��
D(Sdg(A))

(M⊗B−)∗ �� D(Sdg(B))

(3.1)

Recall that a dg functor F : C → D between dg categories is quasi-fully faithful, if for
any objects C,C′ ∈ C, the induced cochain map

C(C,C′) −→ D(F (C), F (C′))
is a quasi-isomorphism. It follows that H 0(F ) : H 0(C) → H 0(D) is fully faithful. A quasi-
fully faithful dg functor F is said to be a quasi-equivalence, if H 0(F ) is dense and thus an
equivalence.

The implication “(1) ⇒ (3)” in the following result is implicitly contained in [18, Theo-
rem 6.6].

Proposition 3.1 Keep the assumptions as above. Consider the following statements.

(1) The triangle functor M ⊗B −: Dsg(B) → Dsg(A) is an equivalence;
(2) The dg functor M ⊗B −: Sdg(B) → Sdg(A) is a quasi-equivalence;
(3) The triangle functor HomA(M,−) : Kac(A-Inj) → Kac(B-Inj) is an equivalence;
(4) The triangle functor (M ⊗B −)� : Dsg(B)� → Dsg(A)� is an equivalence.

Then we have implications (1)⇔ (2) ⇒ (3) ⇔ (4).

Proof Recall the identifications H 0(Sdg(B)) = Dsg(B) and H 0(Sdg(A)) = Dsg(A). Then
“(1)⇔(2)” follows from Lemma 3.2(1) below.

By the commutative diagram (3.1) and the equivalences �A and �B , we infer that (3) is
equivalent to the condition that

(M ⊗B −)∗ : D(Sdg(A)) −→ D(Sdg(B))

is a triangle equivalence. Then “(3)⇔(4)” follows from Lemma 3.2(2). The implication
“(1)⇒(4)” is clear.
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For a dg functor F : C → D, we denote by F ∗ : D(D) → D(C) the obvious functor
sending a right dgD-module X to the right dg C-module X ◦F . The following general facts
are well known.

Lemma 3.2 Let F : C → D be a dg functor between two pretriangulated dg categories.
Then the following statements hold.

(1) The functor F is a quasi-equivalence if and only if H 0(F ) : H 0(C) → H 0(D) is a
triangle equivalence;

(2) The functor F ∗ : D(D) → D(C) is a triangle equivalence if and only if
H 0(F )� : H 0(C)� → H 0(D)� is a triangle equivalence.

Proof For (1), we refer to [6, Lemma 3.1]. For (2), we recall that F ∗ has a left adjoint F∗. To
be more precisely, let XF be a dg C-D-bimodule given by XF (D,C) = D(D, F (C)). Then
F∗ = − ⊗L

C XF ; see [13, Example 6.1]. Since F∗ commutes with arbitrary coproducts and
preserves compact objects, it is an equivalence if and only if so is its restriction on compact
objects.

We observe the following commutative diagram.

H 0(C)

Y
��

H 0(F ) �� H 0(D)

Y
��

D(C)
F∗ �� D(D)

Here, the vertical arrows are the Yoneda embeddings. In view of (2.2), we conclude that the
restriction of F∗ on compact objects coincides with H 0(F )�.

Therefore, F∗ is an equivalence if and only if so is H 0(F )�. Finally, we are done by the
fact that F ∗ is an equivalence if and only if so is the left adjoint F∗.

4 Singular Equivalences with Levels

In this section, we give sufficient conditions on when a bimodule appears in a pair, that
defines a singular equivalence with level [24]. From now on, we will assume that both A

and B are finite dimensional k-algebras.
As shown in the previous section, an A-B-bimodule M , which is projective on each side,

yields the tensor functor M ⊗B − between the singularity categories. The following lemma
shows that, up to translation, replacing modules by complexes will not enlarge the class of
functors.

Let AXB be a bounded complex of finitely generatedA-B-bimodules. We assume further
that the underlying complexes AX and XB are both perfect. The derived tensor functor
X ⊗L

B −: Db(B-mod) → Db(A-mod) is well defined and preserves perfect complexes.
Therefore, we have an induced functor

X ⊗L

B −: Dsg(B) −→ Dsg(A).
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Lemma 4.1 Let AXB be as above. Then there exist n ≥ 0 and an A-B-bimodule M

satisfying that both AM and MB are finitely generated projective and that there is an
isomorphism

X ⊗L

B − � �n ◦ (M ⊗B −)

of triangle functors between the singularity categories.

Proof By the perfectness assumption on X, we may replace X by a bounded complex Y of
the following form

· · · → 0 → M → P −n+1 → P −n+2 → · · · → P 0 → · · ·
such that each P i is a projective A-B-bimodule, and that M is an A-B-bimodule satisfying
that both AM and MB are projective. Then we have a canonical triangle in the homotopy
category of bounded complexes of A-B-bimodules

ξ : τ>−n(Y ) −→ Y −→ �n(M) −→ �τ>−n(Y ),

where τ>−n(Y ) denotes the brutal truncation of Y .
For each bounded complex Z of B-modules, we observe that τ>−n(Y ) ⊗B Z is perfect,

that is, isomorphic to zero in Dsg(A). Applying − ⊗B Z to ξ , we infer an isomorphism

Y ⊗B Z � �n(M) ⊗ Z = �n(M ⊗B Z)

in Dsg(A). By the isomorphism X ⊗L

B Z � Y ⊗B Z, we are done.

Remark 4.2 The above triangle functor X ⊗L

B −: Dsg(B) → Dsg(A) clearly lifts to a mor-
phism Sdg(B) → Sdg(A) in Hodgcat, the homotopy category of small dg categories [22].
In view of the derived Morita theory [6, 23], the following two questions seem to be funda-
mental: does any triangle functor Dsg(B) → Dsg(A) lift to Hodgcat? How to characterize
the morphism set in Hodgcat between dg singularity categories?

Lemma 4.3 Let M be an A-B-bimodule which is finitely generated projective on each
side. Then M ⊗B −: Dsg(B) → Dsg(A) is a triangle equivalence if and only if so is
HomA(M,−) : Kac(A-Inj) → Kac(B-Inj).

Proof Recall that the singularity category of a finite dimensional algebra is always
idempotent-complete; see [4, Corollary 2.4]. Then in Proposition 3.1 applied to this
situation, the conditions (1) and (4) are equivalent. Then we are done.

Let us recall a nice situation, where a pair of bimodules induces a singular equivalence.
We denote by Ae = A ⊗k Aop the enveloping algebra of A. We identify A-A-bimodules
with left Ae-modules. Denote by 
Ae(−) the syzygy functor on the stable category Ae-mod
of A-A-bimodules. The following terminology is modified from [24, Definition 2.1].

Definition 4.4 Let AMB and BNA be an A-B-bimodule and a B-A-bimodule, respectively,
and let n ≥ 0. The pair (M,N) is said to define a singular equivalence with level n, provided
that the following conditions are satisfied:

(1) The four one-sided modules AM ,MB , BN andNA are all finitely generated projective.
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(2) There are isomorphisms M ⊗B N � 
n
Ae(A) and N ⊗A M � 
n

Be(B) in Ae-mod and
Be-mod, respectively. �

Let us make simple observations. We denote by 
A-B(−) the syzygy functor on the
stable category of A-B-bimodules.

Remark 4.5 Let (M,N) define a singular equivalence with level n. Then the following
statements hold.

(1) Both (
A-B(M),N) and (M,
B-A(N)) define singular equivalences with level n+1.
Here, we use isomorphisms 
Ae(M ⊗B N) � 
A-B(M) ⊗B N � M ⊗B 
B-A(N)

of A-A-bimodules.
(2) Assume that (M ′, N) defines a singular equivalence with level n. Then M and M ′ are

related such that 
n
A-B(M) and 
n

A-B(M ′) are isomorphic in the stable category of
bimodules. Here, we just compute M ⊗B N ⊗A M ′ in two different ways.

We summarize related concepts in the following remark. We denote by rad(A) the
Jacobson radical of A.

Remark 4.6 (1) A stable equivalence of Morita type in the sense of [2, Definition 5.A]
becomes naturally a singular equivalence with level zero. By [24, Theorem 2.3], a
derived equivalence induces a singular equivalence with a certain level. Moreover, by
[21, Proposition 2.6], a singular equivalence of Morita type [25] induces a singular
equivalence with a certain level.

(2) For an algebra A with A/rad(A) separable over k, Keller’s conjecture [16, 17] states
that the singular Hochschild cochain complex of A is isomorphic to the Hochschild
cochain complex of Sdg(A) on the B∞-level. By [7, Theorem 9.4(3)], Keller’s
conjecture is invariant under singular equivalences with levels.

The following observations justify the terminology. We mention that the first half is due
to [24, Remark 2.2] and [9, Proposition 4.2].

Lemma 4.7 Assume that (M,N) defines a singular equivalence with level n. Then the
following statements hold.

(1) The triangle functor
M ⊗B −: Dsg(B) −→ Dsg(A)

is an equivalence, whose quasi-inverse is given by �n ◦ (N ⊗A −).
(2) The triangle functor

HomA(M,−) : Kac(A-Inj) −→ Kac(B-Inj)

is an equivalence, whose quasi-inverse is given by �−n ◦ HomB(N,−).

Proof (1) By the same argument in the proof of Lemma 4.1, we infer that there is an
isomorphism in Dsg(A)

�n
n
Ae (A) ⊗A Z � A ⊗A Z = Z

for any bounded complex Z of A-modules. Then we have isomorphisms

M ⊗B (N ⊗A Z) � 
Ae(A) ⊗A Z � �−n(Z).
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For the same reason, we have isomorphisms in Dsg(B)

N ⊗A (M ⊗B Y ) � �−n(Y )

for any bounded complex Y of B-modules. Then the required result follows immediately.
(2) Let I be an arbitrary acyclic complex of injective A-modules. We claim that for any

projective A-B-bimodule P , the Hom complex HomA(P, I ) of B-modules is contractible.
Indeed, it suffices to prove the claim for P = A ⊗k B. The following isomorphism of
complexes

HomA(A ⊗k B, I ) � Homk(B, I )

implies the required contractibility, since I is contractible as a complex of k-modules.
Let L be an A-A-bimodule which is projective on each side. Take a short exact sequence

of A-A-modules
0 −→ 
Ae(L) −→ P −→ L −→ 0

with P projective. We have an induced short exact sequence of complexes of injective A-
modules.

0 −→ HomA(L, I) −→ HomA(P, I ) −→ HomA(
Ae(L), I ) −→ 0

This induced sequence corresponds to an exact triangle in Kac(A-Inj). The above claim
implies that HomA(
Ae(L), I ) � �HomA(L, I). Inductively, we infer a natural isomor-
phism

HomA(
n
Ae (L), I ) � �nHomA(L, I) (4.1)

for each n ≥ 0.
By Lemma 4.3, both HomA(M,−) and HomB(N,−) are equivalences. We now have

natural isomorphisms of complexes

HomB(N,HomA(M, I)) � HomA(M ⊗B N, I)

� HomA(
n
Ae (A), I ) � �nHomA(A, I) = �n(I).

This clearly implies the required statement on the quasi-inverse. We mention that one might
give an alternative proof using (3.1), applied both to M and N .

In what follows, we fix an A-B-bimodule M , which is finitely generated projective on
each side.

We will consider its A-dual HomA(M,A) and B-dual HomBop(M,B), both of which are
B-A-bimodules. Here, HomBop(−,−) means the Hom bifunctor between right B-modules.

In view of Lemma 4.1, the following result is a variant of [9, Theorem 3.6] in a slightly
different setting. It might be viewed as a partial converse of Lemma 4.7.

Proposition 4.8 Suppose that both A/rad(A) and B/rad(B) are separable over k. Assume
that HomA(M,A) has finite projective dimension as a left B-module, and that M ⊗B

−: Dsg(B) → Dsg(A) is an equivalence. Then there is an B-A-bimodule N such that
(M,N) defines a singular equivalence with level.

Proof Set N ′ = HomA(M,A). Assume that the projective dimension of N ′ as a left B-
module is c. Since AM is finitely generated projective, there is a canonical isomorphism of
B-B-bimodules

can : N ′ ⊗A M
∼−→ HomA(M,M), f ⊗ m �→ (x �→ f (x).m).
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The following map is a morphism of A-A-bimodules

ε : M ⊗B N ′ −→ A, m ⊗ f �→ f (m).

Dually, there is a morphism of B-B-bimodules

η : B −→ N ′ ⊗A M

such that can ◦ η sends b ∈ B to the right action of b on M .
We observe that there is an isomorphism of functors from A-mod to B-mod:

HomA(M,−) � N ′ ⊗A −.

Consequently, we have an adjoint pair (M ⊗B −, N ′ ⊗A −) between A-mod and B-mod.
Moreover, its unit is given by η ⊗B −, and its counit is given by ε ⊗A −.

The above adjoint pair induces, in a straightforward manner, an adjoint pair between
Dsg(B) andDsg(A)with the induced unit and counit; compare [19, Lemma 1.2]. By assump-
tion,M⊗B−: Dsg(B) → Dsg(A) is an equivalence. Then the induced adjoint pair gives rise
to mutually inverse equivalences. In particular, both the unit and counit are isomorphisms.
In other words, for any bounded complex Y of B-modules and any bounded complex Z of
A-modules, η ⊗B Y and ε ⊗A Z are isomorphisms in Dsg(B) and Dsg(A), respectively.

Applying Lemma 4.9 below to η, there is a sufficiently large a such that η induces an
isomorphism


a
Be(B) � 
a

Be (N
′ ⊗A M) = 
a

B-A(N ′) ⊗A M

in Be-mod. Similarly, there is a sufficiently large b such that ε induces an isomorphism

M ⊗B 
b
B-A(N ′) = 
b

Ae(M ⊗B N ′) � 
b
Ae(A)

in Ae-mod. Now, we take n = max{a, b, c}. Then we conclude that (M,
n
B-A(N ′)) defines

a singular equivalence with level n.

The following lemma is standard.

Lemma 4.9 Let A be a finite dimensional algebra such that A/rad(A) is separable over k.
Let U, V be two A-A-bimodules such that the underlying one-sided modules all have finite
projective dimension. Let f : U → V be a morphism of A-A-bimodules such that f ⊗L

A Z

is an isomorphism in Dsg(A) for any bounded complex Z of A-modules. Then there is a
sufficiently large b ≥ 0 such that f induces an isomorphism
b

Ae(U) � 
b
Ae(V ) inAe-mod.

Proof We view f as a cochain map between stalk complexes of bimodules. By
[9, Lemma 3.5], the mapping cone of f is a perfect complex of A-A-bimodules. Then it fol-
lows immediately that f induces an isomorphism between the higher syzygies in the stable
category of A-A-bimodules.

The following result is a variant of Proposition 4.8.

Proposition 4.10 Suppose that bothA/rad(A) andB/rad(B) are separable over k. Assume
that HomBop(M,B) has finite projective dimension as a right A-module, and that M ⊗B

−: Dsg(B) → Dsg(A) is an equivalence. Then there is an B-A-bimodule N such that
(M,N) defines a singular equivalence with level.
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Proof Set N ′′ = HomBop(M,B). We observe that M ⊗B − � HomB(N ′′, −). Conse-
quently, we have an adjoint pair (N ′′ ⊗A −,M ⊗B −) between A-mod and B-mod. We omit
the remaining proof, as it is almost the same as the one in Proposition 4.8. We just mention
that N is chosen to 
m

B-A(N ′′) for sufficiently large m.

Remark 4.11 Let us assume that both the assumptions in Propositions 4.8 and 4.10 hold.
By the proof of the two propositions and Remark 4.5(2), the two dual B-A-bimodules
HomA(M,A) and HomBop(M,B) are related: there is a sufficiently large n such that


n
B-A(HomA(M,A)) � 
n

B-A(HomBop(M,B))

in the stable category of B-A-bimodules.

Recall that an algebra A is Gorenstein [3, 12] provided that both AA and AA have finite
injective dimension, or equivalently, any A-module has finite injective dimension if and
only if it has finite projective dimension.

Lemma 4.12 Let A and B be two Gorenstein algebras. Then HomA(M,A) has finite pro-
jective dimension as a left B-module, and HomBop(M,B) has finite projective dimension as
a right A-module.

Proof The functor HomA(M,−) : A-mod → B-mod is exact and preserves injective mod-
ules. It follows that it preserves modules of finite injective dimension. Since AA has finite
injective dimension, so does the left B-module HomA(M,A). As B is Gorenstein, then
HomA(M,A) has finite projective dimension. This proves the first half, and the second half
is similar.

In view of Lemma 4.12 and Remark 4.11, we have the following immediate consequence;
compare [9, Theorem].

Corollary 4.13 Let A and B be two Gorenstein algebras such that both A/rad(A)

and B/rad(B) are separable over k. Assume that M ⊗B −: Dsg(B) → Dsg(A) is an
equivalence. Then there is a sufficiently large n such that there is an isomorphism

N := 
n
B-A(HomA(M,A)) � 
n

B-A(HomBop(M,B))

in the stable category of B-A-bimodules and that (M,N) defines a singular equivalence
with level n. �

5 Quadratic Monomial Algebras and Relation Quivers

In this section, we recall from [5] a singular equivalence between a quadratic monomial
algebra and its associated algebra with radical square zero.

We fix a finite quiver Q = (Q0,Q1; s, t). Here, Q0 denotes the finite set of vertices, Q1
denotes the finite set of arrows, and s, t : Q1 → Q0 are maps which assign to each arrow α

its starting vertex s(α) and its terminating vertex t (α).
A path p of length n in Q is a sequence p = αn · · ·α2α1 of arrows such that s(αi) =

t (αi−1) for 2 ≤ i ≤ n; moreover, we define its starting vertex s(p) = s(α1) and its
terminating vertex t (p) = t (αn). We identify a path of length one with an arrow. To each
vertex i, we associate a trivial path ei of length zero, and set s(ei) = i = t (ei).
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For two paths p and q with s(p) = t (q), we write pq for their concatenation. As con-
vention, we have p = pes(p) = et(p)p. For two paths p and q in Q, we say that q is a
sub-path of p provided that p = p′′qp′ for some paths p′′ and p′.

The path algebra kQ is defined as follows. As a k-vector space, it has a basis consisting of
all the paths in Q. For two paths p and q, their multiplication is given by the concatenation
pq if s(p) = t (q); it is zero, otherwise. The unit of kQ equals

∑
i∈Q0

ei .

Denote by J the two-sided ideal of kQ generated by arrows. Then J d is spanned by all
the paths of length at least d for each d ≥ 2. A two-sided ideal I of kQ is admissible,
provided that J d ⊆ I ⊆ J 2 for some d ≥ 2. In this case, the quotient algebra A = kQ/I is
finite-dimensional.

We recall that an admissible ideal I of kQ is quadratic monomial provided that it is
generated by some paths of length two. In this case, the quotient algebra A = kQ/I is
called a quadratic monomial algebra.

In what follows, A = kQ/I is a fixed quadratic monomial algebra. We denote by F the
set of paths of length two contained in I . Here, the letter “F” stands for forbidden paths.

As usual, a path p in Q is nonzero in A, provided that it does not belong to I , or equiv-
alently, p does not contain a sub-path in F. In this case, we will abuse the image p + I in
A = kQ/I with p. Therefore, the set of nonzero paths forms a k-basis for A.

For each nonzero path p, we consider the left ideal Ap generated by p, which has a k-
basis given by the nonzero paths q such that q = q ′p for some path q ′. We observe that for
a vertex i, Aei is an indecomposable projective A-module. Then we have a projective cover
πp : Aet(p) → Ap sending et(p) to p.

The following fact is contained in [5, Lemma 4.1(2)]: for an arrow α, we have an exact
sequence of A-modules

⊕

{β∈Q1 | βα∈F}
Aet(β)

β−→ Aet(α)
πα−→ Aα −→ 0, (5.1)

where for each β in the index set, β : Aet(β) → Aet(α) means the A-module morphism
sending q to qβ, that is, the multiplication by β from the right.

The relation quiver R of A = kQ/I is defined as follows: its vertices are given by
arrows in Q, and there is an arrow [βα] from the vertex α to the vertex β for each element
βα in F; see [8, Definition 5.2].

Consider the corresponding algebra B = kR/J 2 with radical square zero. Then B has a
k-basis given by

{eα | α ∈ Q1} ∪ {[βα] | βα ∈ F}.
Its multiplication is completely determined by the following identities:

eα · eβ = δα,β eα, [βα] = eβ · [βα] · eα, and [βα] · [β ′α′] = 0.

Here, δα,β is the Kronecker symbol. The algebra B is said to associated to A.
For each vertex α in R, we denote by Sα the corresponding simple B-module. The pro-

jective cover Beα → Sα annihilates the radical of Beα , namely the B-submodule spanned
by {[βα] | β ∈ Q1, βα ∈ F}. Therefore, we have the following projective presentation

⊕

{β∈Q1 | βα∈F}
Beβ

[βα]−→ Beα −→ Sα −→ 0, (5.2)

where for each β in the index set, [βα] : Beβ → Beα denotes the unique B-module
morphism sending eβ to [βα]; compare [5, (4.3)].

The following result is implicitly contained in [5].
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Proposition 5.1 Keep the notation as above. Then there is a unique triangle functor
F : Dsg(B) → Dsg(A) satisfying F(Sα) � Aα for each α ∈ Q1; moreover, such a functor
is necessarily an equivalence.

Proof Since such a triangle equivalence F is constructed in [5, Theorem 4.5], it suffices
to prove the uniqueness. Denote by B-ssmod the full subcategory of B-mod consisting of
semisimple modules. There is a unique k-linear functor

H : B-ssmod −→ A-mod

sending each Sα to Aα; compare [5, Lemma 4.6]. Here, we implicitly use the following fact:
if a simple B-module Sα is projective, then the A-module Aα is also projective.

By the construction of F , the following diagram is commutative.

B-ssmod

canB

��

H �� A-mod

canA

��
Dsg(B)

F �� Dsg(A)

Here, the vertical arrows are the canonical functors in (2.1). It is well known that canA

identifies Dsg(A) with the stabilization S(A-mod) of A-mod; see [5, Lemma 3.1]. Since
syzygies of any B-module are semisimple, canB identifies Dsg(B) with the stabilization
S(B-ssmod) of B-ssmod; compare [5, Corollary 2.3]. Therefore, applying the universal
property of stabilization, the above commutative diagram implies that F is identified with

S(H) : S(B-ssmod) −→ S(A-mod),

known as the stabilization of H ; see [5, Section 2]. This implies that F is unique.

6 An Explicit Bimodule

Let A = kQ/I be a quadratic monomial algebra with R its relation quiver. As in the
previous section, B = kR/J 2 denotes the associated algebra with radical square zero. In
this section, we will construct an explicit A-B-bimodule M , which realizes the singular
equivalence in Proposition 5.1 by a tensor functor.

Consider the following set

X = {(p, α) | α ∈ Q1, p a nonzero path in A satisfying s(p) = t (α)}.
Here, the nonzero path p is allowed to be trivial, that is, (et (α), α) lies in X. Set M = kX to
be the k-vector space with X its basis.

The left A-action on M is naturally given by the concatenation of paths on the left
component p. More precisely, for any nonzero path q in A, we have

q.(p, α) =
{

(qp, α) if s(q) = t (p) and qp is a nonzero path in A;
0 otherwise.

The right B-action on M is given such that (p, α).eβ = δα,β (p, α), where δα,β is the
Kronecker symbol. Moreover, for (p, α) ∈ X and αβ ∈ F, we have

(p, α).[αβ] =
{

(pα, β) if pα is a nonzero path in A;
0 otherwise.
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This action might be visualized as follows:

p�� �� �� �� �� �� α�� β��

Here, we use the dotted curve to indicate that αβ lies in F, and the wavy arrow to indicate
that p is a path, not necessarily an arrow. We observe that if βγ ∈ F, we necessarily have

((p, α).[αβ]).[βγ ] = 0.

The above action indeed defines a right B-module structure on M . Then we obtain the
required A-B-bimodule M .

Lemma 6.1 The above A-B-bimodule M is projective on each side. Moreover, for each
α ∈ Q1, we have an isomorphism M ⊗B Sα � Aα of A-modules.

Proof For each α ∈ Q1, we denote by Xα the subset of X formed by elements of the form
(p, α). We observe that each kXα is an A-submodule of M and that there is an isomorphism
of A-modules

kXα
∼−→ Aet(α), (p, α) �→ p. (6.1)

The disjoint union X = ⋃
α∈Q1

Xα yields a decomposition

M =
⊕

α∈Q1

kXα (6.2)

of A-modules. This proves that M is a projective left A-module.
Set D = {(p, α) ∈ X | pα is a nonzero path in A}. For each element (p, α) ∈ D, we set

(p,α)X = {(p, α), (pα, β) | αβ ∈ F} ⊆ X.

Similarly, each k(p,α)X is a B-submodule of M and there is an isomorphism of right B-
modules

k((p,α)X)
∼−→ eαB, (p, α) �→ eα, (pα, β) �→ [αβ].

The disjoint union X = ⋃
(p,α)∈D (p,α)X yields a decomposition

M =
⊕

(p,α)∈D

k((p,α)X) (6.3)

of right B-modules. It follows that M is a projective right B-module.
We observe that M .eα = kXα . Therefore, we have the following composition of

isomorphisms

ξα : M ⊗B Beα
∼−→ M .eα = kXα

∼−→ Aet(α),

which sends (p, α) ⊗ eα to p. Moreover, for βα ∈ F, we have a commutative diagram

M ⊗B Beβ

M⊗B [βα]
��

ξβ �� Aet(β)

β

��
M ⊗B Beα

ξα �� Aet(α)

Applying M ⊗B − to (5.2) and using the above commutative diagram, we observe that
the resulted exact sequence is identified with (5.1). Then we infer the required isomorphism
M ⊗B Sα � Aα.
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Since the A-B-bimodule M is projective on each side, the following triangle functors

M ⊗B −: Dsg(B) −→ Dsg(A) and HomA(M,−) : Kac(A-Inj) −→ Kac(B-Inj)

are well defined.

Theorem 6.2 Let A = kQ/I be a quadratic monomial algebra and B = kR/J 2 be the
associated algebra with radical square zero. Consider the above A-B-bimodule M . Then
the following statements hold.

(1) The above functors M ⊗B − and HomA(M,−) are triangle equivalences.
(2) Assume that A is Gorenstein. Then there is a B-A-bimodule N such that (M,N)

defines a singular equivalence with level.

Proof By Lemma 6.1, the functor M ⊗B −: Dsg(B) → Dsg(A) sends Sα to Aα. By the
uniqueness statement of Proposition 5.1, we infer that M ⊗B − is a triangle equivalence. In
view of Lemma 4.3, we are done with (1).

For (2), we observe that B is also Gorenstein; see [5, Remark 4.7]. Indeed, by [8, Propos-
tion 5.5(1)], the relation quiverR consists of basic cycles and acyclic components. Then the
algebra B is a direct product of selfinjective algebras and algebras with finite global dimen-
sion, and thus is Gorenstein. Clearly, both A/rad(A) and B/rad(B) are separable over k.
Then (2) follows immediately from Corollary 4.13.

Remark 6.3 Since a gentle algebra is Gorenstein quadratic monomial [11], we infer from
(2) that there is a singular equivalence with level between a gentle algebra and its associated
algebra of radical square zero. We will go beyond the Gorenstein cases in Proposition 7.3
below.

7 The A-dual Bimodule

Let M be the A-B-bimodule defined in the previous section. We will study the A-dual
bimodule HomA(M,A). In Proposition 7.3, a combinatorial condition is given on when
HomA(M,A) has finite projective dimension as a left B-module.

Let us first define an explicit B-A-bimodule. Consider the following set

Y = {(α|q) | α ∈ Q1, q is a nonzero path in A satisfying t (q) = t (α)}.
Here, the path q is allowed to be trivial, that is, (α|et(α)) lies in Y . Set kY to be the k-vector
space with a basis Y .

The right A-action on kY is naturally given by the concatenation of paths on q. More
precisely, for a nonzero path p in A, we have

(α|q).p =
{

(α|qp) if t (p) = s(q) and qp is a nonzero path in A;
0 otherwise.

The left B-action on kY is given such that eβ .(α|q) = δβ,α(α|q). For each βα ∈ F, we
define

[βα].(α|q) =
{

(β|βq) if βq is a nonzero path in A;
0 otherwise.
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This action might be visualized as follows.

q

�� ��
��

��
��

��
��

β�� α��

We observe that for another γβ ∈ F, we necessarily have

[γβ].([βα].(α|q)) = 0.

It implies that the left B-action on kY is well defined. Moreover, kY is an B-A-bimodule.

Lemma 7.1 There is an isomorphism kY � HomA(M,A) of B-A-bimodules. In particular,
kY is a projective right A-module.

Proof We define a linear map

φ : kY −→ HomA(M,A)

such that φ(α|q) : M → A sends (p, α′) to δα,α′pq.
For each α ∈ Q1, we set αY to be the subset of Y formed by elements of the form (α|q).

We have a disjoint union Y = ⋃
α∈Q1

(αY ) and a decomposition kY = ⊕
α∈Q1

k(αY ) of
right A-modules. In view of (6.2), we observe that φ is a direct sum of its restriction

φα : k(αY ) −→ HomA(kXα, A).

We observe a natural isomorphism of right A-modules

k(αY )
∼−→ et(α)A, (α|q) �→ q.

The isomorphism (6.1) induces an isomorphism

HomA(kXα,A) � HomA(Aet(α), A).

Using these isomorphisms, the above restriction φα is identified with the canonical
isomorphism

et(α)A � HomA(Aet(α), A).

This proves that φ is an isomorphism of right A-modules. It is routine to verify that φ

respects the left B-actions.

We consider the following subset of Y

Y ′′ =
{
(α|αq ′) ∈ Y

∣∣∣∣
α ∈ Q1 such that there is no arrow β with αβ ∈ F,

both q ′ and αq ′ are nonzero paths in A

}
.

Set Y ′ = Y\Y ′′ to be its complement. This yields a decomposition

kY = kY ′ ⊕ kY ′′

as a left B-module. Furthermore, we need the following subset

Y ′
top = {(α|q) ∈ Y | the nonzero path q does not end with α} ⊆ Y ′.

The following terminologies will be useful. In a finite quiver �, the in-degree of a vertex
i is defined to be in(i) = |{α ∈ �1 | t (α) = i}|. A vertex i is called a source, if there is
no arrow ending at i. A vertex i is said to be left-bounded, provided that there is a uniform
bound of all the paths starting at i.

Lemma 7.2 Keep the notation as above. Then the following statements hold.
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(1) There is an isomorphism kY ′′ � ⊕
S

μα
α of B-modules, where α runs over all the

sources inR and each multiplicity μα > 0.
(2) There is a short exact sequence of left B-modules

0 −→ 
B(kY ′) inc−→
⊕

(α|q)∈Y ′
top

Be(α|q)
π−→ kY ′ −→ 0

where e(α|q) = eα and the restriction of π to Be(α|q) sends eα|q to (α|q) ∈ Y ′. More-
over, π is a projective cover of kY ′ and 
B(kY ′) � ⊕

S
νβ

β , where β runs over all the
vertices inR satisfying in(β) ≥ 2 and each multiplicity νβ > 0.

Proof (1) For each (α|αq ′) ∈ Y ′′, the corresponding vertex α inR is a source. We observe
that in the canonical decomposition kY ′′ = ⊕

(α|αq ′)∈Y ′′ k(α|αq ′), each direct summand
k(α|αq ′) is isomorphic to Sα . To see that each μα is positive, we just note that the element
(α|α) does belong to Y ′′.

(2) We observe that rad(B).(kY ′) = k(Y ′\Y ′
top). In other words, the subspace kY ′

top might
be identified with the top of kY ′, that is, top(kY ′) = kY ′/rad(B).(kY ′). It is well known
that the projective cover of kY ′ is isomorphic to the projective cover of its top. Then we
infer that π is the desired projective cover.

Since B is radical square zero, we know that 
B(kY ′) is semisimple. We observe that
the following two subsets of

⊕
(α|q)∈Y ′

top
Be(α|q):

{[βα]e(α|q) − [βα′]e(α′|q) | α �= α′, (α|q), (α′|q) ∈ Y ′
top, βq is a nonzero path in A}

and {[βα]e(α|q) | (α|q) ∈ Y ′
top, βq = 0 in A}

span the kernel of π . In each subset, the corresponding vertex of β inR satisfies

in(β) = |{α ∈ Q1 | βα ∈ F}| ≥ 2.

The subspace spanned by the corresponding element [βα]e(α|q) − [βα′]e(α′|q) or [βα]e(α|q)

is a B-submodule, and is isomorphic to Sβ . Then we obtain the desired decomposition of

B(kY ′) into direct sums of Sβ .

Finally, to see that each νβ is positive, we assume that both βα and βα′ lie in F. Then
the element (α|α′) lies in Y ′

top and [βα]e(α|α′) lies in 
B(kY ′). The latter element spans a
B-submodule of 
B(kY ′), which is isomorphic to Sβ .

Proposition 7.3 Keep the notation as above. Then HomA(M,A), as a left B-module, has
finite projective dimension if and only if any vertex in R is left-bounded provided that it is
a source or has in-degree at least two.

In this case, there is a B-A-bimodule N such that (M,N) defines a singular equivalence
with a certain level.

Proof By Lemma 7.1 we identify kY with HomA(M,A). Since B is radical square zero,
a simple module Sα has finite projective dimension if and only if the vertex α in R
is left-bounded. Then Lemma 7.2 implies the first statement. The last one follows from
Proposition 4.8.

Remark 7.4 (1) We observe that the Gorenstein cases are included in Proposition 7.3. This
might be deduced from Lemma 4.12 or the description ofR in [8, Proposition 5.5(1)].
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(2) Assume that A satisfies the condition in Proposition 7.3. By applying [7, Theo-
rems 1.1 and 1.2], the above singular equivalence with level proves that Keller’s conjecture
holds for A; compare Remark 4.6(2).

(3) In the above singular equivalence with level defined by (M,N), we do not have a
concrete description of the B-A-bimodule N ; consult the proof of Proposition 4.8.

8 The B-dual Bimodule

Let M be the A-B-bimodule defined in Section 6. In this final section, we describe the
B-dual bimodule HomBop(M,B).

Recall from the proof of Lemma 6.1 the set

D = {(p, α) ∈ X | pα is a nonzero path in A}.
We introduce a new set as follows

Z = {(eα|p, α), ([βα]|p, α) | (p, α) ∈ D, and βα ∈ F}.
We will define a B-A-bimodule structure on kZ. The left B-action is given by the left
multiplication on the leftmost entries of the triples in Z. For example, we have

[βα](eα|p, α) = ([βα]|p, α).

We observe that kZ is a projective B-module.
The right A-action on kZ is defined as follows. For each nonzero path q in A, we set

(eα|p, α).q =

⎧
⎪⎨

⎪⎩

(eα|γ, α) if p = qγ for a nonzero path γ ;∑
{β∈Q1 | αβ∈F} ([αβ]|et(β), β) if q = pα;

0 otherwise.

(8.1)

Furthermore, we set

([βα]|p, α).q =
{

([βα]|γ, α) if p = qγ for a nonzero path γ ;
0 otherwise.

(8.2)

This lemma is analogous to Lemma 7.1.

Lemma 8.1 There is an isomorphism kZ � HomBop(M, B) of B-A-bimodules.

Proof We define a k-linear map

ψ : kZ −→ HomBop(M,B)

such thatψ(x|p, α) : M → B is the unique rightB-module morphism sending (p′, α′) ∈ D

to δp,p′δα,α′x for x ∈ {eα, [βα] | β ∈ Q1, βα ∈ F}. In view of the decomposition (6.3), it
is not hard to prove that ψ is an isomorphism of left B-modules. We omit the verification
that it respects the right A-actions.

For each α ∈ Q1, we consider the following subset of Z

αZ = {(eα|p, α) | (p, α) ∈ D} ∪ {([αβ]|q, β) | αβ ∈ F, (q, β) ∈ D}.
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We have a disjoint union Z = ⋃
α∈Q1 αZ, which yields a decomposition of right A-modules

kZ =
⊕

α∈Q1

k(αZ).

Lemma 8.1 and this decomposition might be useful to study the problem when
HomBop(M,B) has finite projective dimension as a right A-module.

The following example shows that this case is quite different from the A-dual bimodule.

Example 8.2 Let A be given by the following quiver Q:

1

α
��
2

β

�� γ��

with relations given by F = {αβ, βγ, γ γ }. The relation quiverR is

γ[γ γ ] 		
[βγ ] �� β

[αβ] �� α

We observe that A is non-Gorenstein by [8, Proposition 5.5(1)].
In R, there is neither sources nor vertices with in-degree at least two. It follows that the

A-dual bimodule HomA(M,A) is projective as a left B-module by Lemma 7.2.
We observe that

γ Z = {(eγ |e2, γ ), ([γ γ ]|e2, γ )}.
The projective cover of k(γ Z) is e2A, and its syzygy is isomorphic to a direct sum of two
copies of S1. It follows that as a right A-module, k(γ Z) has infinite projective dimension.
We conclude that as a right A-module, HomBop(M,B) has infinite projective dimension.

In view of the following known cases, the non-Gorensteinness in the previous example
is essential.

Lemma 8.3 Assume that A is Gorenstein. Then HomBop(M,B) has finite projective
dimension as a right A-module.

Proof As we mention in the proof of Theorem 6.2, the algebra B is also Gorenstein. Then
the result is a special case of Lemma 4.12.

However, we do not have nice conditions on when precisely HomBop(M,B) has finite
projective dimension as a right A-module.
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