
ar
X

iv
:2

10
2.

08
00

7v
1 

 [
m

at
h.

R
T

] 
 1

6 
Fe

b 
20

21

SKEW GROUP CATEGORIES, ALGEBRAS ASSOCIATED TO

CARTAN MATRICES AND FOLDING OF ROOT LATTICES

XIAO-WU CHEN, REN WANG∗

Abstract. For a finite group action on a finite EI quiver, we construct its
‘orbifold’ quotient EI quiver. The free EI category associated to the quotient
EI quiver is equivalent to the skew group category with respect to the given
group action. Specializing the result to a finite group action on a finite acyclic
quiver, we prove that, under reasonable conditions, the skew group category
of the path category is equivalent to a finite EI category of Cartan type. If
the ground field is of characteristic p and the acting group is a cyclic p-group,
we prove that the skew group algebra of the path algebra is Morita equivalent
to the algebra associated to a Cartan matrix, defined in [C. Geiss, B. Leclerc,
and J. Schröer, Quivers with relations for symmetrizable Cartan matrices I:
Foundations, Invent. Math. 209 (2017), 61–158]. We apply the Morita equiv-
alence to construct a categorification of the folding projection between the
root lattices with respect to a graph automorphism. In the Dynkin cases, the
restriction of the categorification to indecomposable modules corresponds to
the folding of positive roots.

1. Introduction

1.1. The background. The folding of root lattices is classic [25] and plays a signif-
icant role in Lie theory when getting from the simply-laced cases to the non-simply-
laced cases. The starting point is the fact that a symmetrizable generalized Cartan
matrix C is determined by a finite graph Γ with an admissible automorphism σ
[25, 19]. There is a surjective homomorphism, called the folding projection,

f : ZΓ0 −→ Z(Γ0/〈σ〉)

from the root lattice of Γ to that of C, which preserves simple roots; see [24,
Section 10.3]. Here, Γ0 denotes the set of vertices in Γ, and the orbit set Γ0/〈σ〉
indexes both the rows and columns of C, so that we identify Z(Γ0/〈σ〉) with the
root lattice of C. It is proved by [14, Proposition 15] that the folding projection
restricts to a surjective map

f : Φ(Γ) −→ Φ(C)

between the root systems [16], known as the folding of roots.
Let K be a field, and ∆ be a finite acyclic quiver such that its underlying graph is

Γ. The path algebra K∆ is finite dimensional and hereditary. It is well known that
the category of finite dimensional K∆-modules, denoted by K∆-mod, categorifies
the root lattice ZΓ0 in the following manner [9]: the dimension vector dim(M) of
any K∆-moduleM belongs to ZΓ0, where simple K∆-modules correspond to simple
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roots. Gabriel’s theorem [9, 1.2 Satz], one of the foundations in modern represen-
tation theory of algebras, states that if ∆ is of Dynkin type, then indecomposable
K∆-modules correspond bijectively to positive roots in Φ(Γ).

Associated to a symmetrizable generalized Cartan matrix C, a finite dimen-
sional 1-Gorenstein algebra H is defined in [11]. The category of finite dimen-

sional τ -locally free H-modules, denoted by H-modτ-lf, categorifies the root lattice
Z(Γ0/〈σ〉) in a similar manner: the rank vector rank(X) of any τ -locally free H-
module X belongs to Z(Γ0/〈σ〉), where generalized simple H-modules correspond
to simple roots. [11, Theorem 1.3], a remarkable analogue of Gabriel’s theorem,
states that if C is of Dynkin type, then indecomposable τ -locally free H-modules
correspond bijectively to positive roots in Φ(C).

We mention that the categorification in [11] works over an arbitrary ground field.
In particular, it works for algebraically closed fields, and then certain geometric
consideration for K∆ carries over to H ; see [10]. The traditional categorification of
Z(Γ0/〈σ〉) for a non-symmetric Cartan matrix uses species [8], where the ground
field has to be chosen suitably and can not be algebraically closed.

In view of the above work, the following question is natural and fundamental:
how to categorify the folding projection f between the root lattices? More pre-

cisely, is there an additive functor Θ: K∆-mod → H-modτ-lf making the following
diagram

K∆-mod

dim

��

Θ // H-modτ-lf

rank

��
ZΓ0

f // Z(Γ0/〈σ〉)

commute? Such a functor Θ might be called a categorification of f .
We will construct such a categorification under the assumptions that the charac-

teristic char(K) = p of the field is positive and that the automorphism σ is of order
pa for some a ≥ 1. Moreover, if ∆ is of Dynkin type, Θ preserves indecomposable
modules and categorifies the folding of positive roots.

For our purpose, it is very natural to require that σ preserves the orientation,
that is, it acts on ∆ by quiver automorphisms. We will work in a slightly more
general setting, namely, finite group actions on finite free EI categories.

Recall that a finite category is EI provided that each endomorphism is invert-
ible; in particular, the endomorphism monoid of each object is a finite group. For
example, the path category of a finite acyclic quiver is EI. The study of finite EI
categories goes back to [20], and is used to reformulate and extend Alperin’s weight
conjecture [29, 18]. We mention that EI categories are very similar to graphs of
groups in the sense of Bass-Serre [2, 23].

As an EI analogue of a path category, the notion of a finite free EI category is
introduced in [17]. We are mostly interested in EI categories of Cartan type [4],
which are certain finite free EI categories associated to symmetrizable generalized
Cartan matrices. The construction of the categorification Θ relies on the isomor-
phism [4] between the category algebra of an EI category of Cartan type and the
algebra H in [11].

1.2. The main results. Let C be a finite category and G be a finite group. Assume
that G acts on C by categorical automorphisms. As a very special case of the
Grothendieck construction, we have the skew group category C⋊G. The terminology
is justified by the following fact: the category algebra K(C ⋊ G) is isomorphic to
KC#G, the skew group algebra of the category algebra KC with respect to the
induced G-action.
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Following [17, Definition 2.1], a finite EI quiver (Q,U) consists of a finite acyclic
quiverQ and an assignment U on Q. The assignment U assigns to each vertex i of Q
a finite group U(i), and to each arrow α, a finite (U(tα), U(sα))-biset U(α). Here,
tα and sα denote the terminating vertex and starting vertex of α, respectively.

In a natural manner, each finite EI quiver (Q,U) gives rise to a finite EI category
C(Q,U) such that the objects of C(Q,U) are precisely the vertices of Q, the au-
tomorphism group of i coincides with U(i), and that elements of U(α) correspond
to unfactorizable morphisms. By [17, Definition 2.2 and Proposition 2.8], a finite
EI category C is said to be free, provided that it is equivalent to C(Q,U) for some
finite EI quiver (Q,U).

Let G be a finite group acting on (Q,U) by EI quiver automorphisms. Then
G acts naturally on the EI category C(Q,U). We form the skew group category
C(Q,U) ⋊ G. Inspired by [2, Section 3], we construct the ‘orbifold’ quotient EI
quiver (Q,U). Here, Q is the quotient quiver Q by G, and the construction of the
assignment U is quite involved. We mention that for each vertex i of Q, the finite
group U(i) is a semi-direct product of U(i) with the stabilizer Gi for some vertex
i of Q. For details, we refer to Subsection 5.1.

The first main result identifies the category associated to the quotient EI quiver
with the skew group category, and thus justifies the ‘orbifold’ quotient construction.

Theorem A. Let (Q,U) be a finite EI quiver with a G-action, and (Q,U) be its
quotient EI quiver. Then there is an equivalence of categories

C(Q,U) ≃ C(Q,U)⋊G.

We mention that Theorem A (= Theorem 5.1) might be viewed as a combina-
torial analogue to the well-known fact: the skew group algebra of a commutative
algebra with respect to a finite group action is closely related to the corresponding
quotient singularity; for example, see [30].

Let ∆ be a finite acyclic quiver. Denote by P∆ its path category. We view ∆ as
a finite EI quiver (∆, Utr) with trivial assignment Utr. Then we have

C(∆, Utr) = P∆.

Assume that G acts on ∆ by quiver automorphisms. It induces a G-action on
(∆, Utr). Denote by (∆, U tr) the corresponding quotient EI quiver, where ∆ is
the quotient quiver ∆ by G. Theorem A implies that there is an equivalence of
categories

C(∆, U tr) ≃ P∆ ⋊G.(1.1)

By a Cartan triple (C,D,Ω), we mean that C is a symmetrizable generalized
Cartan matrix, D is its symmetrizer and that Ω is an acyclic orientation of C.
Following [11, Section 1.4], we denote by H(C,D,Ω) the 1-Gorenstein K-algebra
associated to any Cartan triple (C,D,Ω). Similarly, we associate a finite free EI
category C(C,D,Ω), called an EI category of Cartan type, to any Cartan triple
(C,D,Ω); see [4, Definition 4.1].

As is well known, there is a Cartan triple (C,D,Ω) associated to the above G-
action on ∆ such that both the rows and columns of C and D are indexed by the
orbit set ∆0 = ∆0/G. Here, ∆0 denotes the set of vertices in ∆. Moreover, for
each G-orbit i of vertices, the corresponding diagonal entry of D is |G|/|i|; the
corresponding off-diagonal entry of C is

ci,j = −
Ni,j

|j|
,
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where |i| denotes the cardinality of the G-orbit i and Ni,j denotes the number of
arrows in ∆ between the G-orbit i and G-orbit j. The orientation of Ω is induced
from the one of ∆.

The second main theorem establishes an equivalence between the skew group
category and the EI category of Cartan type. Based on [4], we obtain a Morita
equivalence between the skew group algebra K∆#G and H(C,D,Ω).

Theorem B. Let ∆ be a finite acyclic quiver with a G-action that satisfies (†1)-(†3)
in Subsection 6.2. Assume that (C,D,Ω) is the associated Cartan triple. Then we
have the following statements.

(1) There is an equivalence of categories

P∆ ⋊G ≃ C(C,D,Ω).

(2) Assume that char(K) = p > 0 and that G is a p-group. Then the skew
group algebras K∆#G and H(C,D,Ω) are Morita equivalent.

The above technical conditions (†1)-(†3) are easily satisfied when G is cyclic.
On the other hand, examples where they do hold seem to be ubiquitous; see Ex-
ample 6.6. In view of (1.1), the core of the proof of Theorem B is to describe the
assignment U tr in the quotient EI quiver. We refer to Theorem 6.5 for more details.

The equivalence and the Morita equivalence in Theorem B indicate that both
EI categories of Cartan type [4] and the algebra H(C,D,Ω) [11] arise naturally in
the representation theory of quivers with automorphisms [19, 14].

The Morita equivalence in Theorem B(2) yields an equivalence between module
categories

Ψ: K∆#G-mod
∼
−→ H(C,D,Ω)-mod.

We have the obvious induction functor

−#G : K∆-mod −→ K∆#G-mod, M 7→M#G.

For τ -locally free modules over H = H(C,D,Ω), we refer to [11, Definition 1.1

and Section 11]. Denote by H-modτ-lf the full subcategory of H-mod consisting
of τ -locally free modules. In contrast to [11], we do not require τ -locally free H-
modules to be indecomposable.

Recall that Z∆0 and Z(∆0/G) denote the root lattices of ∆ and C, respectively.
The sets of positive roots are denoted by Φ+(∆) and Φ+(C), respectively.

The third main result shows that the composite functor Ψ◦(−#G) is the pursued
categorification of the folding projection f ; see Theorem 7.8 and Proposition 7.9.

Theorem C. Assume that char(K) = p > 0 and that G is a cyclic p-group. Assume
that G acts on a finite acyclic quiver ∆ such that Gα = Gs(α)∩Gt(α) for each arrow
α in ∆. Assume that (C,D,Ω) is its associated Cartan triple. Then we have the
following commutative diagram.

K∆-mod
Ψ◦(−#G) //

dim

��

H(C,D,Ω)-modτ -lf

rank

��
Z∆0

f // Z(∆0/G)
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Assume further that ∆ is of Dynkin type. Then the above commutative diagram
restricts to the following one.

(1.2) K∆-ind
Ψ◦(−#G)

//

dim

��

H(C,D,Ω)-indτ -lf

rank

��
Φ+(∆)

f // Φ+(C)

Here, Gα, Gs(α) and Gt(α) denote the stabilizers of an arrow α, its starting
vertex s(α) and terminating vertex t(α), respectively. The natural condition Gα =
Gs(α) ∩Gt(α) implies that the technical conditions (†1)-(†3) in Theorem B hold.

In (1.2), we denote by K∆-ind a complete set of representatives of indecompos-

able K∆-modules. Similarly, H(C,D,Ω)-indτ -lf is a complete set of representatives
of indecomposable τ -locally free H(C,D,Ω)-modules.

In the Dynkin cases, by [9, 1.2 Satz] and [11, Theorem 1.3], the vertical arrows
in (1.2) are both bijections. Since f : Φ+(∆) → Φ+(C) is surjective, we infer that
up to the equivalence Ψ, every τ -locally free H(C,D,Ω)-module is induced from
K∆-ind. This yields a new interpretation of those H(C,D,Ω)-modules [11] that
categorify the root system Φ+(C).

In view of [19, Section 14.1] and [14], it has been expected that skew group
algebras play a role in categorifying the root lattice for symmetrizable generalized
Cartan matrices. We observe that in [14, Section 4] the characteristic of the ground
field is assumed to be coprime to the order of the acting group. In contrast, the
feature of Theorem C is the assumptions that the ground field K is of characteristic
p and that the order of the acting group G is a p-power.

1.3. The structure. The paper is structured as follows. In Section 2, we prove
that for a finite group action on a finite category, the skew group category is EI if
and only if so is the given category; see Proposition 2.5. In Section 3, we study the
unique factorization property of morphisms and free EI categories. We prove that
for a finite group action on a finite category, the skew group category is free EI if
and only if so is the given category; see Proposition 3.4. In Section 4, we recall
finite EI quivers introduced in [17], and prove a universal property of the free EI
category associated to a finite EI quiver; see Proposition 4.2.

For a finite group action on a finite EI quiver, we construct its ‘orbifold’ quotient
EI quiver explicitly in Section 5. Theorem 5.1 states that the category associated
to the quotient EI quiver is equivalent to the skew group category.

In Section 6, we recall the algebras H [11] and EI categories [4] associated to
Cartan triples. For a finite group action on a finite acyclic quiver, we give sufficient
conditions on when the quotient EI quiver is of Cartan type. Consequently, the
skew group algebra of the path algebra is Morita equivalent to the algebra H ; see
Theorem 6.5.

In the final section, we first study induced modules over skew group algebras. We
apply Theorem 6.5 to the case where a finite cyclic p-group acts on a finite acyclic
quiver. Theorem 7.8 obtains a categorification of the folding projection f , namely
an additive functor from the module category over the path algebra to the category
of τ -locally free H-modules. In the Dynkin cases, restricting the categorification
to indecomposable modules, we obtain a categorification of the folding of positive
roots; see Proposition 7.9. In the end, we give an explicit example to illustrate the
categorification.

By default, a module means a finite dimensional left module. For a finite dimen-
sional algebra A, we denote by A-mod the abelian category of finite dimensional left
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A-modules. We use rad(A) to denote the Jacobson radical of A. The unadorned
tensor ⊗ means the tensor product over the ground field K.

2. Skew group categories

In this section, we recall basic facts about finite group actions on finite categories.
The EI property of a skew group category is studied in Proposition 2.5.

2.1. Finite G-categories. Let C be a finite category, that is, a category with only
finitely many morphisms. As any object is determined by its identity endomor-
phism, the finite category C necessarily has only finitely many objects. Denote by
Obj(C) (resp. Mor(C)) the finite set of objects (resp. morphisms) in C. We denote
by Aut(C) the automorphism group of C.

Let G be a finite group with its unit 1G. A finite G-category C is a finite category
equipped with a group homomorphism

ρ : G −→ Aut(C).

To simplify the notation, the following convention will be used: for g ∈ G and
x ∈ Obj(C), we write g(x) = ρ(g)(x); for α ∈ Mor(C), we write g(α) = ρ(g)(α).

For a finite G-category C, we will recall the skew group category C⋊G; compare
[22, Subsection 3.1] and [5, Definition 2.3]. It has the same objects as C; for two
objects x and y, the corresponding Hom set is defined to be

HomC⋊G(x, y) = {(α, g) | g ∈ G,α ∈ HomC(g(x), y)}.

For any morphisms (α, g) ∈ HomC⋊G(x, y) and (β, h) ∈ HomC⋊G(y, z), the compo-
sition is defined by

(β, h) ◦ (α, g) = (β ◦ h(α), hg).(2.1)

We observe that the identity endomorphism of x in C ⋊ G is given by (Idx, 1G),
where Idx is the identity endomorphism of x in C. We mention that the formation
of a skew group category might be viewed as a very special case of the Grothendieck
construction; compare [13, VI.8] and [28, Section 7].

Let K be a field and C be a finite category. The category algebra KC of C is a finite
dimensional K-algebra defined as follows. As a K-vector space, KC =

⊕

α∈Mor(C)

Kα,

and the product between the basis elements is given by the following rule:

αβ =

{

α ◦ β, if α and β can be composed in C;
0, otherwise.

The unit of KC is given by 1KC =
∑

x∈Obj(C)

Idx.

Denote by (K-mod)C the category of covariant functors from C to K-mod. There
is a canonical equivalence

can: KC-mod
∼
−→ (K-mod)C ,(2.2)

sending a KC-module M to the functor can(M) : C → K-mod described as follows:
can(M)(x) = Idx.M for each object x in C; for any morphism α : x→ y, we have

can(M)(α) : can(M)(x) −→ can(M)(y), m 7→ α.m.

For details, we refer to [28, Proposition 2.1].
Denote by Aut(KC) the group of algebra automorphisms onKC. Each categorical

automorphism on C induces uniquely an algebra automorphism on KC. Therefore,
there is a canonical embedding of groups

Aut(C) →֒ Aut(KC).
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Assume that C is a finite G-category. The group homomorphism ρ : G→ Aut(C)
induces a group homomorphism ρ′ : G → Aut(KC). In other words, the group
G acts on the algebra KC by algebra automorphisms. We denote by KC#G the
corresponding skew group algebra. Here, we recall that KC#G = KC ⊗KG as a K-
vector space, where the tensor product α⊗ g is written as α#g. The multiplication
is given by

(β#h)(α#g) = βh(α)#hg

for any α, β ∈ Mor(C) and g, h ∈ G. We emphasize that on the right hand side,
βh(α) means the product of β and h(α) in KC, namely, the composition β ◦ h(α)
in C.

The following easy observation, extending [31, Lemma 2.3.2], justifies the termi-
nology ‘skew group category’.

Proposition 2.1. Let C be a finite G-category. Then there is an isomorphism of
algebras

K(C ⋊G)
∼
−→ KC#G,

sending a morphism (α, g) in C ⋊G to the element α#g in KC#G. �

In the following lemma, we collect elementary facts on skew group categories.

Lemma 2.2. Let C be a finite G-category. Then the following two statements hold.

(1) A morphism (α, g) in C ⋊ G is an isomorphism if and only if α is an
isomorphism in C.

(2) For two objects x and y in C, they are isomorphic in C⋊G if and only if x
is isomorphic to g(y) in C for some g ∈ G.

Proof. (1) For the “if” part, we assume that α−1 is the inverse of α in C. Then
(g−1(α−1), g−1) is a well-defined morphism in C ⋊ G; moreover, it is the required
inverse of (α, g).

For the “only if” part, we observe that the inverse of (α, g) has to be of the form
(β, g−1). Then it is direct to see that g(β) is the inverse of α, as required.

(2) For the “if” part, we assume that α : g(y) → x is an isomorphism in C. Then
(α, g) is a morphism from y to x in C ⋊G; moreover, by (1) it is an isomorphism
between y and x.

For the “only if” part, we assume that (α, g) ∈ HomC⋊G(y, x) is an isomorphism.
By (1), we deduce that α is an isomorphism from g(y) to x in C. �

2.2. The EI property. Let C be a finite G-category as above. For each object x
in C, we denote by Gx = {g ∈ G | g(x) = x} its stabilizer. We observe that Gx acts
on the monoid HomC(x, x) by monoid automorphisms. Denote by HomC(x, x)⋊Gx
the corresponding semi-direct product. There is an inclusion between monoids

incx : HomC(x, x) ⋊Gx →֒ HomC⋊G(x, x), (α, g) 7→ (α, g).

The following terminology is inspired by [19, Subsection 12.1.1].

Definition 2.3. A finite G-category C is admissible, provided that for any x ∈
Obj(C) and g ∈ G, HomC(g(x), x) = ∅ whenever g(x) 6= x. �

Lemma 2.4. A finite G-category C is admissible if and only if incx is surjective
for each object x in C.

Proof. The inclusion incx is not surjective if and only if there exists g ∈ G satisfying
g(x) 6= x and HomC(g(x), x) 6= ∅. Then the result follows immediately. �

Recall from [28] that a finite category C is EI if every endomorphism is an
isomorphism. Therefore, for each object x, HomC(x, x) = AutC(x) is a finite group.
Finite EI categories are of interest from many different perspectives; for example,
see [29, 31].
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Proposition 2.5. Let C be a finite G-category. Then C is an EI category if and
only if so is C ⋊G.

Proof. For the “if” part, we assume that C ⋊ G is an EI category. For any α ∈
HomC(x, x), (α, 1G) is an endomorphism of x in C ⋊G. Since C ⋊G is EI, (α, 1G)
is an isomorphism. By Lemma 2.2(1), the endomorphism α is an isomorphism in
C, as required.

For the “only if” part, we assume that C is an EI category. Any endomorphism
of x in C ⋊G is of the form (α, g), where α : g(x) → x is a morphism in C. Assume
that gd = 1G for some d ≥ 1. Then we have a chain

x = gd(x)
gd−1(α)
−→ gd−1(x) −→ · · · −→ g2(x)

g(α)
−→ g(x)

α
−→ x

of morphisms in C. Since C is EI, it follows that all the morphisms in the chain
are isomorphisms. In particular, the morphism α is an isomorphism. Applying
Lemma 2.2(1), we infer that the endomorphism (α, g) is an isomorphism, proving
that C ⋊G is an EI category. �

The following corollary follows immediately from Lemma 2.4.

Corollary 2.6. Let C be a finite admissible G-category. Assume that C is EI. Then
for each object x, we have an identification of groups

AutC(x)⋊Gx = AutC⋊G(x). �

3. Free EI categories

In this section, we study the unique factorization property of morphisms and
free EI categories [17]. We prove that a skew group category is free EI if and only
if so is the given category; see Proposition 3.4.

Let C be a finite category. Recall from [17, Definition 2.3] that a morphism
α : x → y in C is unfactorizable, if it is a non-isomorphism and whenever it has a

factorization x
β
→ z

γ
→ y, then either β or γ is an isomorphism. We observe that if

α : x→ y is unfactorizable, then so is h ◦ α ◦ g for any isomorphism h and g.
As the notion of an unfactorizable morphism is categorical, it is preserved by

any categorical automorphism. Then the following observation is clear.

Lemma 3.1. Let G be a finite group and C be a finite G-category. Then for any
morphism α in C and g ∈ G, α is unfactorizable if and only if so is g(α). �

We say that a morphism α in a finite category C satisfies the Unique Factorization
Property (UFP), if it is either an isomorphism or, whenever it has two factorizations
into unfactorizable morphisms:

x = x0
α1→ x1

α2→ · · ·
αm→ xm = y

and

x = y0
β1
→ y1

β2
→ · · ·

βn
→ yn = y,

then m = n, and there are isomorphisms γi : xi → yi in C for 1 ≤ i ≤ m− 1, such
that the following diagram commutes.

x = x0
α1 // x1

α2 //

γ1

��

x2
α3 //

γ2

��

· · ·
αm−1 // xm−1

αm //

γm−1

��

xm = y

x = y0
β1 // y1

β2 // y2
β3 // · · ·

βm−1 // ym−1
βm // ym = y

We mention that, in general, a non-isomorphism in a finite category C might
not have a factorization into unfactorizable morphisms. However, if C is EI, any
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non-isomorphism in C has a factorization into unfactorizable morphisms; see [17,
Proposition 2.6].

Lemma 3.2. Let G be a finite group and C be a finite G-category. Then a morphism
(α, g) in C ⋊G is unfactorizable if and only if α is unfactorizable in C.

Proof. By Lemma 2.2(1), we observe that (α, g) is a non-isomorphism if and only
if so is α.

For the “if” part, we assume that α is unfactorizable. Suppose we have a factor-
ization

(α, g) = (β, h) ◦ (γ, k) = (β ◦ h(γ), hk)

in C ⋊ G. The factorization α = β ◦ h(γ) in C implies that either β or h(γ) is
an isomorphism. As h ∈ G induces a categorical automorphism on C, we infer
that h(γ) is an isomorphism if and only if so is γ. In view of Lemma 2.2(1), we
infer that either (β, h) or (γ, k) is an isomorphism in C ⋊G, proving that (α, g) is
unfactorizable.

For the “only if” part, we assume that (α, g) is unfactorizable. Assume on the
contrary that α = β ◦ γ with both β and γ non-isomorphisms in C. Then we have

(α, g) = (β, 1G) ◦ (γ, g).

By Lemma 2.2(1), we have that both (β, 1G) and (γ, g) are non-isomorphisms in
C ⋊G. This contradicts to the unfactorizability of (α, g). �

The following result characterizes the UFP of morphisms in a skew group cate-
gory.

Proposition 3.3. Let G be a finite group and C be a finite G-category. Then a
morphism (α, g) in C⋊G satisfies the UFP if and only if α satisfies the UFP in C.

Proof. By Lemma 2.2(1), the morphism (α, g) is an isomorphism if and only if so
is α. In the following proof, we will assume that both (α, g) and α : g(x) → y are
non-isomorphisms.

For the “if” part, we assume that α : g(x) → y satisfies the UFP in C. Suppose
that (α, g) : x→ y has two factroizations into unfactorizable morphisms in C ⋊G:

x = x0
(α1,g1)
−→ x1

(α2,g2)
−→ · · ·

(αn,gn)
−→ xn = y

and

x = y0
(β1,h1)
−→ y1

(β2,h2)
−→ · · ·

(βm,hm)
−→ ym = y.

The factorizations imply gn · · · g1 = g = hm · · ·h1 in G. Moreover, the morphism
α : g(x) → y has two factorizations in C:

g(x)
gn···g2(α1)

−→ gn · · · g2(x1)
gn···g3(α2)

−→ · · ·
gn(αn−1)
−→ gn(xn−1)

αn−→ xn = y

and

g(x)
hm···h2(β1)

−→ hm · · ·h2(y1)
hm···h3(β2)

−→ · · ·
hm(βm−1)

−→ hm(ym−1)
βm
−→ ym = y.

Here, in the first factorization we use g(x) = gn · · · g2g1(x0), and in the second
one we use g(x) = hm · · ·h2h1(x0). By Lemmas 3.1 and 3.2, all the morphisms
appearing in the above two factorizations are unfactorizable in C.

Since α satisfies the UFP, we infer that n = m, and that there are isomorphisms
θi : gn · · · gi+1(xi) → hn · · ·hi+1(yi), 1 ≤ i ≤ n− 1, such that the following diagram
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in C commutes.

g(x)
gn···g2(α1) // gn · · · g2(x1)

gn···g3(α2) //

θ1

��

· · ·
gn(αn−1)// gn(xn−1)

αn //

θn−1

��

xn = y

g(x)
hn···h2(β1) // hn · · ·h2(y1)

hn···h3(β2) // · · ·
hn(βn−1)// hn(yn−1)

βn // yn = y

Set θ0 = Idg(x) and θn = Idy. Then the above commutativity implies that

θi ◦ gn · · · gi+1(αi) = hn · · ·hi+1(βi) ◦ θi−1(3.1)

for each 1 ≤ i ≤ n. The identity for the case i = n means αn = βn ◦ θn−1.
For each 1 ≤ i ≤ n − 1, we set ai = h−1

i+1 · · ·h
−1
n gn · · · gi+1. In addition, we set

a0 = 1G = an. Then we have

aigi = hiai−1(3.2)

for each 1 ≤ i ≤ n. Here, to see a1g1 = h1, we use the fact that gn · · · g1 = hn · · ·h1.
For each 1 ≤ i ≤ n, we set ηi = h−1

i+1 · · ·h
−1
n (θi). We observe η0 = Idx and

ηn = Idy. Then each ηi : ai(xi) → yi is an isomorphism in C. Consequently, by
Lemma 2.2(1) we have an isomorphism (ηi, ai) : xi → yi in C ⋊G.

Applying h−1
i+1 · · ·h

−1
n to (3.1), we have

ηi ◦ ai(αi) = βi ◦ hi(ηi−1)(3.3)

for each 1 ≤ i ≤ n. By (3.2) and (3.3), we have the following commutative diagram
in C ⋊G.

x = x0
(α1,g1) // x1

(α2,g2) //

(η1,a1)

��

x2 //

(η2,a2)

��

· · ·
(αn−1,gn−1)// xn−1

(αn,gn) //

(ηn−1,an−1)

��

xn = y

x = y0
(β1,h1) // y1

(β2,h2) // y2 // · · ·
(βn−1,hn−1)// yn−1

(βn,hn) // yn = y

This implies that the morphism (α, g) satisfies the UFP.
The proof of the “only if” is similar and actually easier. We assume that

(α, g) : x → y satisfies the UFP in C ⋊ G. Suppose that α : g(x) → y has two
factorizations into unfactorizable morphisms in C:

g(x) = x0
α1−→ x1

α2−→ · · ·
αn−→ xn = y

and

g(x) = y0
β1
−→ y1

β2
−→ · · ·

βm
−→ ym = y.

Then the morphism (α, g) : x→ y in C ⋊G has two factorizations:

x = g−1(x0)
(α1,g)
−→ x1

(α2,1G)
−→ · · ·

(αn,1G)
−→ xn = y

and

x = g−1(y0)
(β1,g)
−→ y1

(β2,1G)
−→ · · ·

(βm,1G)
−→ ym = y.

By Lemma 3.2, all the morphisms (α1, g), (β1, g), (αi, 1G) and (βj , 1G) are unfac-
torizable, for 2 ≤ i ≤ n and 2 ≤ j ≤ m.

Since the morphism (α, g) satisfies the UFP, then m = n and there are isomor-
phisms (γi, gi) : xi → yi, 1 ≤ i ≤ n − 1, such that the following diagram in C ⋊G
commutes.

x = g−1(x0)
(α1,g) // x1

(α2,1G) //

(γ1,g1)

��

x2 //

(γ2,g2)

��

· · ·
(αn−1,1G)

// xn−1
(αn,1G)//

(γn−1,gn−1)

��

xn = y

x = g−1(y0)
(β1,g) // y1

(β2,1G) // y2 // · · ·
(βn−1,1G)

// yn−1
(βn,1G) // yn = y
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The commutativity implies g1 = g2 = · · · = gn−1 = 1G. By Lemma 2.2(1), each
γi : xi → yi is an isomorphism in C. Consequently, the isomorphisms γi make the
following diagram in C commute.

g(x) = x0
α1 // x1

α2 //

γ1

��

x2 //

γ2

��

· · ·
αn−1 // xn−1

αn //

γn−1

��

xn = y

g(x) = y0
β1 // y1

β2 // y2 // · · ·
βn−1 // yn−1

βn // yn = y

This proves that α satisfies the UFP, as required. �

Recall that a finite EI category C is free provided that each morphism satisfies
the UFP; compare [17, Definition 2.7 and Proposition 2.8]. For an alternative
characterization of a free EI category, we refer to [27, Proposition 4.5].

The following result follows immediately from Propositions 2.5 and 3.3.

Proposition 3.4. Let C be a finite G-category. Then C is a free EI category if and
only if so is C ⋊G. �

Remark 3.5. Let us sketch a shorter proof of Proposition 3.4 using category
algebras. By Proposition 2.5, we may assume that both C and C ⋊ G are EI
categories.

Take an arbitrary field K of characteristic zero. By Proposition 2.1, we identify
the category algebra K(C ⋊ G) with the skew group algebra KC#G. It is well
known that KC is hereditary if and only if so is KC#G; see [22, Theorems 1.3(c)
and 1.4]. Then Proposition 3.4 follows immediately from the following result due
to [17, Theorem 5.3]: the EI category C (resp. C ⋊ G) is free if and only if the
corresponding category algebra KC (resp. K(C ⋊G)) is hereditary.

4. Finite EI quivers and G-actions

In this section, we recall basic facts on finite EI quivers. We prove a universal
property of the free EI category associated to a finite EI quiver; see Proposition 4.2.
We study finite group actions on finite EI quivers.

4.1. Categories associated to finite EI quivers. Let Q = (Q0, Q1; s, t) be a
finite quiver, where Q0 and Q1 are the finite sets of vertices and arrows, respec-
tively. The maps s, t : Q1 → Q0 assign to each arrow α its starting vertex s(α) and
terminating vertex t(α), respectively.

A path p = αn · · ·α2α1 of length n in Q consists of arrows αi satisfying t(αi) =
s(αi+1) for each 1 ≤ i ≤ n − 1. Here, we write concatenation from right to left.
We set s(p) = s(α1) and t(p) = t(αn). An arrow is identified with a path of length
one. To each vertex i ∈ Q0, we associate a trivial path ei of length zero, satisfying
s(ei) = i = t(ei).

A finite quiver Q is said to be acyclic, provided that there is no oriented cycle
in Q, that is, there is no nontrivial path with the same starting and terminating
vertex. This is equivalent to the condition that there are only finitely many paths
in Q.

Let H be a finite group, and let X be a right H-set, that is, H acts on X on the
right. Let Y be a left H-set. The biset product X ×H Y is defined to be the set

X × Y/ ∼

of equivalence classes with respect to the equivalence relation ∼ given by (x.h, y) ∼
(x, h.y) for x ∈ X,h ∈ H and y ∈ Y . By abuse of notation, the elements in
X × Y/ ∼ are still denoted by (x, y) for x ∈ X and y ∈ Y .
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Let G and K be finite groups. By a (G,H)-biset X , we mean a set X which is a
left G-set and a right H-set satisfying (g.x).h = g.(x.h) for any g ∈ G, x ∈ X and
h ∈ H . Here, we use the dot to denote the group actions. Let Y be a (H,K)-biset.
Then the biset product X ×H Y is naturally a (G,K)-biset.

Example 4.1. Let C be a finite EI category. For any two objects x and y, the Hom-
set HomC(x, y) is naturally an (AutC(y),AutC(x))-biset, where the actions are given
by the composition of morphisms in C.

Denote by Hom0
C(x, y) the subset of HomC(x, y) consisting of unfactorizable mor-

phisms. As unfactorizable morphisms are closed under composition with isomor-
phisms, Hom0

C(x, y) is an (AutC(y),AutC(x))-sub-biset of HomC(x, y).

Recall from [17, Definition 2.1] that a finite EI quiver (Q,U) consists of a finite
acyclic quiver Q and an assignment U = (U(i), U(α))i∈Q0,α∈Q1 . In more details,
for each vertex i ∈ Q0, U(i) is a finite group, and for each arrow α ∈ Q1, U(α) is a
finite (U(tα), U(sα))-biset. Here, we emphasize that each U(α) is nonempty.

For any path p = αn · · ·α2α1 in Q, we define

U(p) = U(αn)×U(tαn−1) U(αn−1)×U(tαn−2) · · · ×U(tα2) U(α2)×U(tα1) U(α1).

Then U(p) is naturally a (U(tp), U(sp))-biset. A typical element in U(p) will be
denoted by (un, · · · , u2, u1) with each ui ∈ U(αi). For each vertex i ∈ Q0, we
identify U(ei) with U(i).

For two paths p, q satisfying s(p) = t(q), we have a natural isomorphism of
(U(tp), U(sq))-bisets

U(p)×U(tq) U(q)
∼
−→ U(pq),(4.1)

sending ((u′m, · · · , u
′
1), (un, · · · , u1)) to (u′m, · · · , u

′
1, un, · · · , u1), where pq denotes

the concatenation of paths.
Each finite EI quiver (Q,U) gives rise to a finite EI category C(Q,U); see [17,

Section 2]. The objects of C(Q,U) coincide with the vertices of Q. For two objects
i and j, we have a disjoint union

HomC(Q,U)(i, j) =
⊔

{p paths in Q with s(p)=i and t(p)=j}

U(p).

The composition of morphisms is induced by the concatenation of paths and the
isomorphism (4.1). Since Q has only finitely many paths, we infer that C(Q,U) is
a finite category. As ei is the only path starting and terminating at i, we infer that

HomC(Q,U)(i, i) = U(ei) = U(i),(4.2)

which is a finite group. We conclude that the category C(Q,U) is indeed finite EI.
We mention the following immediate fact

Hom0
C(Q,U)(i, j) =

⊔

{α∈Q1|s(α)=i, t(α)=j}

U(α).(4.3)

By [17, Proposition 2.8], the EI category C(Q,U) is free. Moreover, a finite EI
category is free if and only if it is equivalent to C(Q,U) for some finite EI quiver
(Q,U).

4.2. A universal property. The free EI category C(Q,U) enjoys a certain uni-
versal property; compare [17, Proposition 2.9].

Proposition 4.2. Let D be a finite EI category. Assume that φ : Q0 → Obj(D) is
a map, ψi : U(i) → AutD(φ(i)) is a group homomorphism for each vertex i ∈ Q0,
and that ψα : U(α) → HomD(φ(sα), φ(tα)) is a map of (U(tα), U(sα))-bisets for
each arrow α ∈ Q1. Then there is a unique functor Φ: C(Q,U) → D subject to the
following constraints:
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(1) Φ(i) = φ(i) for each i ∈ Q0 = Obj(C(Q,U));
(2) Φ(x) = ψi(x) for each x ∈ U(i) = AutC(Q,U)(i);

(3) Φ(u) = ψα(u) for each u ∈ U(α) ⊆ Hom0
C(Q,U)(s(α), t(α)).

Moreover, Φ is an equivalence of categories if and only if all the following con-
ditions are satisfied:

(E1) The finite EI category D is free;
(E2) Whenever φ(i) and φ(j) are isomorphic in D, we have i = j;
(E3) Every object in D is isomorphic to φ(i) for some i ∈ Q0;
(E4) Each ψi is an isomorphism, and the maps ψα induce a bijection, for any

i, j ∈ Q0,
⊔

{α∈Q1|s(α)=i,t(α)=j}

U(α) −→ Hom0
D(φ(i), φ(j)).

Before giving the proof, we leave two comments to clarify the statements. The
(U(tα), U(sα))-biset structure on HomD(φ(sα), φ(tα)) is given as follows: for a
morphism f : φ(sα) → φ(tα) in D, x ∈ U(tα) and x′ ∈ U(sα), we have

x.f.x′ = ψt(α)(x) ◦ f ◦ ψs(α)(x
′).

In the condition (E4), the domain of the bijection is a disjoint union; moreover, it
implies that ψα(u) is unfactorizable in D for any u ∈ U(α).

Proof. Set C = C(Q,U). For any path p = αn · · ·α2α1 in Q and an element
(un, · · · , u2, u1) ∈ U(p), we define

Φ(un, · · · , u2, u1) = ψαn
(un) ◦ · · · ◦ ψα2(u2) ◦ ψα1(u1).

We claim that this is independent of the choice of the representatives; compare [17,
the proof of Proposition 2.9].

Assume that (un, · · · , u2, u1) = (vn, · · · , v2, v1) in U(p). This means that there
are elements xi ∈ U(tαi) for each 1 ≤ i ≤ n − 1, such that the following identities
hold:

vn = un.xn−1, vi = x−1
i .ui.xi−1, and v1 = x−1

1 .u1.

Since each ψαi
is a map of bisets, we have

ψαn
(vn) = ψαn

(un)◦ψt(αn−1)(xn−1), ψαi
(vi) = ψt(αi)(xi)

−1◦ψαi
(ui)◦ψt(αi−1)(xi−1),

and
ψα1(v1) = ψt(α1)(x1)

−1 ◦ ψα1(u1).

Then the following identity follows immediately.

Φ(vn, · · · , v2, v1) = ψαn
(vn) ◦ · · · ◦ ψα2(v2) ◦ ψα1(v1)

= ψαn
(un)ψt(αn−1)(xn−1) ◦ · · · ◦ ψt(α2)(x2)

−1ψα2(u2)ψt(α1)(x1) ◦ ψt(α1)(x1)
−1ψα1(u1)

= ψαn
(un) ◦ · · · ◦ ψα2(u2) ◦ ψα1(u1) = Φ(un, · · · , u2, u1).

The above claim yields a well-defined functor Φ. The uniqueness of Φ is clear,
as (un, · · · , u2, u1) might be viewed as the composition un ◦ · · · ◦ u2 ◦ u1 in C.

For the “only if” part of the second statement, we assume that Φ is an equiva-
lence. Then (E1) is clear, since C is free. Since C is skeletal and Φ respects isomor-
phism classes, (E2) follows immediately. The condition (E3) is just the denseness
of Φ. For (E4), we observe that the equivalence Φ necessarily induces isomorphisms

AutC(i) ≃ AutD(φ(i))

of groups and bijections

Hom0
C(i, j) ≃ Hom0

D(φ(i), φ(j))

between the sets of unfactorizable morphisms. Then we apply (4.2) and (4.3).
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For the “if” part, we assume the conditions (E1)-(E4). By (E3), the functor Φ
is dense. It suffices to prove that for any i, j ∈ Q0, the following map

Φi,j : HomC(i, j) −→ HomD(φ(i), φ(j)), f 7→ Φ(f)

is bijective.
By (E4), each ψi is an isomorphism, and then the case i = j follows. We now

assume that i 6= j. Then by (E2), φ(i) and φ(j) are not isomorphic.
Recall from [17, Proposition 2.6] that each morphism in D has a factorization

into unfactorizable morphisms. Since Φ is dense, any morphism g : φ(i) → φ(j)
admits a factorization

φ(i)
g0
−→ φ(i1)

g1
−→ φ(i2) −→ · · · −→ φ(in−1)

gn−1
−→ φ(j)

with each gk unfactorizable. By (E4), each gk belongs to the image of Φ. It follows
that there is a morphism f : i → j in C satisfying Φ(f) = g. This proves that Φi,j
is surjective.

It remains to show that Φi,j is injective. Assume that p = αn · · ·α2α1 and
q = βm · · ·β2β1 are two paths from i to j, and that (un, · · · , u2, u1) ∈ U(p) and
(vm, · · · , v2, v1) ∈ U(q) satisfy

Φ(un, · · · , u2, u1) = Φ(vm, · · · , v2, v1) = g′.

We claim that p = q and (un, · · · , u2, u1) = (vm, · · · , v2, v1). Then we are done.
For the claim, we observe that the morphism g′ admits two factorizations:

φ(i)
ψα1 (u1)
−→ φ(i1)

ψα2 (u2)
−→ φ(i2) −→ · · · −→ φ(in−1)

ψαn(un)
−→ φ(j)

and

φ(i)
ψβ1

(v1)
−→ φ(j1)

ψβ2
(v2)

−→ φ(j2) −→ · · · −→ φ(jm−1)
ψβm (vm)
−→ φ(j).

Here, ik = t(αk) and jk = t(βk). By (E4), all the morphisms appearing in the
two factorizations are unfactorizable. By (E1), the EI category D is free, that is,
any morphism satisfies the UFP. Consequently, m = n and there are isomorphisms
g′k : φ(ik) → φ(jk) making the following diagram commute.

φ(i)
ψα1 (u1)// φ(i1)

g′1
��

ψα2 (u2)// φ(i2)

g′2
��

// · · · // φ(in−1)

g′n−1

��

ψαn(un)// φ(j)

φ(i)
ψβ1

(v1)// φ(j1)
ψβ2

(v2)// φ(j2) // · · · // φ(jn−1)
ψβn(vn)// φ(j)

By (E2), we infer that ik = jk; moreover, by (E4) we obtain automorphisms ak ∈
AutC(ik) = U(ik) satisfying ψik(ak) = g′k. The commutativity yields

ψβk+1
(vk+1) ◦ ψik(ak) = ψik+1

(ak+1) ◦ ψαk+1
(uk+1)

for each 0 ≤ k ≤ n− 1. Here, a0 and an are the identity elements in U(i) and U(j),
respectively. The above identity is equivalent to

ψβk+1
(vk+1.ak) = ψαk+1

(ak+1.uk+1).

By the bijection in (E4), we infer that βk+1 = αk+1 and that

vk+1.ak = ak+1.uk+1

for each 0 ≤ k ≤ n− 1. It follows that p = q; moreover, in view of the definition of
U(p) via biset products, we infer that (un, · · · , u2, u1) = (vn, · · · , v2, v1), proving
the claim. �
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4.3. G-actions on finite EI quivers. Let (Q,U) be a finite EI quiver. An auto-
morphism σ = (σ0, σ1) of (Q,U) consists of an automorphism σ0 : Q → Q of the
acyclic quiver Q and an assignment σ1 = (σ1

i , σ
1
α)i∈Q0,α∈Q1 of isomorphisms. More

precisely, for each i ∈ Q0,
σ1
i : U(i)

∼
−→ U(σ0(i))

is an isomorphism of groups; for each arrow α ∈ Q1,

σ1
α : U(α)

∼
−→ U(σ0(α))

is an isomorphism of (U(tα), U(sα))-bisets. Here, the (U(tα), U(sα))-biset struc-
ture on U(σ0(α)) is induced by the group isomorphisms σ1

t(α) and σ
1
s(α).

The composition of two automorphisms σ = (σ0, σ1) and θ = (θ0, θ1) on (Q,U)
is given by

θ ◦ σ = (θ0 ◦ σ0, θ1 ⋆ σ1),

where the assignment θ1 ⋆ σ1 is given by

(θ1 ⋆ σ1)i = θ1σ0(i) ◦ σ
1
i and (θ1 ⋆ σ1)α = θ1σ0(α) ◦ σ

1
α.

We denote by Aut(Q,U) the group of automorphisms of (Q,U), whose multiplica-
tion is given by the composition of automorphisms.

We observe that each automorphism σ = (σ0, σ1) on (Q,U) induces an au-
tomorphism σ̃ on C(Q,U) in the following natural manner: the action of σ̃ on
objects is given by σ0; for u ∈ U(i), we have σ̃(u) = σ1

i (u) ∈ U(σ0(i)); for a path
p = αn · · ·α2α1 and a morphism (un, · · · , u2, u1) ∈ U(p), we have

σ̃(un, · · · , u2, u1) = (σ1
αn

(un), · · · , σ
1
α2
(u2), σ

1
α1
(u1)) ∈ U(σ0(p)).

This actually gives rise to an injective group homomorphism

Aut(Q,U) →֒ Aut(C(Q,U)), σ 7→ σ̃.(4.4)

Let G be a finite group. By a G-action on a finite EI quiver (Q,U), we mean a
group homomorphism

ρ : G −→ Aut(Q,U), g 7→ ρ(g) = (ρ(g)0, ρ(g)1).

Composing ρ with (4.4), the G-action makes C(Q,U) into a G-category.
The following convention for the G-action ρ will simplify the notation. For g ∈ G

and i ∈ Q0 = Obj(C(Q,U)), we write

g(i) = ρ(g)0(i) ∈ Q0.(4.5)

Similarly, for α ∈ Q1, we write g(α) = ρ(g)0(α) ∈ Q1. For a ∈ U(i) = AutC(Q,U)(i)
with i ∈ Q0, we write

g(a) = ρ(g)1i (a) ∈ U(g(i)).(4.6)

For u ∈ U(α) ⊆ Hom0
C(Q,U)(i, j) with an arrow α ∈ Q1 from i to j, we write

g(u) = ρ(g)1α(u) ∈ U(g(α)).(4.7)

For admissible G-categories, we refer to Definition 2.3.

Lemma 4.3. Let G be a finite group with a G-action ρ on (Q,U) as above. Then
the corresponding G-category C(Q,U) is admissible.

Proof. Let g ∈ G and i ∈ Obj(C(Q,U)) = Q0 such that g(i) 6= i. Recall that

HomC(Q,U)(g(i), i) =
⊔

{p paths in Q with s(p)=g(i) and t(p)=i}

U(p).

Since Q is acyclic, there is no path p satisfying s(p) = g(i) and t(p) = i. Therefore,
the set HomC(Q,U)(g(i), i) is actually empty, proving that the G-category C(Q,U)
is admissible. �
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5. The quotient EI quiver

In this section, we fix a finite group G and a finite EI quiver (Q,U) with a G-
action ρ. We will construct its ‘orbifold’ quotient EI quiver (Q,U) explicitly. We
prove that the free EI category C(Q,U) is equivalent to the skew group category
C(Q,U)⋊G; see Theorem 5.1.

For each vertex i and each arrow α in Q, their stabilizers are denoted by Gi and
Gα, respectively. We observe that Gα ⊆ Gs(α) ∩Gt(α).

5.1. The construction of (Q,U). The finite quiver Q = (Q0, Q1; s, t) is just the
quotient quiver of Q by G. In more details, Q0 = Q0/G and Q1 = Q1/G are the
corresponding sets of G-orbits, and the maps s and t are induced by the ones of
Q. Since Q is acyclic, we infer that the finite quiver Q is acyclic. By definition, we
have the canonical projections

π0 : Q0 −→ Q0 and π1 : Q1 −→ Q1.

The vertices and arrows in Q are written in the bold form. For example, the vertices
are usually denoted by i and j.

To define the assignment U , we have to fix three maps

ι0 : Q0 −→ Q0, ι1 : Q1 −→ Q1, and g(−) : Q1 −→ G(5.1)

satisfying the following conditions: π0 ◦ ι0 = IdQ0
, π1 ◦ ι1 = IdQ1

,

t(ι1(α)) = ι0(t(α)) and s(ι1(α)) = gα(ι0(sα))(5.2)

for each arrow α ∈ Q1. Here, we use the convention (4.5) for gα(ι0(sα)).
The inclusion Gι1(α) ⊆ Gι0(tα) makes Gι0(tα) a right Gι1(α)-set. The injective

group homomorphism

Gι1(α) ⊆ Gs(ι1(α))
∼
−→ Gι0(sα), k 7→ g−1

α kgα

makes Gι0(sα) a left Gι1(α)-set. Therefore, we have the biset product

Gι0(tα) ×Gι1(α)
Gι0(sα),

which is naturally a (Gι0(tα), Gι0(sα))-biset. A typical element in the above biset
product is written as (h, g) with h ∈ Gι0(tα) and g ∈ Gι0(sα). By definition, we
have

(hk, g) = (h, g−1
α kgαg)(5.3)

for each k ∈ Gι1(α).
Finally, we choose a right coset decomposition

Gι0(tα) =

mα
⊔

r=1

hα,rGι1(α).(5.4)

Consequently, any element in Gι0(tα)×Gι1(α)
Gι0(sα) is uniquely written as (hα,r, k)

for 1 ≤ r ≤ mα and k ∈ Gι0(sα).

The construction of the assignment U is as follows. For each vertex i of Q, we
set

U(i) = U(ι0(i))⋊Gι0(i).

Here, we note that Gι0(i) acts on U(ι0(i)) by group automorphisms. Therefore, the

semi-direct product is well defined. For each arrow α : i → j in Q, we set

U(α) = U(ι1(α))× (Gι0(tα) ×Gι1(α)
Gι0(sα))

= U(ι1(α))× (Gι0(j) ×Gι1(α)
Gι0(i)).



SKEW GROUP CATEGORIES, CARTAN MATRICES AND FOLDING 17

A typical element in U(α) is denoted by (u, (hα,r, k)). The right U(i)-action is
given by

(u, (hα,r, k)).(a, g) = (u.(gαk(a)), (hα,r, kg))

for any (a, g) ∈ U(i) = U(ι0(i)) ⋊ Gι0(i). Here, using the convention (4.6), we
observe that gαk(a) lies in U(gαι0(i)) = U(sι1(α)), and that u.(gαk(a)) means the
right U(sι1(α))-action on U(ι1(α)).

To describe the left U(j)-action, we take an arbitrary element (b, h) ∈ U(j) =
U(ι0(j))⋊Gι0(j). Assume that

hhα,r = hα,pk
′

for some 1 ≤ p ≤ mα and k′ ∈ Gι1(α). The left U(j)-action is given by

(b, h).(u, (hα,r, k)) = (h−1
α,p(b).k

′(u), (hα,pk
′, k))

= (h−1
α,p(b).k

′(u), (hα,p, g
−1
α k′gαk)).

Here, we observe that h−1
α,p(b) lies in U(ι0(j)) = U(tι1(α)), and that k′(u) lies in

U(ι1(α)). The convention (4.7) is used for k′(u). Finally, h−1
α,p(b).k

′(u) denotes the
left U(tι1(α))-action on U(ι1(α)).

The above actions make U(α) a (U(j), U (i))-biset. In summary, we have defined
the finite EI quiver (Q,U).

5.2. An equivalence of categories. The EI quiver (Q,U) might be viewed as
a certain ‘orbifold’ quotient of (Q,U). We mention a similar construction in the
classic work [2, Section 3] on graphs of groups. The EI quiver (Q,U) depends on
the choices in (5.1) and (5.4).

The following result justifies the quotient construction.

Theorem 5.1. Let (Q,U) be a finite EI quiver with a G-action ρ, and let (Q,U)
be its quotient as above. Then there is an equivalence of categories

C(Q,U) ≃ C(Q,U)⋊G.

Proof. We write C = C(Q,U) in this proof. We will apply Proposition 4.2 to deduce
the equivalence. We use the map ι0 : Q0 → Q0 = Obj(C⋊G), and the identification

U(i) = U(ι0(i))⋊Gι0(i) = AutC⋊G(ι0(i)),

where the right equality follows by combining Lemma 4.3 and Corollary 2.6.
To apply Proposition 4.2, it remains to construct for each arrow α in Q, a map

between bisets

U(α) −→ HomC⋊G(ι0(sα), ι0(tα)).

We will see in the following construction that these maps between bisets yield the
required bijection in (E4).

By Proposition 3.4, the category C⋊G is EI free, therefore the condition (E1) is
satisfied. For two different vertices i and j, the vertices ι0(i) and ι0(j) are not in
the same G-orbit. By Lemma 2.2(2), ι0(i) and ι0(j) are not isomorphic in C ⋊G,
proving the condition (E2). For each vertex i ∈ Q0, the corresponding object i
is isomorphic to ι0(π0(i)) in C ⋊ G, proving (E3). Once we construct the above
maps between bisets, we will infer by Proposition 4.2 the required equivalence of
categories.
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To construct the required maps, we take arbitrary vertices i and j in Q. By
Lemma 3.2, we have

Hom0
C⋊G(ι0(i), ι0(j)) ={(θ, g) | g ∈ G, θ ∈ Hom0

C(g(ι0(i)), ι0(j))}

=
⊔

g∈G

Hom0
C(g(ι0(i)), ι0(j))× {g}.

=
⊔

g∈G

⊔

{α∈Q1|s(α)=g(ι0(i)), t(α)=ι0(j)}

U(α) × {g}.

Here, for the last equality we use (4.3).
For each arrow α : i → j, we define the following subset of Hom0

C⋊G(ι0(i), ι0(j))

S(α) =
⊔

{α∈Q1|π1(α)=α, t(α)=ι0(j)}

⊔

{g∈G|s(α)=g(ι0(i)}

U(α)× {g}.

Recall from Example 4.1 that the (U(j), U (i))-biset structure on Hom0
C⋊G(ι0(i), ι0(j))

is induced by composition (2.1) of morphisms in C ⋊ G. Then we infer that S(α)
is a (U(j), U(i))-sub-biset. Now, we have the following disjoint union

Hom0
C⋊G(ι0(i), ι0(j)) =

⊔

{α∈Q1|s(α)=i, t(α)=j}

S(α).(5.5)

We will complete the proof by establishing an isomorphism of (U(j), U (i))-bisets

U(α) ≃ S(α)

for any arrow α : i → j. Indeed, in view of (5.5), the isomorphism yields the
required bijection in (E4). Then we are done.

To analyze S(α), we observe that in the index set of the outer disjoint union, the
arrows α are of the form h(ι1(α)) for some h ∈ Gι0(j). By the coset decomposition
(5.4), there is a unique 1 ≤ r ≤ mα satisfying

α = hα,r(ι1(α)).

For simplicity, we write hr for hα,r. In the inner disjoint union, we have

g(ι0(i)) = s(α) = hr(sι1(α)) = hrgα(ι0(i)).

Consequently, there is a unique k ∈ Gι0(i) satisfying

g = hrgαk.

The above analysis implies that

S(α) =

mα
⊔

r=1

⊔

k∈Gι0(i)

U(hr(ι1(α))) × {hrgαk}.

We observe that U(ι1(α)) is bijective to each U(hr(ι1(α))) via ρ(hr)
1
ι1(α), which

sends u ∈ U(ι1(α)) to hr(u) ∈ U(hr(ι1(α))). Moreover, the biset product

Gι0(j) ×Gι1(α)
Gι0(i)

is bijective to

{1, 2, · · · ,mα} ×Gι0(i),

which is further bijective to the following disjoint union
mα
⊔

r=1

⊔

k∈Gι0(i)

{hrgαk}.

Using these bijections, we infer that the following map

U(α) = U(ι1(α))× (Gι0(j) ×Gι1(α)
Gι0(i)) −→ S(α), (u, (hr, k)) 7→ (hr(u), hrgαk)
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is a bijection. We omit the routine verification that this explicit bijection is indeed
a map of (U(j), U (i))-bisets. This is the required isomorphism of bisets. �

The above construction of the quotient EI quiver (Q,U) is rather general. In
what follows, we impose conditions which will simplify the construction.

Remark 5.2. Assume that the G-action ρ on (Q,U) satisfies the following triviality
conditions:

(1) for each i ∈ Q0, g ∈ Gi and a ∈ U(i), we have g(a) = a;
(2) for each α ∈ Q1, g ∈ Gα and u ∈ U(α), we have g(u) = u.

Then the quotient EI quiver (Q,U) is described as follows:

U(i) = U(ι0(i))×Gι0(i)

is the direct product; for each arrow α : i → j in Q, we have

U(α) = U(ι1(α)) × (Gι0(j) ×Gι1(α)
Gι0(i)).

Its typical element is denoted by (u, (h, k)) for u ∈ U(ι1(α)), h ∈ Gι0(j) and

k ∈ Gι0(i). The right U(i)-action is given by

(u, (h, k)).(a, g) = (u.gα(a), (h, kg)).

The left U(j)-action is given by

(b, g′).(u, (h, k)) = (b.u, (g′h, k)).

Here, u.gα(a) and b.umean the right U(sι1(α))-action and the left U(tι1(α))-action
on U(ι1(α)), respectively.

Let ∆ = (∆0,∆1; s, t) be a finite acyclic quiver. Recall that the path category
P∆ is defined as follows: Obj(P∆) = ∆0 and HomP∆(i, j) consists of all paths from
i to j; the composition is given by concatenation of paths.

Denote by (∆, Utr) the EI quiver with trivial assignment Utr, that is, each group
Utr(i) is trivial and each biset Utr(α) has only one element. We observe

C(∆, Utr) = P∆.(5.6)

Let G be a finite group which acts on ∆ by quiver automorphisms. Then G acts
on the associated EI quiver (∆, Utr). Denote by (∆, U tr) the quotient EI quiver.
Therefore, ∆ is the quotient quiver of ∆ by G. Fix the choices (5.1). In view of
Remark 5.2, the assignment U tr is described as follows: for each vertex i of ∆, we
have

U tr(i) = Gι0(i);

for each arrow α : i → j in ∆, we have

U tr(α) = Gι0(i) ×Gι1(α)
Gι0(j),

whose (Gι0(i), Gι0(j))-biset structure is given by the multiplication of Gι0(i) from
the left, and of Gι0(j)) from the right.

In view of (5.6), we have the following special case of Theorem 5.1.

Corollary 5.3. Let ∆ be a finite acyclic quiver with a G-action. Keep the notation
as above. Then there is an equivalence of categories

C(∆, U tr) ≃ P∆ ⋊G. �
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6. Categories and algebras associated to Cartan triples

In this section, we will first recall the algebras [11] and EI categories [4] asso-
ciated to Cartan triples. For a finite group action on a finite acyclic quiver, we
give sufficient conditions on when the quotient EI quiver is of Cartan type. Con-
sequently, the skew group algebra of the path algebra is Morita equivalent to the
algebra studied in [11]; see Theorem 6.5.

For two nonzero integers a and b, we denote by gcd(a, b) their greatest common
divisor, which is always assumed to be positive.

6.1. Cartan triples. Let n ≥ 1 be a positive integer. An n × n matrix C =
(cij) with integer coefficients is called a symmetrizable generalized Cartan matrix,
provided that the following conditions are satisfied:

(C1) cii = 2 for all i;
(C2) cij ≤ 0 for all i 6= j, and cij < 0 if and only if cji < 0;
(C3) There is a diagonal matrix D = diag(c1, · · · , cn) with ci ∈ Z≥1 for all i

such that the product matrix DC is symmetric.

The matrix D appearing in (C3) is called a symmetrizer of C. For brevity, a
symmetrizable generalized Cartan matrix is called a Cartan matrix.

Let C = (cij) be a Cartan matrix. An (acyclic) orientation of C is a subset
Ω ⊂ {1, 2, · · · , n} × {1, 2, · · · , n} such that the following conditions are satisfied:

(O1) {(i, j), (j, i)} ∩ Ω 6= ∅ if and only if cij < 0;
(O2) for each sequence ((i1, i2), (i2, i3), · · · , (it, it+1)) with t ≥ 1 and (is, is+1) ∈

Ω for all 1 ≤ s ≤ t, we have i1 6= it+1.

Following [4], we will call (C,D,Ω) a Cartan triple, where C is a Cartan matrix, D
its symmetrizer and Ω an orientation of C.

In what follows, we recall that, associated to each Cartan triple, there are a finite
free EI category C(C,D,Ω) and a finite dimensional algebra H(C,D,Ω).

Let Q = Q(C,Ω) be the finite quiver with the set of vertices Q0 = {1, 2, · · · , n}
and with the set of arrows

Q1 = {α
(g)
ij : j → i | (i, j) ∈ Ω, 1 ≤ g ≤ gcd(cij , cji)} ⊔ {εi : i→ i | 1 ≤ i ≤ n}.

Let Q◦ = Q◦(C,Ω) be the quiver obtained from Q by deleting all the loops εi. By
the condition (O2), we infer that the finite quiver Q◦ is acyclic.

We recall the finite EI quiver (Q◦, X). The assignment X is given as follows:
X(i) = 〈ηi | ηcii = 1〉 is a cyclic group of order ci; for each (i, j) ∈ Ω, we set

Gij = 〈ηij | η
gcd(ci,cj)
ij = 1〉 to be a cyclic group of order gcd(ci, cj). There are

injective group homomorphisms

Gij →֒ X(i), ηij 7→ η

ci
gcd(ci,cj)

i

and

Gij →֒ X(j), ηij 7→ η

cj

gcd(ci,cj)

j .

Then we have the (X(i), X(j))-biset X(i)×Gij
X(j). We set

X(α
(g)
ij ) = X(i)×Gij

X(j)

for each 1 ≤ g ≤ gcd(cij , cji).

Definition 6.1. ([4, Definition 4.1]) Associated to a Cartan triple (C,D,Ω), the
finite EI category C(C,D,Ω) is defined to be the free EI category C(Q◦, X) associ-
ated to the above EI quiver (Q◦, X). We say that such EI quivers (Q◦, X) and EI
categories C(C,D,Ω) are of Cartan type. �
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Let K be a field. The following algebras [11] play a fundamental role in categori-
fying the root lattices for non-symmetric Caran matrices. For more background,
we refer to [10].

Definition 6.2. ([11, Section 1.4]) Let (C,D,Ω) be a Cartan triple with Q =
Q(C,Ω). Consider the following K-algebra

H(C,D,Ω) = KQ/I,

where KQ is the path algebra of Q, and I is the two-sided ideal of KQ generated
by the following set

{εckk , ε
ci

gcd(ci,cj)

i α
(g)
ij − α

(g)
ij ε

cj

gcd(ci,cj)

j | k ∈ Q0, (i, j) ∈ Ω, 1 ≤ g ≤ gcd(cij , cji)}. �

We will recall from [4, Subsection 4.2] the construction of a new Cartan triple
(C′, D′,Ω′) from a given one (C,D,Ω), which depends on the characteristic of K.
Recall that D = diag(c1, · · · , cn).

Construction (‡) for the case char(K) = p > 0. Assume that ci = pridi
satisfying ri ≥ 0 and gcd(p, di) = 1. For each 1 ≤ i, j ≤ n, we set

Σpij = {(li, lj) | 0 ≤ li < di, 0 ≤ lj < dj , lip
ri ≡ ljp

rj (mod gcd(di, dj))}.

The rows and columns of the Cartan matrix C′ and its symmetrizer D′ are
indexed by the following set

M =
⊔

1≤i≤n

{(i, li) | 0 ≤ li < di}.

The diagonal entries of C′ are 2, and the off-diagonal entries are given as follows:

c′(i,li),(j,lj) =

{

−gcd(cij , cji)p
rj−min(ri,rj), if (li, lj) ∈ Σpij ;

0, otherwise.

Let D′ be a diagonal matrix, whose (i, li)-th component is given by pri . Set

Ω′ = {((i, li), (j, lj)) | (i, j) ∈ Ω, (li, lj) ∈ Σpij},

which is an orientation of C′.
Construction (‡) for the case char(K) = 0. This is very similar to the above

construction. We put di = ci and replace Σpij by

Σij = {(li, lj) | 0 ≤ li < ci, 0 ≤ lj < cj , li ≡ lj(mod gcd(ci, cj))}.(6.1)

The off-diagonal entries of C′ is given by

c′(i,li),(j,lj) =

{

−gcd(cij , cji), if (li, lj) ∈ Σij ;

0, otherwise.

We observe that C′ is symmetric and that D′ is the identity matrix.
We say that K has enough roots of unity for D, if for each 1 ≤ i ≤ n, the

polynomial tci − 1 splits in K[t].

Theorem 6.3. Assume that (C,D,Ω) is a Cartan triple and that K has enough
roots of unity for D. Keep the notation in Construction (‡). Then there is an
isomorphism of algebras

KC(C,D,Ω) ≃ H(C′, D′,Ω′).

Proof. This result is due to [4, Theorem 4.3]. We mention that the assumption here
on K is slightly weaker than the one therein. Since each polynomial tci − 1 splits,
we infer that, in Construction (‡) for each case, the ground field K has a (

∏n
i=1 di)-

th primitive root of unity. Then the proof of [4, Theorem 4.3], in particular, the
argument in [4, Section 5], carries through under the weaker assumption here. �
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We are interested in the following special case.

Proposition 6.4. Assume that char(K) = p > 0 and that (C,D,Ω) is a Cartan
triple such that each ci is a p-power. Then there is an isomorphism of algebras

KC(C,D,Ω) ≃ H(C,D,Ω),

which identifies SpanK{Idi, ηi, · · · , η
ci−1
i } with SpanK{ei, εi, · · · , ε

ci−1
i }.

Here, Span
K
means the subspace spanned by the mentioned elements. Both Idi

and ηi are viewed as automorphisms of i in C(C,D,Ω). Similarly, the trivial path
ei and the loop εi are viewed as elements in H(C,D,Ω).

Proof. The assumption on entries of D implies that (C′, D′,Ω′) = (C,D,Ω), where
we identify (i, 0) ∈ M with i; see [4, Example 6.7]. For the same reason, the
polynomials tci − 1 splits, that is, K has enough roots of unity for D. Then the
isomorphism follows from Theorem 6.3. By the proof of [4, Theorem 4.3], the
isomorphism clearly identifies the above two subspaces. �

6.2. From quotient to Cartan type. We study the situation of Corollary 5.3.
Let G be a finite group and let ∆ be a finite acyclic quiver with a G-action. We
give conditions on when the quotient EI quiver (∆, U tr) is of Cartan type.

The following natural conditions will be imposed on the quiver ∆.

(†1) For each i, the stabilizer Gi = 〈ξi | ξ
ai
i = 1〉 is cyclic with order ai.

(†2) For each arrow α : i → j, we have that ξ
ai

gcd(ai,aj )

i = ξ

aj

gcd(ai,aj )

j and both
belong to Gα.

(†3) For each g ∈ G, we have ξg(i) = gξig
−1.

The condition (†3) means that the choice of the specific generators ξi for Gi is
compatible with the G-action. It follows from (†2) that the inclusion Gα ⊆ Gi∩Gj
is an equality.

Associated to the G-action on ∆, we will define a Cartan triple (C,D,Ω); com-
pare [19, Section 14.1]. The rows and columns of C and D are indexed by the orbit
set ∆0 = ∆0/G. For each G-orbit i of vertices, the corresponding diagonal entry
of D is

ci =
|G|

|i|
,

where |i| denotes the cardinality of the G-orbit. For any vertices i and j, we
denote by Ni,j the number of arrows in ∆ between the G-orbit i and G-orbit j.
The corresponding off-diagonal entry of C is given by

ci,j =
−Ni,j

|j|
.

The orientation Ω is consistent with that of ∆, that is, (j, i) ∈ Ω if and only if
there is an arrow from i to j in ∆.

By the equality cici,j = cjcj,i, we infer the following useful identity

−ci,j
gcd(ci,j , cj,i)

=
cj

gcd(ci, cj)
.(6.2)

Theorem 6.5. Assume that the G-action on ∆ satisfies (†1)-(†3) and that the as-
sociated Cartan triple is (C,D,Ω). Denote by (Q◦, X) the corresponding EI quiver
of Cartan type. Then there is an isomorphism of EI quivers

(∆, U tr) ≃ (Q◦, X).

Moreover, we have the following immediate consequences.
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(1) There is an equivalence of categories

P∆ ⋊G ≃ C(C,D,Ω).

(2) Assume that K has enough roots of unity for D and that the Cartan triple
(C′, D′,Ω′) is given in Construction (‡). Then the algebras K∆#G and
H(C′, D′,Ω′) are Morita equivalent.

(3) Assume that char(K) = p > 0 and that G is a p-group. Then the algebras
K∆#G and H(C,D,Ω) are Morita equivalent.

Proof. We first prove the isomorphism of EI quivers. Take two vertices i = Gi and
j = Gj in ∆. We observe ci = ai and cj = aj . For each arrow α between i and j
in ∆, we have observed that Gα = Gi ∩Gj , which is of order gcd(|Gi|, |Gj |). Then
we have

|Gα| =
|G|

gcd(ci, cj)
.

It follows that the number of arrows between i and j in ∆ equals

Ni,j

|Gα|
=

−ci,j |j| gcd(ci, cj)

|G|

=
−ci,j gcd(ci, cj)

cj

= gcd(ci,j , cj,i).

Here, the last equality uses (6.2). Recall that the vertex set of Q◦ is bijective to
the index set of rows of C, namely the vertex set ∆0. By comparing the number of
arrows, we identify ∆ with Q◦.

We now compare the assignments U tr and X . By (†1), we infer that U tr(i) =
Gι0(i) is cyclic of order ci = ai. For each arrow α : i → j in ∆, we write ι0(i) = i
and ι0(j) = j. By (5.2), we have the arrow ι1(α) : gα(i) → j in ∆. By (†2) and
(†3), we have

gαξ
ai

gcd(ai,aj)

i g−1
α = ξ

aj

gcd(ai,aj)

j .

Recall that U tr(α) = Gi ×Gι1(α)
Gj . In view of (5.3), the above identity implies

that, in U tr(α), we have

(ξ
ai

gcd(ai,aj)

i , 1G) = (1G, ξ

aj

gcd(ai,aj )

j ).

This actually implies that the following map is well defined

U tr(α) −→ X(i)×Gij
X(j) = X(α), (ξai , ξ

b
j) 7→ (ηai , η

b
j).

The above map is bijective and respects the (Gi, Gj)-biset structures. We readily

deduce that the assignment U tr is isomorphic to X , as required.
For (1), we recall that C(C,D,Ω) = C(Q◦, X). Then the equivalence of categories

follows from the obtained isomorphism of EI quivers and Corollary 5.3.
For (2) and (3), we recall that the path algebra K∆ is identified with the category

algebra KP∆ of the path category. By Proposition 2.1, we identify K(P∆⋊G) with
KP∆#G. Recall from [28, Proposition 2.2] that the category algebras of two equiv-
alent categories are Morita equivalent. Applying (1), we infer that KC(C,D,Ω) and
K(P∆⋊G) are Morita equivalent. In summary, we have obtained that KC(C,D,Ω)
and K∆#G are Morit equivalent.

Now, the required statement in (2) follows from the isomorphism in Theorem 6.3.
For (3), we observe that each ci is a p-power, as G is a p-group. We apply the
isomorphism in Proposition 6.4. �
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Although the conditions (†1)-(†3) are technical, as we will see, natural examples
are ubiquitous. The following construction is inspired by [23, Section 5.3].

Example 6.6. Let n ≥ 1 and G be a finite group. For each 1 ≤ i ≤ n, we fix
ξi ∈ G and assume that ξi is of order ai. The cyclic subgroup generated by ξi is
denoted by Hi. The elements ξi may not be distinct. Denote by G/Hi the set of
left Hi-cosets, whose elements are denoted by gHi.

We construct an acyclic quiver ∆ as follows: the set ∆0 of vertices is a disjoint

union
⊔n
i=1G/Hi ×{i}; only if i < j and ξ

ai
gcd(ai,aj)

i = ξ

aj

gcd(ai,aj)

j , each coset g(Hi ∩
Hj) is viewed as an arrow starting at (gHi, i) and terminating at (gHj, j). The
natural action of G on left cosets induces a G-action on ∆. It is trivial to verify
that (†1)-(†3) do hold for the G-action.

The following example is our main concern.

Example 6.7. Let G = 〈ξ | ξa = 1〉 be a cyclic group of order a. Assume that G
acts on ∆ such that Gα = Gs(α)∩Gt(α) for each arrow α in ∆. Then the conditions
(†1)-(†3) are satisfied.

For each vertex i with |Gi| = ai, we take the generator ξi to be ξ
a
ai . Then it is

direct to check that (†1)-(†3) hold.

Remark 6.8. We observe that any Cartan triple does arise in the situation of
Example 6.7. More precisely, given any Cartan triple (C,D,Ω), we will construct
an acyclic quiver with a cyclic group action such that its associated Cartan triple
is the given one; compare [19, Section 14.1].

Assume that c = lcm(c1, c2, · · · , cn) is the least common multiple of the entries
of D. Set di =

c
ci
. We construct an acyclic quiver ∆ as follows. The vertex set and

arrow set are given by

∆0 = {(i, li) | 1 ≤ i ≤ n, 0 ≤ li < di},

and

∆1 = {α
(g)
(i,li),(j,lj)

: (j, lj) → (i, li) | (i, j) ∈ Ω, (li, lj) ∈ Σij , 1 ≤ g ≤ gcd(cij , cji)},

respectively, where Σij is defined in (6.1). We observe the following identity

|Σij | =
didj

gcd(di, dj)
=

c

gcd(ci, cj)
=

−cijdj
gcd(cij , cji)

.

Let G = 〈σ | σc = 1〉 be a cyclic group of order c. Then G acts on ∆ such that

σ(i, li) = (i, li + 1) and σ(α
(g)
(i,li),(j,lj)

) = α
(g)
(i,li+1),(j,lj+1).

Here, we identify (i, di) with (i, 0). This defines a G-action on ∆. It is clear that
Gα = Gs(α) ∩ Gt(α) for each arrow α in ∆. Then by Example 6.7, Theorem 6.5
applies to this G-action. Moreover, the associated Cartan triple coincides with the
given one.

The following counter-example shows that the condition Gα = Gs(α) ∩ Gt(α) in
Example 6.7 is necessary.

Example 6.9. Let ∆ be the following Kronecker quiver.

1

α
&&

β

88 2

Let G = {1G, ξ} be a cyclic group of order 2 which acts on ∆ by interchanging α
and β. We observe that Gα = Gβ = {1G} ( G1 ∩ G2 = G. It follows that (†2) is
not satisfied.
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The quotient quiver ∆ is of type A2.

1
α // 2

The assignment U tr is described as follows: U tr(1) = G = U tr(2), and

U tr(α) = G×G.

The quotient EI quiver (∆, U tr) is not of Cartan type.

7. Induced modules and folding

In this final section, we first study induced modules on a skew group algebra.
For a finite cyclic group action on a finite acyclic quiver, the main goal of the pa-
per, Theorem 7.8, constructs a categorification of the folding projection between
the relevant root lattices. In the Dynkin cases, the restriction of the categorifica-
tion to indecomposable modules corresponds to the folding of positive roots; see
Proposition 7.9.

7.1. Generalities on induced modules. Let A be a finite dimensionalK-algebra,
and let G be a finite group acting on A by algebra automorphisms. Denote by A#G
the skew group algebra. We view A as a subalgebra of A#G by identifying a ∈ A
with a#1G ∈ A#G.

For a left A-moduleM , we define a left A#G-moduleM#G, the induced module,
as follows: M#G =M ⊗KG as a vector space, and its left A#G-action is given by

(a#g).(m#h) = (gh)−1(a).m#gh

for any a#g ∈ A#G and m#h ∈ M#G. There is an isomorphism of left A#G-
modules

(A#G) ⊗AM
∼
−→M#G, (a#g)⊗m 7→ g−1(a).m#g.(7.1)

Similarly, for a right A-module N , we have a right A#G-module N#G = N⊗KG
such that its right A#G-action is given by

(n#h).(a#g) = n.h(a)#hg.

There is an isomorphism of right A#G-modules

N ⊗A (A#G)
∼
−→ N#G, n⊗ (a#g) 7→ n.a#g.

For each left A-module M and g ∈ G, the twisted A-module gM is defined as
follows: gM = M as a vector space, where an element m ∈ M corresponds to
gm ∈ gM ; its left A-action is given by

a.gm = g(g(a).m)

for any a ∈ A. This yields the twisting endofunctor g(−) on A-mod.
The following facts are contained in [22, Proposition 1.8].

Lemma 7.1. Keep the notation as above. Then the following two statements hold.

(1) For each h ∈ G, the A#G-modules M#G and (hM)#G are isomorphic.
(2) Assume that both M and M ′ are indecomposable A-modules. Then the

A#G-modules M#G and M ′#G are isomorphic if and only if M and
h(M ′) are isomorphic for some h ∈ G.

Proof. For (1), we mention that the isomorphism

M#G −→ (hM)#G

sends m#g to (hm)#gh.
In view of (1), it remains to prove the “only if” part of (2). We have a decomposi-

tionM#G =
⊕

g∈GM#g−1 of A-modules; moreover, the direct summandM#g−1
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is isomorphic to gM by identifying m#g−1 with gm. We have an isomorphism of
A-modules

M#G ≃
⊕

g∈G

gM.

Similarly, we haveM ′#G ≃
⊕

g∈G
gM ′. Then the “only if” part of (2) follows from

the Krull-Schmidt theorem. �

For an A-module M , we have a G-graded algebra
⊕

g∈G

HomA(M, gM)(7.2)

whose product is given by

ff ′ = h(f) ◦ f ′

for f : M → gM and f ′ : M → hM . Here, we use the fact that h(gM) = ghM , and
observe that ff ′ : M → ghM is well defined.

The following isomorphism is well known; see [22, Section 3] or [3, Proposi-
tion 2.4].

Lemma 7.2. Keep the notation as above. Then there is an isomorphism of algebras
⊕

g∈G

HomA(M, gM)
∼
−→ EndA#G(M#G),

(f : M → gM) 7−→ (m#h 7→ g−1

f(m)#hg−1).

Here, g
−1

f(m) means the element in M that corresponds to f(m) ∈ gM .

Proof. We observe thatM#g−1 is naturally identified with gM as a left A-module.
Then the above isomorphism follows from (7.1) and the Hom-tensor adjunction. �

Denote by D = HomK(−,K) the duality of vector spaces, and by TrA(−) the
transpose of left or right A-modules. Recall that the Auslander-Reiten translations
are given by τA = DTrA and τ−A = TrAD; see [1, IV].

The following general facts seem to be well known; compare [22, Lemma 4.2].

Lemma 7.3. Let M and N be a left A-module and a right A-module, respectively.

(1) There are isomorphisms of right A#G-modules: DM#G ≃ D(M#G) and
TrA(M)#G ≃ Tr(M#G).

(2) There are isomorphisms of left A#G-modules: DN#G ≃ D(N#G) and
TrA(N)#G ≃ Tr(N#G).

(3) There are isomorphisms of left A#G-modules τA(M)#G ≃ τ(M#G) and
τ−A (M)#G ≃ τ−(M#G).

Here, Tr and τ denote the transpose and Auslander-Reiten translation of A#G-
modules, respectively.

Proof. We only prove (1), because the proof of (2) is similar, and that (3) follows
immediately from (1) and (2).

The first isomorphism is given as follows

DM#G
∼
−→ D(M#G)

θ#g 7−→ (m#h 7→ θ(m)δh,g−1).

Here, δ is the Kronecker symbol. For the second one, we first observe a natural
isomorphism

cP : HomA(P,A)#G
∼
−→ HomA#G(P#G,A#G)

θ#g 7−→ (p#h 7→ h(θ(p))#hg)
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of rightA#G-modules. Take a minimal projective presentation P1 → P0 →M → 0.
Recall that the transpose TrA(M) is defined by the following exact sequence

HomA(P0, A) −→ HomA(P1, A) −→ TrA(M) −→ 0.(7.3)

As rad(A)#G ⊆ rad(A#G), we infer that

P1#G −→ P0#G −→M#G −→ 0

is a minimal projective presentation of M#G. Then the lower exact row of the
following commutative diagram follows from the definition of Tr(M#G). The upper
exact row is obtained by applying −#G to (7.3).

HomA(P0, A)#G //

cP0

��

HomA(P1, A)#G

cP1

��

// TrA(M)#G // 0

HomA#G(P0#G,A#G) // HomA#G(P1#G,A#G) // Tr(M#G) // 0

Then the required isomorphism follows immediately. �

Recall that a finite dimensional algebra B is local provided that B/rad(B) is a
division algebra. Following [1, p.65], we say that B is elementary if B/rad(B) is
isomorphic to a product of K. We observe that a finite dimensional algebra B is
local and elementary if and only if B/rad(B) is isomorphic to K.

Recall from [21, Section 1.4] that a G-graded algebra Γ =
⊕

g∈G Γg is a crossed
product if each homogeneous component Γg contains an invertible element. Such a
crossed product Γ is often denoted by B ∗G with B = Γ(1G).

Lemma 7.4. Assume that K is perfect with char(K) = p > 0 and that G is a finite
p-group. Let B be a finite dimensional algebra which is local and elementary. Then
any crossed product B ∗G, as an ungraded algebra, is local and elementary.

Proof. Take a normal subgroup N of G such that G/N is cyclic of order p. Then
B ∗G =

⊕

g∈GBg is naturally G/N -graded

B ∗G =
⊕

x∈G/N

(
⊕

g∈x

Bg).

Under this new grading, it is also a cross product. In other words, we have

B ∗G = (B ∗N) ∗G/N.

By induction, it suffices to prove the statement for the case where G is cyclic of
order p.

Assume now that G is cyclic of order p. We will prove that B ∗ G is local and
elementary. We will first deal with a special case.

We claim that any crossed product K ∗G is always local and elementary. Take a
generator g of G and an invertible element ug in (K ∗G)g . We have (ug)

p = µ ∈ K

for some nonzero µ ∈ K. Since K is perfect, there is some nonzero λ ∈ K satisfying
λp = µ. Now the algebra homomorphism

K[t]/(tp) −→ K ∗G,

sending t to λ−1ug − 1, is an isomorphism, proving the claim.
For the general case, we observe that each homogeneous component Bh of B ∗G

is a free B-module on each side. We observe that
⊕

h∈G rad(Bh) is a two-sided
nilpotent ideal of B ∗G. Therefore, we have

⊕

h∈G

rad(Bh) ⊆ rad(B ∗G).
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Recall that K ≃ B/rad(B). Combining the following obvious isomorphism

B ∗G/
⊕

h∈G

rad(Bh) ≃ K ∗G

and the above claim, we infer that B ∗G is local and elementary. �

Lemma 7.5. Let char(K) = p > 0 and G be a p-group. Then the following state-
ments hold.

(1) Assume that K is perfect. Then any crossed product K ∗ G is local and
elementary.

(2) Assume that G is cyclic. Then any crossed product K ∗G is local.

Proof. Since (1) is a special case of Lemma 7.4, we only prove (2). Assume that
|G| = q for some p-power q. Take a generator g of G and an invertible element
ug in (K ∗ G)g. We have (ug)

q = µ ∈ K for some nonzero µ ∈ K. We observe a
K-algebra isomorphism

K[t]/(tq − µ)
∼
−→ K ∗G, t 7→ ug.

Then the required statement follows from a standard fact: the algebra K[t]/(tq−µ)
is always local. �

Let us come back to the situation where a finite group G acts on a finite dimen-
sional algebra A.

Proposition 7.6. Let char(K) = p > 0 and G be a finite p-group. Assume that M
is a left A-module such that EndA(M) is local and elementary. Then the following
two statements hold.

(1) Assume that K is perfect. Then EndA#G(M#G) is local and elementary.
(2) Assume that G is cyclic. Then EndA#G(M#G) is local.

In both cases, the A#G-module M#G is indecomposable.

Proof. Denote the G-graded algebra in (7.2) by Γ. By Lemma 7.2, it suffices to
prove that Γ is local and elementary under the assumption in (1), and local under
the assumption in (2), respectively.

Consider the following G-graded subspace of Γ

I =
⊕

g∈G

{f ∈ HomA(M, gM) | f is a non-isomorphism}.

Since all the A-modules gM are indecomposable, it follows that I is a G-graded
two-sided ideal of Γ. Moreover, it is well known to be nilpotent; for example, see
[1, VI, Corollary 1.3]. Consequently, we have I ⊆ rad(Γ).

Consider the stabilizer GM = {g ∈ G | M ≃ gM} of M . Recall that K ≃
EndA(M)/rad(EndA(M)), since EndA(M) is local and elementary. We infer that
Γ/I is isomorphic to a crossed product K ∗GM .

By the inclusion I ⊆ rad(Γ), we have

Γ/rad(Γ) ≃ K ∗GM/rad(K ∗GM ).

As GM is a p-group, we can apply Lemma 7.5 to K ∗ GM . Then the required
statements follow immediately. �

Remark 7.7. Assume that K is algebraically closed in Proposition 7.6. Then for
each indecomposableA-moduleM , EndA(M) is local and automatically elementary.
It follows that the A#G-module M#G is indecomposable. In other words, the
induction functor

−#G : A-mod −→ A#G-mod

preserves indecomposable modules.
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7.2. The folding projection and categorification. In this final subsection, we
always work in the following setup.

Setup (♣). Let K be a field with char(K) = p > 0, and let G = 〈σ | σp
a

= 1G〉
be a cyclic group of order pa for some a ≥ 1. Let ∆ be a finite acyclic quiver with
∆0 = {1, 2, · · · , n}. Assume that G acts on ∆ by quiver automorphisms such that
for each arrow α ∈ ∆1, we have Gα = Gs(α) ∩Gt(α).

Denote by Z∆0 =
⊕n

i=1 Zǫi the root lattice of ∆. It is endowed with a symmetric
bilinear form given by (ǫi, ǫi) = 2 and

(ǫi, ǫj) = −|{arrows between i and j in ∆}|

for i 6= j. Denote by Φ+(∆) the set of positive roots [16].
Denote by ∆0/G the orbit set of vertices. The elements in ∆0/G are denoted in

the bold form. The canonical projection π : ∆0 → ∆0/G sends i to π(i) = Gi = i.
Associated to the G-action on ∆, we have defined a Cartan triple (C,D,Ω) in

Subsection 6.2. The rows and columns of C and D are indexed by ∆0/G. The
entries ci of D are determined by

ci =
|G|

|i|
= pai

for some 0 ≤ ai ≤ a. The corresponding root lattice Z(∆0/G) =
⊕

i∈∆0/G
ZEi is

endowed with a symmetric bilinear form given by (Ei, Ei) = 2ci and

(Ei, Ej) = cici,j = −
|G|

|i| · |j|
· |{arrows between G-orbits i and j in ∆}|

for i 6= j. Denote by Φ+(C) the set of positive roots.
There is a canonical projection between the root lattices

f : Z∆0 −→ Z(∆0/G)

given by f(ǫi) = Eπ(i), and called the folding projection; see [24, Section 10.3]. It
does not preserve the bilinear forms. However, it sends positive roots to positive
roots. Moreover, by adapting the proof of [16, Lemma 5.3], [14, Proposition 15]
proves that f restricts to a surjective map

f : Φ+(∆) ։ Φ+(C).

We observe that the folding projection induces an isomorphism between the quo-
tient group of G-coinvariants in Z∆0 and Z(∆0/G).

We mention that there is a folding inclusion from the dual root lattice of C into
Z∆0, which identifies the dual root lattice with the subgroup ofG-invariants in Z∆0;
see [14, Section 2]. Working with species over a finite field, one observes that the
extension-of-scalars functor along a suitable field extension yields a categorification
of the folding inclusion; see [14, the proof of Theorem 24] and [6, Section 9].

Recall that P∆ is the path category of ∆. Then the G-action on ∆ induces a
G-action on P∆. We have the corresponding skew group category P∆ ⋊G.

We identify the path algebra K∆ with the category algebra KP∆. By Proposi-
tion 2.1, we have the following natural isomorphism of algebras

̟ : K(P∆ ⋊G)
∼
−→ K∆#G, (q, g) 7→ q#g,(7.4)

for any path q in ∆ and g ∈ G.
Set C = C(C,D,Ω) to be the EI category associated to (C,D,Ω); see Defini-

tion 6.1. For each i ∈ Obj(C) = ∆0/G, we have

AutC(i) = 〈ηi | η
ci
i = Idi〉,

which is a cyclic group of order ci = pai .
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By Theorem 6.5, we identify C with C(∆, U tr). Fix the choices (5.1) for the
G-action on P∆. Then we obtain an equivalence of categories

ι : C
∼
−→ P∆ ⋊G(7.5)

which satisfies ι(i) = ι0(i). The functor ι induces the following isomorphism of
groups

AutC(i)
∼
−→ Gι0(i) = AutP∆⋊G(ι0(i)), ηi 7→ σp

a−a
i

.(7.6)

Recall from Definition 6.2 the algebra H = H(C,D,Ω). Each i corresponds to
an idempotent ei of H . Moreover, we have

eiHei = SpanK{ei, εi, · · · , ε
ci−1
i }.

By Proposition 6.4, there is an isomorphism of algebras

θ : H
∼
−→ KC(7.7)

which identifies eiHei with KAutC(i). Indeed, we have θ(ei) = Idi and θ(εi) =
ηi − Idi.

We now combine (7.4), (7.5) and (7.7) into the following sequence of equivalences.

K∆#G-mod
̟∗

// K(P∆ ⋊G)-mod
can

(K-mod)P∆⋊G

ι∗

��
H-mod KC-mod

θ∗oo (K-mod)C
can

Here, the two can’s mean the canonical equivalence in (2.2), and the upper star
functors are given by restriction of scalars. For example, ι∗ sends a functor X on
P⋊G to the composite functor X ◦ ι. We compose the sequence into an equivalence

Ψ: K∆#G-mod
∼
−→ H-mod.

The following terminology is introduced in [11, Definition 1.1 and Section 11].
A left H-module Y is locally free, provided that each eiY , as an eiHei-module, is
free. For such a module, its rank vector is defined as follows

rank(Y ) =
∑

i∈∆0/G

rankeiHei (eiY )Ei ∈ Z(∆0/G).

A left H-module Y is called τ-locally free, provided that for any k ∈ Z, τkH(Y ) is
locally free. Slightly different from [11], we do not require τ -locally free H-modules
to be indecomposable.

Theorem 7.8. Keep the assumptions in Setup (♣). Let M be a left K∆-module.
Then Ψ(M#G) is a τ-locally free H-module satisfying

rank Ψ(M#G) = f(dimM).(7.8)

Assume further that EndK∆(M) is local and elementary. Then EndH(Ψ(M#G))
is local. If moreover K is perfect, then EndH(Ψ(M#G)) is local and elementary.

Denote by H-modτ-lf the full subcategory of H-mod consisting of τ -locally free
modules. The identity (7.8) might be visualized as a commutative diagram.

K∆-mod

dim

��

Ψ◦(−#G)
// H-modτ-lf

rank

��
Z∆0

f // Z(∆0/G)
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The diagram indicates that the composite functor Ψ◦(−#G) categorifies the folding
projection f between the root lattices.

It is natural to categorify the folding projection f : Φ+(∆) → Φ+(C) between the
positive roots using the same functor between indecomposable modules. However,
we have to restrict to the Dynkin cases; see Proposition 7.9.

Proof. Step 1. We first show that the H-module Ψ(M#G) is locally free and
satisfies the required identity for the rank vector.

Recall that the isomorphism θ identifies eiHei with KAutC(i). Therefore, it
suffices to claim that for each i ∈ Obj(C) = ∆0/G,

ι∗ ◦ can ◦̟∗(M#G)(i)

is a free module over KAutC(i) with rank
∑

i∈i

dimK(eiM).

Here, we view ι∗ ◦ can ◦̟∗(M#G) as a functor over C.
For the claim, we observe the following identity.

ι∗ ◦ can ◦̟∗(M#G)(i) = can ◦̟∗(M#G)(ι0(i))

= (eι0(i)#1G).(M#G)

=
⊕

g∈G

eg(ι0(i))M#g−1

=
⊕

i∈i

eiM#{g ∈ G | g−1(ι0(i)) = i}

Here, for the second equality we recall that the trivial path eι0(i) is the identity
endomorphism of ι0(i) in P∆, and for the third one, we use the fact that g(eι0(i)) =
eg(ι0(i)).

By (7.6), we identify KAutC(i) with KGι0(i). As G is abelian, we have Gι0(i) =
Gi for each i ∈ i. Then we observe that the left KGι0(i)-action on the above direct
summand

eiM#{g ∈ G | g−1(ι0(i)) = i}

is really only on the right side, that is, on the set {g ∈ G | g−1(ι0(i)) = i} via
the multiplication in G. The latter Gι0(i)-action is free and transitive. Therefore,
the Gι0(i)-action on the above direct summand is free of rank dimK(eiM). This
observation implies the claim.

Step 2. Since Ψ is an equivalence, it commutes with Auslander-Reiten transla-
tions. Then we have isomorphisms

τkHΨ(M#G) ≃ Ψτk(M#G) ≃ Ψ(τk
K∆(M)#G),

where the isomorphism on the right side follows from Lemma 7.3. Here, the un-
adorned τ means the Auslander-Reiten translation of K∆#G-modules. By Step 1,
we infer that each H-module τkHΨ(M#G) is locally free, that is, Ψ(M#G) is τ -
locally free.

The equivalence Ψ induces an isomorphism of algebras

EndH(Ψ(M#G)) ≃ EndK∆#G(M#G).

Then the last statement follows from Proposition 7.6. �

Denote by K∆-ind a complete set of representatives of indecomposable K∆-

modules. Similarly, H-indτ-lf is a complete set of representatives of indecomposable
τ -locally free H-modules. As G acts on K∆-ind by twisting endofunctors, we have
the orbit set K∆-ind/G.
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Proposition 7.9. Keep the assumptions in Setup (♣). We assume further that ∆
is of Dynkin type. Then the following commutative diagram is well defined

K∆-ind

dim

��

Ψ◦(−#G) // H-indτ-lf

rank

��
Φ+(∆)

f // Φ+(C),

whose vertical arrows are bijections. In particular, the map Ψ ◦ (−#G) induces a
bijection

K∆-ind/G
∼
−→ H-indτ-lf.

Proof. We observe that C is also of Dynkin type; compare [4, Proposition 6.5]. The
map dim is bijective by the well-known Gabriel’s theorem; see [9, 1.2 Satz] and [1,
VIII.5]. By [11, Theorem 1.3], the map rank is bijective.

It is well known that each indecomposable K∆-moduleM satisfies EndK∆(M) ≃
K; for example, see [1, VIII, Lemma 6.1]. We infer from Theorem 7.8 that the H-
module Ψ(M#G) is indecomposable. Then the above commutative diagram is well
defined. Since f : Φ+(∆) → Φ+(C) is surjective, we infer that the map

Ψ ◦ (−#G) : K∆-ind −→ H-indτ-lf

is surjective. In view of Lemma 7.1, we have the induced bijection. �

Remark 7.10. (1) We mention that any non-symmetric Cartan matrix C of
Dynkin type does appear in the situation of Proposition 7.9; see [19, 14.1.6] or
[4, p.81, Table 1]. The representation theory related to the folding inclusion in the
Dynkin cases is studied in [26].

(2) Since [11, Theorem 1.3] works currently only for Dynkin cases, we do not
know how to extend Proposition 7.9 to non-Dynkin quivers.

In view of [15] and [7, 3.3 Theorem], the following open question, analogous
to Kac’s theorem, is very natural: does the set of rank vectors of indecompos-
able τ -locally free H-modules coincide with Φ+(C)? We refer to [12] for related
consideration on rigid locally free H-modules.

Assume that K is algebraically closed. By [15, Theorem 2], for any α ∈ Φ+(∆),
there is an indecomposable K∆-module M with dim(M) = α. Combining the
surjectivity of f : Φ+(∆) → Φ+(C) and Theorem 7.8, we infer the following fact:
for each β ∈ Φ+(C), there is an indecomposable τ -locally free H-module X with
rank(X) = β. This fact supports an affirmative answer to the above open question.

We illustrate Proposition 7.9 with an explicit example.

Example 7.11. Let K be a field of characteristic two, and let ∆ be the following
quiver of type A3.

2
α // 1 2′

α′

oo
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The Auslander-Reiten quiver ΓK∆ is as follows.

2
1

!!❇
❇❇

❇❇
❇❇

❇❇
2′oo

1'&%$ !"#

@@✁✁✁✁✁✁✁✁

��❁
❁❁

❁❁
❁❁

❁
2 2′

1

❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴

oo

>>⑤⑤⑤⑤⑤⑤⑤⑤

  ❆
❆❆

❆❆
❆❆

❆❆

2′

1

==⑤⑤⑤⑤⑤⑤⑤⑤

2oo

Here, the dotted arrows denote the Auslander-Reiten translation. We visualize each
module using its radical layers, and represent composition factors by their corre-
sponding vertices.

Let G = {1G, σ} be a cyclic group of order two, and let σ act on ∆ by inter-
changing α and α′. The associated Cartan triple (C,D,Ω) is of type B2 and given
as follows:

C =

(

2 −1
−2 2

)

, D = diag(2, 1), and Ω = {(1, 2)}.

The algebra H = H(C,D,Ω) is given by the following quiver

1ε1 :: 2
α21oo ε2dd

subject to relations ε21 = 0 = ε2. In practice, one simply deletes the loop ε2.
The Auslander-Reiten quiver ΓH is as follows; see [11, Subsection 13.6].

2
1
1

��❅
❅❅

❅❅
❅❅

❅❅
2oo

1
1

/.-,()*+

AA✂✂✂✂✂✂✂✂✂

��❄
❄❄

❄❄
❄❄

❄❄

2 2
1
1

❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴

oo

@@✁✁✁✁✁✁✁✁

  ❆
❆❆

❆❆
❆❆

❆

1

��❃
❃❃

❃❃
❃❃

❃

BB☎☎☎☎☎☎☎☎
1 2
1

oo

==④④④④④④④④

##●
●●

●●
●●

●●
●

2
1

oo

2
1

==④④④④④④④④④
1oo

<<②②②②②②②②②②

Here, the leftmost and rightmost arrows in the bottom are identified. We have
framed all the indecomposable τ-locally free H-modules. The central three-dimensional
H-module is locally free, but not τ-locally free.

We apply Proposition 7.9 to obtain the bijection

Θ = Ψ ◦ (−#G) : K∆-ind/G
∼
−→ H-indτ-lf.

The twisting endofunctor on K∆-mod with respect to σ turns ΓK∆ upside down. By
comparing ΓK∆ and ΓH , we observe that Θ preserves the frames of the modules, that
is, each indecomposable K∆-module M and Θ(M) have the same kind of frames.

By Lemma 7.3, the bijection Θ is compatible with Auslander-Reiten translations.
The following observation might be compared with [22, Theorem 3.8]: by applying
Θ to the square in ΓK∆, we infer that, in general, Θ does not preserve Auslander-
Reiten sequences.
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[11] C. Geiss, B. Leclerc, and J. Schröer, Quivers with relations for symmetrizable Cartan

matrices I: foundations, Invent. Math. 209 (2017), 61–158.
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