
Adaptive Quantization  

1



Adaptive Quantization

• Uniform quantization => SNR depends on σx being 
constant (this is clearly not the case)

• instantaneous companding => SNR only weakly 
dependent on Xmax/σx for large μ-law compression 
(100- 500)

• Quantization dilemma: want to choose quantization 
step size large enough to accomodate maximum peak-
to-peak range of x[n]; at the same time need to make 
the quantization step size small so as to minimize the 
quantization error
– the non-stationary nature of speech (variability across 

sounds, speakers, backgrounds) compounds this problem 
greatly
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Solutions to Quantization Dilemna
• Solution 1 – let Δ vary to match the variance of the input signal => Δ[n]

– Δ[n] proportional to σx => quantization levels and ranges would be 
linearly scaled to match σx

2=> need to reliably estimate σx
2

• Solution 2 - use a variable gain, G[n], followed by a fixed quantizer
step size, Δ => keep signal variance of y[n]=G[n]x[n] constant
– G[n] proportional to 1/σx to give σy

2 ≈ constant
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Differential Quantization
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Differential Quantization

• we have carried instantaneous quantization of x[n] as far as 
possible 

• consider correlations between speech samples separated in 
time => differential quantization(差分量化) 

• high correlation values => signal does not change rapidly in 
time => difference between adjacent samples should have 
lower variance than the signal itself

• differential quantization can increase SNR at a given bit rate, 
or lower bit rate for a given SNR
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Delta Modulation

• simplest form of differential quantization is in delta 
modulation (DM) 增量调制

• sampling rate chosen to be many times the Nyquist rate for 
the input signal => adjacent samples are highly correlated

• this leads to a high ability to predict x[n] from past samples, 
with the variance of the prediction error being very low, 
=> can use simple 1-bit (2-level) quantizer
=> the bit rate for DM systems is just the (high) sampling     

rate of the signal
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Linear Delta Modulation(LDM)
• 2-level quantizer with fixed step 

size, Δ, with quantizer form

• using simple first order predictor

• basic equations of DM are

• since          can only increase by 
fixed increments of , fixed DM 
is called linear DM or LDM
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Differential PCM (DPCM)

• Differential quantization

– fixed predictors can give 
from 4-11 dB SNR 
improvement over direct 
quantization (PCM)

– most of the gain occurs 
with first order predictor

– prediction up to 4th or 
5th order helps => DPCM
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DPCM with Adaptive Quantization

• quantizer step size 
proportional to variance at 
quantizer input 

• ADPCM is about 10-11 dB 
SNR better than μ-law non-
adaptive PCM
– get 5 dB improvement 

in SNR using adaptation 
procedures

– get 6 dB improvement 
in SNR using differential 
configuration with fixed 
prediction
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Model-Based Speech Coding
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Model-Based Speech Coding

• we’ve carried waveform coding based on optimizing and 
maximizing SNR about as far as possible
– achieved bit rate reductions on the order of 4:1 (i.e., from 128 Kbps 

PCM to 32 Kbps ADPCM) at the same time achieving toll quality SNR 
for telephone-bandwidth speech

• to lower bit rate further without reducing speech quality, we need 
to exploit features of the speech production model, including:
– source modeling
– spectrum modeling
– use of codebook methods for coding efficiency
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Closed-Loop and Open-Loop Speech Coders

• Closed-loop – used in a 
feedback loop where 
the synthetic speech 
output is compared to 
the input signal, and 
the resulting difference 
used to determine the 
excitation for the vocal 
tract model (Analysis-
by Synthesis).

• Open-loop – the 
parameters of the 
model are estimated 
directly from the 
speech signal with no 
feedback as to the 
quality of the resulting 
synthetic speech.

12



Quantization of Speech Model Parameters
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Quantization of Speech Model Parameters

• Excitation and vocal tract (linear system) are characterized by sets of 
parameters which can be estimated from a speech signal by LP or 
cepstral processing

• We can use the set of estimated parameters to synthesize an 
approximation to the speech signal whose quality depends of a 
range of factors
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Quantization of Speech Model Parameters

• Quality and data rate of synthesis depends on:

– the ability of the model to represent speech

– the ability to reliably and accurately estimate the 
parameters of the model 

– the ability to quantize the parameters in order to 
obtain a low data rate digital representation that 
will yield a high quality reproduction of the speech 
signal
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Scalar Quantization 标量量化

• Scalar quantization – treat each model parameter separately and 
quantize using a fixed number of bits 
– need to measure (estimate) statistics of each parameter, i.e., mean, 

variance, minimum/maximum value, pdf, etc.
– each parameter has a different quantizer with a different number of 

bits allocated

• Example of scalar quantization
– pitch period typically ranges from 20-150 samples (at 8 kHz sampling 

rate) => need about 128 values (7-bits) uniformly over the range of 
pitch periods, including value of zero for unvoiced/background

– amplitude parameter might be quantized with a μ-law quantizer using 
4-5 bits per sample

– using a frame rate of 100 frames/sec, you would need about 700 bps 
for pitch period and 400-500 bps for amplitude
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Vector Quantization 矢量量化

• code block of scalars as a vector, rather than individually 

• design an optimal quantization method based on mean-
squared distortion metric

• essential for model-based coders

• VQ works because the scalar components of each vector 
are correlated

• if scalar components are independent => VQ offers no 
advantage over scalar quantization
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Vector Quantization
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Waveform Coding Vector Quantizer

VQ code pairs of waveform 
samples,
X[n]=(x[2n],x[2n+1]);

(b) Single element codebook 
with cluster centroid (0-bit 
codebook)

(c) Two element codebook 
with two cluster centers 
(1-bit codebook)

(d) Four element codebook 
with four cluster centers 
(2-bit codebook)

(e) Eight element codebook 
with eight cluster centers 
(3-bit codebook)
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Elements of a VQ Implementation

1. A large training set of analysis vectors; X={X1, X2,…, XL}, L 
should be much larger than the size of the codebook, M, i.e., 
10-100 times the size of M.

2. A measure of distance, dij=d(Xi, Xj), between a pair of 
analysis vectors, both for clustering the training set as well 
as for classifying test set vectors into unique codebook 
entries.

3. A centroid computation procedure

4. A classification procedure for arbitrary analysis vectors that 
chooses the codebook vector closest in distance to the input 
vector, providing the codebook index of the resulting nearest 
codebook vector.
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VQ Implementation
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1. The VQ Training Set

• The VQ training set of L≥10M vectors should span 
the anticipated range of:
– talkers, ranging in age, accent, gender, speaking rate, 

speaking levels, etc. 

– speaking conditions, range from quiet rooms, to 
automobiles, to noisy work places 

– transducers and transmission systems, including a 
range of microphones, telephone handsets, 
cellphones, speakerphones, etc. 

– speech, including carefully recorded material, 
conversational speech, telephone queries, etc.
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2. The VQ Distance Measure

• The VQ distance measure depends critically on the 
nature of the analysis vector, X.

– If X is a log spectral vector, then a possible distance 
measure would be an log spectral distance, of the form:

– If X is a cepstral vector, then the distance measure might 
well be a cepstral distance of the form:
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3. Clustering Training Vectors

• Goal is to cluster the set of L training vectors into a set of M
codebook vectors using generalized Lloyd algorithm (also known as 
the K-means clustering algorithm) with the following steps:
1. Initialization – arbitrarily choose M vectors (initially out of the 

training set of L vectors) as the initial set of codewords in the 
codebook

2. Nearest Neighbor Search – for each training vector, find the 
codeword in the current codebook that is closest (in distance) and 
assign that vector to the corresponding cell

3. Centroid Update – update the codeword in each cell to the centroid
of all the training vectors assigned to that cell in the current 
iteration

4. Iteration – repeat steps 2 and 3 until the average distance between 
centroids at successive iterations falls below a preset threshold
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3. Clustering Training Vectors
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Partitioning of a two-
dimensional vector 
space into VQ cells 
with each cell 
represented by a 
centroid vector 
(denoted by x) 

cell 

cell 

centroid 



3. Clustering Training Vectors
• Assume we have a set of V vectors,

where all V vectors are assigned to cluster C

• The centroid of the set        is defined as the vector      that minimizes the 
average distortion 

• The solution for the centroid is highly dependent on the choice of distance 
measure. When both         and  Y are measured in a K-dimensional space 
with the L2-norm, the centroid is the mean of the vector set

• When using an L1 distance measure, the centroid is the median vector of 
the set of vectors assigned to the given class
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4. Vector Classification Procedure

• The classification procedure for arbitrary test set vectors is a 
full search through the codebook to find the "best" (minimum 
distance) match.

• If we denote the codebook vectors of an M-vector codebook 
as        , for                , and we denote the vector to be classified 
(and vector quantized) as X, then the index,     , of the best 
codebook entry is:
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VQ Codebook Example
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Spectral shapes 
corresponding to 
codebook vectors 
in an M = 64 
codebook



VQ Coding for Speech
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‘distortion’ in coding computed 
using a spectral distortion 
measure related to the difference 
in log spectra between the 
original and the codebook vectors

10-bit VQ 
comparable to 24-bit 
scalar quantization 
for these examples



Analysis-by-Synthesis Speech Coders
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A-b-S Speech Coding

• Replace quantizer for generating excitation signal with an optimization 
process (denoted as Error Minimization above) whereby the excitation 
signal, d[n] is constructed based on minimization of the mean-squared 
value of the synthesis error

• utilizes Perceptual Weighting filter. 31

excitation 
parameters



A-b-S Speech Coding
• Basic operation of each loop of closed-loop A-b-S system

1. at the beginning of each loop (and only once each loop), the speech signal, x[n], is used 
to generate an optimum p-th order LPC filter of the form

2. the difference signal,                    , based on an initial estimate of the speech signal          
is perceptually weighted by a speech-adaptive filter of the form

3. the error minimization box and the excitation generator create a sequence d[n] of error 
signals that iteratively (once per loop) minimize the weighted error signal

4. the resulting excitation signal, d[n], which is an improved estimate of the actual LPC 
prediction error signal for each loop iteration, is used to excite the LPC filter and the 
loop processing is iterated until the resulting error signal meets some criterion for 
stopping the closed-loop iterations
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Perceptual Weighting Function

As γ approaches 1, weighting is flat; as γ approaches 0, weighting becomes 
inverse frequency response of vocal tract.
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Implementation of A-B-S Speech Coding

• Goal: find a representation of the excitation for the 
vocal tract filter that produces high quality synthetic 
output, while maintaining a structured 
representation that makes it easy to code the 
excitation at low data rates

• Solution: use a set of basis functions which allow you 
to iteratively build up an optimal excitation function 
in stages, by adding a new basis function at each 
iteration in the A-b-S process
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Implementation of A-B-S Speech Coding
• Assume we are given a set of Q basis functions of the form:

and each basis function is 0 outside the defining interval.

• At each iteration of the A-b-S loop, we select the basis function from      
that maximally reduces the perceptually weighted mean square error, E:

where h[n] and w[n] are the VT and perceptual weighting filters

• We denote the optimal basis function at the k-th iteration as          , giving 
the excitation signal                            where     is the optimal weighting 
coefficient for basis function 

• The A-b-S iteration continues until the perceptually weighted error falls 
below some desired threshold, or until a maximum number of iterations, , 
is reached
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MPLPC

• Multipulse linear predictive coding (MPLPC)

– B. S. Atal and J. R. Remde, “A new model of LPC excitation producing 
natural-sounding speech at low bit rates,” Proc. IEEE Conf. Acoustics, 
Speech and Signal Proc., 1982.
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MPLPC

B. S. Atal and J. R. Remde, “A new model of LPC excitation producing natural-
sounding speech at low bit rates,” Proc. IEEE Conf. Acoustics, Speech and 
Signal Proc., 1982.

37



MPLPC

• 8 impulses per 10 msec => 800 impulses/sec X 9 bits/impulse 
=> 7200 bps

• need 2400 bps for A(z) => total bit rate of 9600 bps

• To further reduce the bitrate
– code pulse locations differentially (Δi = N i – N i -1 ) to reduce range of 

variable

– amplitudes normalized to reduce dynamic range
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CELP

• Code-excited linear predictive coding (CELP)

– M. R. Schroeder and B. S. Atal, “Code-excited linear prediction (CELP),” 
Proc. IEEE Conf. Acoustics, Speech and Signal Proc., 1985.
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CELP

• basic idea is to represent the residual after long-term (pitch period) 
and short-term (vocal tract) prediction on each frame by codewords
from a VQ-generated codebook, rather than by multiple pulses

• replace residual generator in previous design by a codeword 
generator—40 sample codewords for a 5 msec frame at 8 kHz 
sampling rate

• can use either “deterministic” or “stochastic” codebook—10 bit 
codebooks are common 

• deterministic codebooks are derived from a training set of vectors 
=> problems with channel mismatch conditions 

• stochastic codebooks motivated by observation that the histogram 
of the residual from the long-term predictor roughly is Gaussian 
PDF => construct codebook from white Gaussian random numbers 
with unit variance
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CELP Encoder
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CELP Encoder

• For each of the excitation VQ codebook vectors, the 
following operations occur:
– the codebook vector is scaled by the LPC gain estimate, 

yielding the error signal, e[n]

– the error signal, e[n], is used to excite the LP predictors, 
yielding the estimate of the speech signal,         , for the 
current codebook vector

– the signal, d[n], is generated as the difference between the 
speech signal, x[n], and the estimated speech signal,

– the difference signal is perceptually weighted and the 
resulting mean-squared error is calculated
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CELP Decoder
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CELP Decoder

• The signal processing operations of the CELP decoder 
consist of the following steps (for each 5 msec frame of 
speech):
– select the appropriate codeword for the current frame from a 

matching excitation VQ codebook (which exists at both the 
encoder and the decoder)

– scale the codeword sequence by the gain of the frame, thereby 
generating the excitation signal, e[n]

– process e[n] by the long-term synthesis filter (the pitch 
predictor) and the short-term vocal tract filter, giving the 
estimated speech signal, 

– process the estimated speech signal by an adaptive postfilter
whose function is to enhance the formant regions of the speech 
signal, and thus to improve the overall quality of the synthetic 
speech from the CELP system
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CELP Waveforms
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Lots of CELP Variations

• ACELP：Algebraic Code Excited Linear Prediction (G.723.1)

• CS-ACELP：Conjugate-Structure ACELP (G.729)

• VSELP：Vector-Sum Excited Linear Predictive coding

• EVSELP：Enhanced VSELP

• PSI-CELP：Pitch Synchronous Innovation-Code Excited Linear 
Prediction

• RPE-LTP：Regular Pulse Exciting-Long Term Prediction-linear 
predictive coder (GSM)

• MP-MLQ : Multipulse-Maximum Likelihood Quantization
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Speech Coding Applications and Standards
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Applications of Speech Coders

• network-64 Kbps PCM (8 kHz sampling rate, 8- bit log 
quantization)

• international-32 Kbps ADPCM 

• teleconferencing-16 Kbps LD-CELP (low delay)

• wireless-13, 8, 6.7, 4 Kbps CELP-based coders

• secure telephony-4.8, 2.4 Kbps LPC-based coders (MELP)

• VoIP-8 Kbps CELP-based coder

• storage for voice mail, answering machines, 
announcements-16 Kbps LC-CELP (low complexity)

48



Speech Coder Attributes

• bit rate-2400 to 128,000 bps

• quality-subjective (MOS), objective (SNR)

• complexity-memory, processor

• delay-echo, reverberation; block coding delay, processing 
delay, multiplexing delay, transmission delay ~100 msec

• telephone bandwidth-200-3200 Hz, 8kHz sampling rate

• wideband speech-50-7000 Hz, 16 kHz sampling rate
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Network Speech Coding Standards

Coder Type Rate Usage

G.711 Companded PCM 64kbps Toll

G.726/727 ADPCM 16-40kbps Toll

G.722 SBC/ADPCM 48/56/64kbps Wideband

G.728 LD-CELP 16kbps Toll

G.729 CS-ACELP 8kbps Toll

G.723.1 MPC-MLQ&ACELP 6.3/5.3kbps Toll
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Demo: Coders at Different Rates

• original speech signal

• G.711 standard, 64 Kbps mu-law PCM

• G.726 standard, 32 Kbps ADPCM

• G.728 standard, 16 Kbps LD-CELP

• GSM standard, 13 Kbps RPE-LTP

• FS1015 standard, 2.4 Kbps LPC

• 2.4 Kbps MELP
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Factors on Speech Coding Quality

• talker and language dependency - especially for parametric coders that 
estimate pitch that is highly variable across men, women and children; 
language dependency related to sounds of the language (e.g., clicks) that 
are not well reproduced by model-based coders

• signal levels - most waveform coders designed for speech levels 
normalized to a maximum level; when actual samples are lower than this 
level, the coder is not operating at full efficiency causing loss of quality

• background noise - including babble, car and street noise, music and 
interfering talkers; levels of background noise varies, making optimal 
coding based on clean speech problematic 

• multiple encodings - tandem encodings in a multi-link communication 
system, teleconferencing with multiple encoders 

• channel errors - especially an issue for cellular communications; errors 
either random or bursty (fades)-redundancy methods oftern used

• non-speech sounds - e.g., music on hold, DTMF tones; sounds that are 
poorly coded by the system

52



Measures of Speech Coder Quality

• good primarily for waveform coders
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Measures of Speech Coder Quality

• Intelligibility-Diagnostic Rhyme Test (DRT)
– compare words that differ in leading consonant
– identify spoken word as one of a pair of choices
– high scores (~90%) obtained for all coders above 4 Kbps

• Subjective Quality-Mean Opinion Score (MOS)
– 5 excellent quality
– 4 good quality
– 3 fair quality
– 2 poor quality
– 1 bad quality

• MOS scores for high quality wideband speech (~4.5) 
and for high quality telephone bandwidth speech (~4.1)
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Speech Coder Subjective Quality
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