语音信号处理基础 Fundamentals of Speech Signal Processing

Course Structure

Introduction to Speech Signal Processing

- Some basic concepts
 - Speech signal and speech signal processing
 - The speech chain
 - Speech production model
 - Speech perception model
 - Applications of speech signal processing
 - Speech coding/synthesis/recognition and understanding
 - History of speech signal processing

Review of Fundamentals of Digital Signal Processing

- DSP and discrete signal
- LTI system
- Transform representations
 - z-transform: convergence region
 - DTFT
 - − DFT: sampling in frequency ⇔ time domain aliasing
- Digital filters
 - FIR/IIR filter design using Matlab tools
- Sampling
 - The sampling theorem
 - Decimation and interpolation

Acoustic Theory of Speech Production

- Speech production mechanism
 - Human vocal apparatus
 - Process of speech production
 - Vocal cords and two types of excitation: voiced/unvoiced
 - Source-System model of speech production
- The speech signal
 - Waveforms and spectrograms
 - Silence-background / unvoiced / voiced
 - Wideband / narrowband spectrogram; Formants
 - Phonemes of English
 - Vowel: tongue position; formants
 - Consonants: distinctive features; place/manner of articulation
 - Initials / Finals / Tones in Mandarin Chinese

Hearing, Auditory Models, and Speech Perception

- The auditory system
 - The composition and the black box model
 - Paired physical attribute and psychophysical observation
- Human ear
 - Function of outer/middle/inner ear
 - Basilar membrane => a bank of filters
- Perception of sound
 - Physical: Intensity / Intensity level / SPL; frequency
 - Psychophysical: Loudness level / Loudness; pitch
- Masking
 - Pure tone masking
 - Noise masking and critical bandwidth
 - Temporal masking
- Auditory model: Perceptual Linear Prediction
- Intelligibility and quality measurement for SP systems

Sound Propagation in the Human Vocal Tract

- Basic physic model
 - Wave equations: A(x,t), c, Rau
 - Uniform lossless tube => Formant positions
 - Effects of losses => Formant positions/bandwidths
 - Vibration of tube walls / Friction and thermal conduction / Lip radiation
 - VT transfer functions for vowels
 - Voiced excitation
- Concatenate tube models
 - Lossless tube conjunction
 - Signal-flow representation and reflection coefficient
 - Boundary conditions
 - Lossless two tube model with lip/source configuration
 - Digital filter representation => all-pole model
 - General synthesis model H(z) = G(z)V(z)R(z)

Time Domain Methods in Speech Processing

- Speech analysis model
- Short-time analysis of speech

$$Q_{\hat{n}} = \left(\sum_{m=-\infty}^{\infty} T(x[m]) \,\tilde{w}[n-m]\right)\Big|_{n=\hat{n}}$$

linear or non-linear transformation

window sequence (usually finite length)

Time Domain Methods in Speech Processing

- Short-time energy
 - Discriminate voiced/unvoiced sounds from silence
 - Effects of windows
 - Lowpass filtering
 - Frequency response of RW and HW
 - Recursive short-time energy for AGC
- Short-time magnitude
- Short-time average ZC rate
 - Discriminate voiced and unvoiced speech
- Short-time autocorrelation
 - F0 detection
 - Modified autocorrelation
- Short-time AMDF

Frequency-Domain Representations

- STFA and STFS
- STFT—2 interpretations
 - DTFT interpretation
 - Signal recovery from STFT
 - Effect of window length

- Linear filter interpretation
 - Modulation-lowpass filter / bandpass filter-demodulation
- Sampling rates of STFT
 - Time/frequency sampling rate for exact recovery => total sampling rate
- Overlap addition method / Filter Bank Summation
 - Condition for exact reconstruction
 - Comparisons
- Applications
 - Vocoder; speed-up/slow-down

The Cepstrum and Homomorphic Speech Processing

- Homomorphic system for convolution
- Characteristic system •
 - DTFT

- issue of phase unwarping
- Complex and real cepstrum
- z-transform
 - Cepstrum alanysis of rational z-transforms
 - Cepstrums of minimum/maximum-phase signals; pulse train

 $x_{1}[n] * x_{2}[n]$

- Homomorphic Analysis of Speech Signal •
 - Complex cepstrum for speech model
 - Short-time cesptrums from speech
 - Polynomial roots
 - Recursive calculation for minimu/maximum-phase signal
 - DFT: aliasing; lifter
- Application
 - Distance measure; MFCC; vocoder

 $y_1[n] * y_2[n]$

Linear Predictive Analysis of Speech Signals

- Basic principal
 - Speech production model

$$s(n) = \sum_{k=1}^{p} a_{k} s(n-k) + Gu(n)$$
$$H(z) = \frac{S(z)}{GU(z)} = \frac{1}{1 - \sum_{k=1}^{p} a_{k} z^{-k}}$$

- linear prediction model
- Determine α_k by minimizing prediction error
 - Autocorrelation method
 - Equations of Toeplitz matrix
 - Covariance method
 - Equations of symmetric matrix

$$\tilde{s}(\hat{n}) = \sum_{k=1}^{p} \alpha_k s(\hat{n} - k)$$

$$P(z) = \frac{\tilde{S}(z)}{S(z)} = \sum_{k=1}^{p} \alpha_k z^{-k}$$

$$e(\hat{n}) = s(\hat{n}) - \tilde{s}(\hat{n}) = s(\hat{n}) - \sum_{k=1}^{p} \alpha_k s(\hat{n} - k)$$

$$A(z) = \frac{E(z)}{S(z)} = 1 - \sum_{k=1}^{p} \alpha_k z^{-k}$$

Linear Predictive Analysis of Speech Signals

- Frequency domain interpretation
 - LPC spectrum: short-time spectrum estimation with removal of excitation fine structure
 - Relationship with short-time autocorrelation
- Solutions of LPC equations
 - Autocorrelation method: Levision-Durbin algorithm
- Prediction error signal and its spectrum
- Properties of the LPC Polynomial
 - Minimum-phase property
 - Formant estimation from LPC roots
- Relationship with lossless tube model
- Alternative representations
 - Spectral sentsitivity
 - PARCOR / roots / IR / LP cepstrum / log area ratio / LSP

Algorithms for Estimating Speech Parameters

- Speech/Non-speech detection

 Rule-based method using log energy and zero crossing rate
- Voiced/Unvoiced/Background classification
 - Bayesian approach
- Pitch detection
 - Autocorrelation: center clipping / doubling error
 - STFT: log harmonic product spectrum
 - Cepstral pitch detector
 - LPC-based pitch detector
- Formant estimation
 - Cepstral-based formant estimation
 - LPC-based formant estimation

Chapter 11 Speech Coding

- Waveform coding
 - Sampling speech signal
 - Instance quantization
 - Uniform: SNR
 - Non-uniform: mu-law / A-law companding; SNR
 - Adaptive quantization
 - Step size adaptation / gain adaptation; AGC
 - Differential quantization
 - Delta Modulation: 1-order prediction and 1-bit quantization
 - Differential PCM: more than 1-order prediction => ADPCM

Chapter 11 Speech Coding

- Model-based (analysis/synthesis) coding
 - Vector quantization
 - Open-loop speech coder
 - Close-loop (analysis by synthesis) speech coder
 - Generate excitation by error minimization with perceptual weighting
 - Use a set of basis functions
 - Multipulse LPC
 - Code-excited LPC
 - Self-excited LPC
- Speech coding standards
 - bit rate / quality / complexity / delay /bandwidth
 - Quality measures

Chapter 12 Automatic Speech Recognition

- Plug-in MAP decision rule for ASR
- Three elements
 - Acoustic model: HMM
 - Language model: N-gram
 - Decoding and search: Viterbi search
- Other ASR related problems
 - VAD
 - Acoustic feature extraction: MFCC, PLP
 - Noise robustness
 - Confidence measure
 - System combination
 - Word accuracy calculation

Chapter 13 Speech Synthesis

- Composition of a speech synthesis system
 Front-end and back-end
- Back-end
 - Unit selection and waveform concatenation
 - Statistical parametric speech synthesis
 - Comparisons
- HMM-based parametric speech synthesis
 - Model training and parameter generation