
Chapter 10

Algorithms for Estimating Speech 
Parameters  

语音参数估计算法
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Speech Processing Algorithms

• Speech/Non-speech detection
– Rule-based method using log energy and zero crossing rate
– Single speech interval in background noise

• Voiced/Unvoiced/Background classification
– Bayesian approach using 5 speech parameters
– Needs to be trained (mainly to establish statistics for background signals)

• F0 detection
– Estimation of fundamental frequency (F0) during regions of voiced speech
– Implicitly needs classification of signal as voiced speech
– Algorithms in time domain, frequency domain, cepstral domain, or using LPC-

based processing methods

• Formant estimation
– Estimation of the frequencies of the major resonances during voiced speech 

regions
– Implicitly needs classification of signal as voiced speech
– Need to handle birth and death processes as formants appear and disappear 

depending on spectral intensity
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Algorithm #1

Speech/Non-Speech Detection 

Using Simple Rules
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Speech Detection Issues
• key problem in speech processing is locating accurately the 

beginning and end of a speech utterance in 
noise/background signal

• need endpoint detection to enable:
– computation reduction (don’t have to process background signal)
– better recognition performance (can’t mistake background for 

speech)
– non-trivial problem except for high SNR recordings
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Ideal Speech/Non-Speech Detection
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Beginning of
speech interval

Ending of speech
interval



Speech Detection Examples
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case of low background noise => 
simple case

can find beginning of speech based 
on knowledge of sounds (/S/ in six)



Speech Detection Examples
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difficult case because of weak fricative sound, /f/, at 
beginning of speech



Problems for Reliable Speech Detection
• weak fricatives (/f/, /th/, /h/) at beginning or end of 

utterance

• weak plosive bursts for /p/, /t/, or /k/

• nasals at end of utterance (often devoiced and reduced 
levels)

• voiced fricatives which become devoiced at end of 
utterance

• trailing off (逐渐减小) of vowel sounds at end of 
utterance
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Speech/Non-Speech Detection
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Speech/Non-Speech Detection

• sampling rate conversion to standard rate (10 kHz)
• highpass filtering to eliminate DC offset and hum
• short-time analysis using frame size of 40 msec, with a frame shift 

of 10 msec; compute short-time log energy and short-time zero 
crossing rate

• detect beginning and ending frames based entirely on short-time 
log energy concentrations

• detect improved beginning and ending frames based on short-time 
zero crossing (and log energy)concentrations
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Endpoint Detection Algorithm
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1. find heart of signal via conservative energy threshold => Interval 1
2. refine beginning and ending points using lower threshold on energy => Interval 2
3. check outside the regions using zero crossing (and unvoiced threshold) => Interval 3



Isolated Digit Detection
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Panels 1 and 2: digit /one/
- both initial and final endpoint
frames determined from short-time
log energy

Panels 3 and 4: digit /six/
- both initial and final endpoints
determined from both short-time log
energy and short-time zero crossings

Panels 5 and 6: digit /eight/
- initial endpoint determined from
short-time log energy; final endpoint
determined from both short-time log
energy and short-time zero
crossings



Algorithm #2

Voiced/Unvoiced/Background (Silence) 
Classification
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Voiced/Unvoiced/Background
Classification—Algorithm #2

• Utilize a Bayesian statistical approach to classification of 
frames as voiced speech, unvoiced speech or background 
signal (i.e., 3-class recognition/classification problem)

• Use 5 short-time speech parameters as the basic feature set

• Utilize a (hand) labeled training set to learn the statistics 
(means and variances for Gaussian model) of each of the 5 
short-time speech parameters for each of the classes
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Bayesian Classifier

• Class definition

• Feature extraction: vector x for each frame

• Distribution estimation
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Bayesian Classifier

• Make decision by maximizing the probability

where 
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Feature Extraction
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feature vector for each frame, including



Feature Extraction

• Frame-based measurements

• Frame size of 40 msec (10kHz sampling rate)

• Frame shift of 10 msec

• 200 Hz highpass filter used to eliminate any residual 
low frequency hum or DC offset in signal
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Distribution Estimation

• Using a designated training set of sentences, each 10 msec
interval is classified manually (based on waveform displays 
and plots of parameter values) as either:
– Voiced speech – clear periodicity seen in waveform
– Unvoiced speech – clear indication of frication or whisper
– Background signal – lack of voicing or unvoicing traits
– Unclassified – unclear as to whether low level voiced, low level 

unvoiced, or background signal (usually at speech beginnings 
and endings); not used as part of the training set 

• Each classified frame is used to train a single Gaussian 
model, for each speech parameter and for each pattern 
class; i.e., the mean and variance of each speech parameter 
is measured for each of the 3 classes
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Gaussian
Fits to
Training
Data



Make Decision

• Maximize                  using the monotonic discriminant function

• Disregard term               since it is independent of  
class,      ,giving
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Make Decision

• Ignore bias term, , and a priori class probability,           . Then 
we can convert maximization to a minimization by reversing 
the sign, giving the decision rule:

Decide class       if and only if

• Utilizing confidence measure, based on relative decision 
scores, to enable a no-decision output when no reliable class 
information is obtained.
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Classification Performance
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VUS Classifications
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Panel (a): synthetic vowel
Sequence

Panel (b): all voiced utterance “we 
were away a year ago”

Panels (c-e): speech
utterances with a mixture of
regions of voiced speech,
unvoiced speech and
background signal (silence)

The solid line indicates decision 
and the dashed line indicates the 
corresponding confidence measure 
(multiplied by 3 for plotting)



Algorithm #3

F0 Detection 

(F0 Period Estimation Methods)
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F0 Period Estimation

• Essential component of general synthesis model for 
speech production

• Major component of excitation source information 
(along with voiced-unvoiced decision, amplitude)

• F0 period estimation involves two problems, 
simultaneously; determination as to whether the 
speech is periodic, and, if so, the resulting F0 (period or 
frequency)

• A range of F0 detection methods have been proposed 
including several time domain/frequency 
domain/cepstral domain/LPC domain methods
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Autocorrelation Method of F0 Detection
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Autocorrelation F0 Detection

• basic principle – a periodic function has a periodic 
autocorrelation –just find the correct peak

• basic problem – the autocorrelation representation of 
speech is just too rich
– it contains information that enables you to estimate the vocal 

tract transfer function (from the first 10 or so values)
– many peaks in autocorrelation in addition to F0 periodicity 

peaks
– some peaks due to rapidly changing formants
– some peaks due to window size interactions with the speech 

signal

• need some type of spectrum flattening so that the speech 
signal more closely approximates a periodic impulse train 
=> center clipping (中心削波) spectrum flattener
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Autocorrelation of Voiced Speech Frame
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pmin pmaxploc



Autocorrelation of Voiced Speech Frame
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pmin pmaxploc



Center Clipping
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3-Level Center Clipper

• significantly simplified computation (no multiplications)

• autocorrelation function is very similar to that from a 
conventional center clipper => most of the extraneous peaks 
are eliminated and a clear indication of periodicity is retained
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Waveforms and
Autocorrelations

First row: no
clipping (dashed
lines show 70%
clipping level)

Second row:
center clipped at
70% threshold

Third row: 3-level
center clipped



Autocorrelations of Center-Clipped Speech

34

Clipping Level:

(a) 90%

(b) 60%

(c) 30%



Autocorrelation Pitch Detector

• lots of errors with 
conventional 
autocorrelation—especially 
short lag estimates of pitch 
period

• center clipping eliminates 
most of the gross errors

• nonlinear smoothing fixes 
the remaining errors
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Cepstral F0 Detector
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Cepstral F0 Detection

• simple procedure for cepstral F0 detection

1. compute cepstrum every 10-20 msec

2. search for periodicity peak in expected range of n

3. if found and above threshold => voice, F0 period 
=location of cepstral peak 

4. if not found => unvoiced
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Cepstral Sequences for
Voiced and Unvoiced Speech

38



39



Comparison of Cepstrum and ACF
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Pitch doubling errors eliminated in cepstral display, but not in 
autocorrelation display. Weak cepstral peaks still stand out in 
cepstral display.



LPC-Based F0 Detector
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LPC F0 Detection

Simple Inverse Filtering Track
• sampling rate reduced from 10 kHz to 2 kHz
• p=4 analysis
• inverse filter signal to give spectrally flat result
• compute short time autocorrelation and find strongest peak in estimated 

pitch region
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LPC F0 Detection

• part a: section of input 
waveform being analyzed

• part b: input spectrum and 
reciprocal of the inverse 
filter

• part c: spectrum of signal 
at output of the inverse 
filter

• part d: time waveform at 
output of the inverse filter

• part e: normalized 
autocorrelation of the 
signal at the output of the 
inverse filter
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Algorithm #4 – Formant Estimation

Cepstral-Based Formant Estimation
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Cepstral Formant Estimation

• the low-time cepstrum
corresponds primarily to 
the combination of vocal 
tract, glottal pulse, and 
radiation, while the high 
time part corresponds 
primarily to excitation 

=> use lowpass liftered
cepstrum to give 
smoothed log spectra to 
estimate formants
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want to estimate time-varying model 
parameters every 10-20 msec



Cepstral Formant Estimation

1. fit peaks in cepstrum—decide if section of speech 
voiced or unvoiced

2. if voiced-estimate pitch period, lowpass lifter 
cepstrum, match first 3 formant frequencies to 
smooth log magnitude spectrum

3. if unvoiced, set pole frequency Fp to highest peak in 
smoothed log spectrum; choose zero Fz to 
maximize fit to smoothed log spectrum
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Cepstral Formant Estimation
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Cepstral Formant Estimation

• sometimes 2 formants get so close that 
they merge and there are not 2 distinct 
peaks in the log magnitude spectrum
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Cepstral Speech Processing
Cepstral pitch detector – median 
smoothed

Cepstral formant estimation

Formant synthesizer – 3 estimated 
formants for voiced speech; 
estimated formant and zero for 
unvoiced speech

All parameters quantized to 
appropriate number of levels
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LPC-Based Formant Estimation
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Formant Analysis Using LPC
• factor predictor polynomial—assign roots to formants

• pick prominent peaks in LPC spectrum

• problems on nasals which should be described by poles and zeros
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“ This is a test. ” Formants estimated from p = 16 Polynomial Roots



Algorithms for Speech Processing

• Based on the various representations of speech we 
can create algorithms for measuring features that 
characterize speech and estimating properties of the 
speech signal, e.g., 
– presence or absence of speech (Speech/Non-Speech 

Discrimination)
– classification of signal frame as Voiced/Unvoiced/ 

Background signal
– estimation of F0 for a voiced speech frame
– estimation of the formant frequencies (resonances and 

anti-resonances of the vocal tract) for both voiced and 
unvoiced speech frames
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