
Chapter 7

Frequency-Domain Representations
语音信号的频域表征
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General Discrete-Time Model of
Speech Production
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• Voiced Speech:     AVP(z)G(z)V(z)R(z)
• Unvoiced Speech: ANN(z)V(z)R(z)



DTFT and DFT of Speech

• The DTFT and the DFT for the speech signal could be 
calculated by the following:

using a value of  L=25000 we get the following plot
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25000-Point DFT of Speech
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Why STFT for Speech Signals

• steady state sounds, like vowels, are produced by 
periodic excitation of a linear system => speech 
spectrum is the product of the excitation 
spectrum and the vocal tract frequency response

• speech is a time-varying signal => need more 
sophisticated analysis to reflect time varying 
properties
– changes occur at syllabic rates (~10 times/sec)
– over fixed time intervals of 10-30 msec, properties of 

most speech signals are relatively constant
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Frequency Domain Processing

• Coding
– transform, subband, homomorphic, channel vocoders

• Restoration/Enhancement/Modification
– noise and reverberation removal, time-scale 

modifications (speed-up and slow-down of speech)
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Overview of Lecture

• define time-varying Fourier transform (STFT) analysis 
method 

• define synthesis method from time-varying FT (filter-
bank summation, overlap addition)

• show how time-varying FT can be viewed in terms of 
a bank of filters model 

• computation methods based on using FFT
• application to vocoders, spectrum displays, format 

estimation, pitch period estimation
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Short-Time Fourier Transform (STFT)
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Short-Time Fourier Transform

• speech is not a stationary signal, i.e., it has 
properties that change with time

• thus a single representation based on all the samples 
of a speech utterance, for the most part, has no 
meaning

• instead, we define a time-dependent Fourier 
transform (TDFT or STFT) of speech that changes 
periodically as the speech properties change over 
time
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Definition of STFT

10



Short-Time Fourier Transform
• STFT is a function of two variables, the time index,     , which is 

discrete, and the frequency variable,     , which is continuous
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STFT-Different Time Origins

• the STFT can be viewed as having two different time 
origins
1. time origin tied to signal x(n)

2. time origin tied to window signal w(-m)
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Interpretations of STFT

• there are 2 distinct interpretations of
1. assume       is fixed, then                 is simply the normal 

Fourier transform of the sequence      
=> for fixed     ,                has the same properties as a 
normal Fourier transform

2. consider                  as a function of the time index          
with         fixed. Then                is in the form of a 
convolution of the signal                   with the 
window             . This leads to an interpretation in the 
form of linear filtering of the frequency modulated  
signal                    by           .

• We will now consider each of these interpretations of the 
STFT in a lot more detail 13
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DTFT Interpretation of STFT
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Fourier Transform Interpretation

• consider                   as the normal Fourier transform of the 
sequence                                                   for fixed 

• the window                   slides along the sequence x(m) and 
defines a new STFT for every value of      

• what are the conditions for the existence of the STFT
– the sequence                             must be absolutely 

summable for all values of  
• since                    (32767 for 16-bit sampling)
• since                    (normalized window level)
• since window duration is usually finite

– is absolutely summable for all 
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Signal Recovery from STFT

• since for a given value of    ,               has the same properties 
as a normal Fourier transform, we can recover the input 
sequence exactly 

• since                 is the normal Fourier transform of the window 
sequence                          , then

• assuming the window satisfies the property that                  a 
trivial requirement), then by evaluating the inverse Fourier 
transform when             , we obtain
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Signal Recovery from STFT

• with the requirement that                  , the sequence           can 
be recovered from               , if                is known for all values 
of       over one complete period 
– sample-by-sample recovery process
– must be known for every value of      and for all     

• can also recover sequence                           but can’t guarantee 
that  x(m) can be recovered since                  can equal 0

17

ˆ( ) ( )w n m x m−
n̂

ˆ
ˆ ( )j
nX e ω

(0) 0w ≠ ˆ( )x n
ˆ

ˆ ( )j
nX e ω

ω̂

ˆ
ˆ ( )j
nX e ω ω̂

ˆ( )w n m−



Alternative Forms of STFT
1. real and imaginary parts

2. magnitude and phase
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Role of Window in STFT

• The window                   does the following
– chooses portion of x(m) to be analyzed
– window shape determines the nature of 

• Since                (for fixed    ) is the normal FT of                        
then if we consider the normal FT’s of both x(n) and w(n) 
individually, we get
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Role of Window in STFT

• then for fixed    , the normal Fourier transform of the    
product                           is the convolution of the transforms 
of                   and            

• limiting case

– we get the same thing no matter where the window is shifted
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Interpretation of Role of Window

• is the convolution of               with the FT of the shifted 
window sequence 

• really doesn’t have meaning since            varies with 
time

• consider           defined for window duration and extended for 
all time to have the same properties 
=> then              does exist with properties that reflect the 
sound within the window

• is a smoothed version of the FT of the part of            
that is within the window w
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Windows in STFT
• consider rectangular and Hamming windows, where width of 

the main spectral lobe is inversely proportional to window 
length, and side lobe levels are essentially independent of 
window length
– Rectangular Window: flat window of length L samples; first zero in 

frequency response occurs at FS/L, with sidelobe levels of -14 dB or 
lower 

– Hamming Window: raised cosine window of length L samples; first 
zero in frequency response occurs at 2 FS/L, with sidelobe levels of -40 
dB or lower
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Windows
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L=2M+1-point Hamming window and its corresponding DTFT



Frequency Responses of Windows
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Effect of Window Length - HW
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Effect of Window Length - HW
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Effect of Window Length - RW
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Effect of Window Length - HW
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Relation to Short-Time Autocorrelation

• is the discrete-time Fourier transform of                        
for each value of       , then it is seen that 

is the Fourier transform of 

which is the short-time autocorrelation function of the 
previous chapter. Thus the above equations relate the short-
time spectrum to the short-time autocorrelation.
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Short-Time Autocorrelation and STFT
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Summary of FT view of STFT
• Interpret                as the normal Fourier transform of the 

sequence
• properties of this Fourier transform depend on the window

– frequency resolution of                      varies inversely with the length of 
the window => want long windows for high resolution

– want x(n) to be relatively stationary (non-time-varying) during 
duration of window for most stable spectrum => want short windows

• as usual in speech processing, there needs to be a 
compromise between good temporal resolution (short 
windows) and good frequency resolution (long windows)
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Linear Filtering Interpretation of STFT

32



Linear Filtering Interpretation

1. modulation-lowpass filter form

2. bandpass filter-demodulation
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Linear Filtering Interpretation
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Linear Filtering Interpretation
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Linear Filtering Interpretation
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Linear Filtering Interpretation
2. bandpass filter-demodulation form
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Summary - STFT

• Fixed value of      , varying      -- DFT Interpretation
• Fixed value of      , varying      -- Filter Bank Interpretation
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Summary – DFT Interpretation
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Summary – Modulation/Lowpass Filter
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Summary – Bandpass Filter/Demodulation
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STFT Magnitude Only

• for many applications you only need the magnitude of the 
STFT(not the phase)

• in such cases, the bandpass filter implementation is less 
complex, since
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Sampling Rates of STFT

43



Sampling Rates of STFT
• need to sample STFT in both time and frequency to produce 

an unaliased representation from which x(n) can be exactly
recovered
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Sampling Rate in Time

• to determine the sampling rate in time, we take a linear 
filtering view
1. is the output of a filter with impulse response
2. is a lowpass response with effective bandwidth of B Hertz

• thus the effective bandwidth of                is B Hertz =>              
has to be sampled at a rate of 2B samples/second to avoid 
aliasing
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Sampling Rate in Frequency
• since               is periodic in      with period 2π, it is only necessary to sample over an 

interval of length 2 π
• need to determine an appropriate finite set of frequencies,                                       

at which                must be specified to exactly recover x(n)
• use the Fourier transform interpretation of 

1. if the window w(n) is time-limited, then the inverse transform of                is 
time-limited

2. since the inverse Fourier transform of                  is the signal x(m)w(n-m)  and 
this signal is of duration L samples (the duration of w(n)), then according to 
the sampling theorem                must be sampled (in frequency) at the set of 
frequencies                                                              in order to exactly recover x(n)
from 

• thus for a Hamming window of duration L=400 samples, we require that the STFT 
be evaluated at least 400 uniformly spaced frequencies around the unit circle
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“Total” Sampling Rate of STFT
• the “total” sampling rate for the STFT is the product of the sampling rates in time 

and frequency, i.e.,
SR = SR(time) x SR(frequency)

= 2B x L samples/sec
B = frequency bandwidth of window (Hz)
L = time width of window (samples)

• for most windows of interest, B is a multiple of FS/L, i.e.,
B = C FS/L (Hz), C=1 for Rectangular Window

C=2 for Hamming Window
SR = 2C FS samples/second

• can define an ‘oversampling rate’ of
SR/ FS = 2C = oversampling rate of STFT as compared to      

conventional sampling representation of x(n)
for RW, 2C=2; for HW 2C=4 => range of oversampling is 2-4
this oversampling gives a very flexible representation of the speech signal
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Sampling the STFT
• DFT Notation

• let w[-m] ≠ 0 for 0 ≤ m ≤ L-1 (finite duration window with no zero-valued 
samples)

• if L ≤ N then (DFT defined with no aliasing => can recover sequence exactly 
using inverse DFT)

• if R ≤ L, then all samples can be recovered from Xr[k] (R > L => gaps in 
sequence)
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Spectrographic Displays
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Spectrographic Displays
• Sound Spectrograph-one of the earliest embodiments of the time-

dependent spectrum analysis techniques
– Time-varying average energy in the output of a variable frequency bandpass

filter is measured and used as a crude measure of the STFT
– thus energy is recorded by an ingenious electro-mechanical system on special 

electrostatic(静电) paper called teledeltos paper(电记录纸) 
– result is a two-dimensional representation of the time-dependent spectrum: 

with vertical intensity being spectrum level at a given frequency, and 
horizontal intensity being spectral level at a given time; with spectrum 
magnitude being represented by the darkness of the marking

– wide bandpass filters (300 Hz bandwidth) provide good temporal resolution 
and poor frequency resolution (resolve pitch pulses in time but not in 
frequency)—called wideband spectrogram 

– narrow bandpass filters (45 Hz bandwidth) provide good frequency resolution 
and poor time resolution (resolve pitch pulses in frequency, but not in time)—
called narrowband spectrogram
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Conventional Spectrogram (Every
salt breeze comes from the sea)
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Digital Speech Spectrograms
• wideband spectrogram

– follows broad spectral peaks 
(formants) over time

– resolves most individual pitch 
periods as vertical striations since 
the IR of the analyzing filter is 
comparable in duration to a pitch 
period

– what happens for low pitch 
males—high pitch females

– for unvoiced speech there are no 
vertical pitch striations

• narrowband spectrogram
– individual harmonics are resolved 

in voiced regions 
– formant frequencies are still in 

evidence 
– usually can see fundamental 

frequency
– unvoiced regions show no strong 

structure
52



Digital Speech Spectrograms
• Speech Parameters (“This is a test”):

– sampling rate: 16 kHz
– speech duration: 1.406 seconds
– speaker: male

• Wideband Spectrogram Parameters:
– analysis window: Hamming window
– analysis window duration: 6 msec (96 samples)
– analysis window shift: 0.625 msec (10 samples)
– FFT size: 512

• Narrowband Spectrogram Parameters:
– analysis window: Hamming window
– analysis window duration: 60 msec (960 samples)
– analysis window shift: 6 msec (96 samples)
– FFT size: 1024

• Matlab Example
53



Digital Speech Spectrograms
6 msec (96
samples) window

60 msec (960
sample) window
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Spectrogram - Male
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nfft=1024, L=80, R=5

nfft=1024, L=800,R = 10

“She had your dark suit in.”



Spectrogram - Female
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nfft=1024, L=80, R=5

nfft=1024, L=800,R = 10

“She had your dark suit in.”



A Summary on Introduced STFS Methods
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Method #1

• since                 is the normal Fourier transform of the window 
sequence                          , then

• with the requirement that                  , the sequence           can 
be recovered from               , if                is known for every 
value of      and for all     
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Method #2

• can be recovered from its sample version

if                         and              , where B is the window bandwidth
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Method #3
• DFT Notation

• let w[-m] ≠ 0 for 0 ≤ m ≤ L-1 (finite duration window with no zero-valued 
samples)

• if L ≤ N then (DFT defined with no aliasing => can recover sequence exactly 
using inverse DFT)

• if R ≤ L, then all samples can be recovered from Xr[k] (R > L => gaps in 
sequence)
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Overlap Addition (OLA) Method
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Overlap Addition (OLA) Method
• based on normal FT interpretation of short-time spectrum

• can reconstruct x(m) by computing IDFT of                  and 
dividing out the window (assumed non-zero for all samples)

• this process gives L signal values of x(m) for each window => 
window can be moved by L samples and the process repeated

• This procedure is theoretically valid with R<=L<=N
• Not practical since small changes in                     will be 

amplified by dividing the inverse DFT by the window
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Overlap Addition (OLA) Method

• summation is for overlapping analysis sections
• for each value of m where                 is measured, do an inverse FT to give

• The condition for exact reconstruction of x[n] is
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Overlap Addition (OLA) Method

64



Overlap Addition of Bartlett
and Hann Windows
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L = 2M+1     R = M



Spectral Condition
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Window Spectra
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Hamming Window Spectra
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• DTFTs of even-length, odd-length and modified odd-to-even length Hamming windows
• Odd-to-even: truncate from L = 2M+1 to L = 2M by simply zeroing the last sample;  zeros 
spaced at 2π/R give perfect reconstruction using OLA



Overlap Addition (OLA) Method

• w(n) is an L-point Hamming 
window with R=L/4

• assume x(n)=0 for n<0
• time overlap of 4:1 for HW
• first analysis section begins 

at n=L/4
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Overlap Addition (OLA) Method
• 4-overlapping sections 

contribute to each interval
• N-point FFT’s done using L 

speech samples, with N-L 
zeros padded at end to 
allow modifications 
without significant aliasing 
effects

• for a given value of n
y(n)=x(n)w(R-n)+x(n)w(2R-n)+
x(n)w(3R-n)+x(n)w(4R-n)=
x(n)[w(R-n)+w(2R-n)+w(3R-n)
+w(4R-n)]=x(n) W(ej0)/R
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Filter Bank Summation
(FBS)
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Filter Bank Summation
• the filter bank interpretation of the STFT shows that for any 

frequency       ,                   is a lowpass representation of the 
signal in a band centered at       (             for FBS)

where                is the lowpass window used at frequency
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Filter Bank Summation

• define a bandpass filter and substitute it in the equation to 
give

73



Filter Bank Summation

• thus                  is obtained by bandpass filtering x(n) followed 
by modulation with the complex exponential             . We can 
express this in the form

• thus             is the output of a bandpass filter with impulse 
response
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Filter Bank Summation

75



Filter Bank Summation
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Filter Bank Summation
• consider a set of N bandpass filters, uniformly spaced, so that the entire 

frequency band is covered

• also assume window the same for all channels, i.e.,

• if we add together all the bandpass outputs, the composite response is

• if                  is properly sampled in frequency (N ≥ L), where L is the 
window duration, then it can be shown that
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Proof of FBS Formula
• derivation of FBS formula

• if                 is sampled in frequency at uniformly spaced points, 
the inverse discrete Fourier transform of the sampled version 
of                   is (recall that sampling ⇒ multiplication ⇔
convolution ⇒ aliasing)

• an aliased version of w(n) is obtained.
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Proof of FBS Formula
• If w(n) is of duration L samples, then

• and no aliasing occurs due to sampling in frequency of             
• In this case if we evaluate the aliased formula for n = 0, we get

• the FBS formula is seen to be equivalent to the formula above, 
since (according to the sampling theorem) any set of N 
uniformly spaced samples of                 is adequate.
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Filter Bank Summation
• the impulse response of the composite filter bank system is

• thus the composite output is

• thus for FBS method, the reconstructed signal is

if                 is sampled properly in frequency, and is independent 
of the shape of w(n)
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Filter Bank Summation
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FBS Reconstruction

• the composite impulse response for the FBS system is

• defining a composite of the terms being summed as

• we get for

• it is easy to show that p(n) is a periodic train of impulses of the form

• giving for           the expression

• thus the composite impulse response is the window sequence sampled at 
intervals of N samples
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FBS Reconstruction

• for ideal LPF we have

giving
• other cases where perfect 

reconstruction is obtained
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impulse response of ideal lowpass filter 
with cutoff frequency π/N



Summary of FBS Reconstruction

• for perfect reconstruction using FBS methods
1. w(n) does not need to be either time-limited or frequency-limited to 

exactly reconstruct x(n) from
2. w(n) just needs equally spaced zeros, spaced N samples apart for 

theoretically perfect reconstruction

• exact reconstruction of the input is possible with a number of 
frequency channels less than that required by the sampling 
theorem

• key issue is how to design digital filters that match these 
criteria
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Practical Implementation of FBS
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FBS and OLA Comparisons
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FBS and OLA Comparisons
• filter bank summation method                        overlap addition method

– one depends on sampling relation in frequency
– one depends on sampling relation in time

• FBS requires sampling in frequency be such that the window transform  
obeys the relation

• OLA requires that sampling in time be such that the window obeys the 
relation

• the key to Short-Time Fourier Analysis is the ability to modify the short-
time spectrum via quantization, noise enhancement, signal enhancement, 
speed-up/slow-down, etc) and recover an "unaliased" modified signal
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Applications of STFT
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Applications of STFT

• vocoders => voice coders, code speech at rates much 
lower than waveform coders

• removal of additive noise
• de-reverberation
• speed-up and slow-down of speech for speed 

learning, aids for the handicapped
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Coding of STFT

• elements of STFT
1. set  of {ωk} chosen to cover frequency range of interest
2. w k(n)-set of lowpass analysis windows
3. P k -set of complex gains to make composite frequency response as 

close to ideal as possible
=> goal is to sample STFT at rates lower than x(n) 90



Coding of STFT
• non-uniform coding 

and quantization
• 28 channels
• 100/sec SR (gives small 

amount of aliasing)
• coding log magnitude 

and phase using 3 bits 
for log magnitude and 4 
bits for phase for 
channels 1-10; and 2 
bits for log magnitude 
and 3 bits for phase for 
channels 11-28

• total rate of 16 Kbps 91



The Phase Vocoder

92

• used for speed-up and slow-down of speech
• speed-up: divide center frequency and phase derivative by q
• slow-down: multiply center frequency and phase derivative by q



Examples of Rate Changes in Speech

• Female Speaker
– Original rate
– Speeded up
– Speeded up more
– Slowed down
– Slowed down more

• Male Speaker
– Original rate
– Speeded up
– Speeded up more
– Slowed down
– Slowed down more

93

Modify sampling rate
+30%

-30%

Modify sampling rate
+30%

-30%



Phase Vocoder Time Expanded
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Phase Vocoder Time Compressed
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Channel Vocoder

• interpret STFT so that each channel can be thought of as a bandpass filter 
with center frequency ωk

• magnitude of STFT can be approximated by envelope detection on the BPF 
output 

• analyzer-bank of channels; need excitation info (the phase component) => 
V/UV detector, pitch detector

• synthesizer-channel signal control channel amplitude; excitation signals 
control detailed structure of output for a given channel; V/UV choice of 
excitation source

=> highly reverberant speech because of total lack of control of composite 
filter bank response
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Channel Vocoder
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• 1200-9600 bps
• 600 bps for pitch and V/UV
• easy to modify pitch, timing



Channel Vocoder
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