Chapter 7
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DTFT and DFT of Speech

 The DTFT and the DFT for the speech signal could be
calculated by the following:

X(e’® x(m)e™“" (DTFT)

T
Il
M-

(DFT)

using a value of [=25000 we get the following plot



25000-Point DFT of Speech
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Why STFT for Speech Signals

* steady state sounds, like vowels, are produced by
periodic excitation of a linear system => speech

spectrum is the product of the excitation

spectrum and the vocal tract frequency response

e speech is a time-varying signal => need more
sophisticated analysis to reflect time varying
properties
— changes occur at syllabic rates (~10 times/sec)

— over fixed time intervals of 10-30 msec, properties of
most speech signals are relatively constant
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* Coding

— transform, subband, homomorphic, channel vocoders

e Restoration/Enhancement/Modification

— noise and reverberation removal, time-scale
modifications (speed-up and slow-down of speech)



Overview of Lecture

define time-varying Fourier transform (STFT) analysis
method

define synthesis method from time-varying FT (filter-
bank summation, overlap addition)

show how time-varying FT can be viewed in terms of
a bank of filters model

computation methods based on using FFT

application to vocoders, spectrum displays, format
estimation, pitch period estimation



Short-Time Fourier Transform (STFT)



Short-Time Fourier Transform

e speech is not a stationary signal, i.e., it has
properties that change with time

* thus a single representation based on all the samples
of a speech utterance, for the most part, has no
meaning

* instead, we define a time-dependent Fourier
transform (TDFT or STFT) of speech that changes

periodically as the speech properties change over
time



Definition of STFT

X.(e'?) = Z x(mw(n—-m)e® | |both n and & are variables

m=—wm

e w(Nn—m) is a real window which determines the portion of x(n)

that is used in the computation of Xﬁ(ef‘{’)
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Short-Time Fourier Transform

STFT is a function of two variables, the time index, n , which is
discrete, and the frequency variable, @ , which is continuous

X;(e'°)= > x(mw(n—m)e "

=DTFT (x(mw(n—m)) = n fixed, & variable




STFT-Different Time Origins

the STFT can be viewed as having two different time
origins

1. time origin tied to signal x(n)

X (€)= x(mWw(A—m)e

Mm=—wx

=DTFT | x(mw(n-m)|, n fixed, & variable

2. time origin tied to window signal w(-m)

X (e'%)=e7"" " x(fi+mw(-m)e”"

—e /"X (e'?)
—e ¥ D TFT|w(-m)x(fi+m)|, 7 fixed, & variable



Interpretations of STFT

* there are 2 distinct interpretations of X, (ejé’)

1. assume 7 is fixed, then X (e’”) is simply the normal
Fourier transform of the sequence w(n —m)x(m),—0 < m < ©

=> for fixed 11 , X. (ef‘?’) has the same properties as a
normal Fourier transform

2. consider X, (e’*) as a function of the time index 7
with @ fixed. ThenX(e’”) is in the form of a
convolution of the signal x(7)e ™’ with the
window w(7n) . This leads to an interpretation in the
form of linear filtering of the frequency modulated
signal x(n)e /" by w(n) .

 We will now consider each of these interpretations of the
STFT in a lot more detail



DTFT Interpretation of STFT



Fourier Transform Interpretation

* consider X, (¢’®) as the normal Fourier transform of the
sequence wW(n—m)x(m),—oo <m <o for fixed n

* the window w(n—m) slides along the sequence x(m) and
defines a new STFT for every value of 7

 what are the conditions for the existence of the STFT

— the sequence w(n—m)x(m) must be absolutely
summable for all values of 7

* since |x(fz)| < L (32767 for 16-bit sampling)
* since |W(ﬁ) <1 (normalized window level)
* since window duration is usually finite

—  w(n—m)x(m) is absolutely summable for all 7




Signal Recovery from STFT

* since for a given value of 1, X, (e’”) has the same properties
as a normal Fourier transform, we can recover the input
sequence exactly

* since X (e’”) is the normal Fourier transform of the window
sequence w(n—m)x(m), then

w(i—m)x(m) == [ X,(e")e’*"dé
2 g
 assuming the window satisfies the property that w(0) =0 a
trivial requirement), then by evaluating the inverse Fourier
transform when m =n , we obtain

X(A) = j X(€/)e'dé

2.#TW



Signal Recovery from STFT

x(N) =

J.X efﬁ" e*’ﬂ”do
2;TW

* with the requirement that w(0) # 0 , the sequence x(7) can
be recovered from X, (e’”), if X.(e’”) is known for all values
of @ over one complete period

— sample-by-sample recovery process
— X.(€’®) must be known for every value of 2 and for all &

* can also recover sequence w(n—m)x(m) but can’t guarantee
that x(m) can be recovered since w(n—m) can equal 0



Alternative Forms of STFT

1. real and imaginary parts
X;(e*)=Re| X;(e") |+ jim| X, (")
=a.(o)-jb;(®)
a,(d)=Re| X;(e’)]
by () =—Im| X,(e”) |
e when x(m) and w(h —m) are both real (usually the case)
can show that a.(®) is symmetric in &, and b.(®) Is
anti-symmetric in @

2. magnitude and phase
X;(e) = X;(e) e/

e can relate | X;(e’”)| and 6;(®) to a;(®) and b.(®)



Role of Window in STFT

* The window w(7n—m) does the following
— chooses portion of x(m) to be analyzed
— window shape determines the nature of X (e’*)

* Since X (e’”) (for fixed ) is the normal FT of w(7 —m)x(m)
then if we consider the normal FT’s of both x(n) and w(n)
individually, we get

X(Ee?)=3> x(m)e”"

W(ej{b) _ Z W(m)e—jr&m

m=—x



Role of Window in STFT

e then for fixed 7, the normal Fourier transform of the
product w(n—m)x(m) is the convolution of the transforms
of w(n—m) and x(m)

o for fixed A, the FT of w(Ai —m) is W(e/?)e /" --thus

n

X, () == [ W(e ™) X(/**)do
27 7
* |imiting case

w(f)=1-o<h <o < W(e'?)=2150)

X.(e/%) = % 278(—0) X (e/*) e 1% dh = X(e®)

— we get the same thing no matter where the window is shifted



Interpretation of Role of Window

X .(e’?) is the convolution of X (e’”) with the FT of the shifted
window sequence J¥ (e /*)e /"

X (e’?) really doesn’t have meaning since x(71) varies with
time

consider X(72) defined for window duration and extended for
all time to have the same properties

=> then X (e’?) does exist with properties that reflect the
sound within the window

X, (/) is a smoothed version of the FT of the part of x(7)
that is within the window w



Windows in STFT

e consider rectangular and Hamming windows, where width of
the main spectral lobe is inversely proportional to window
length, and side lobe levels are essentially independent of
window length

— Rectangular Window: flat window of length L samples; first zero in
frequency response occurs at F/L, with sidelobe levels of -14 dB or
lower

— Hamming Window: raised cosine window of length L samples; first
zero in frequency response occurs at 2 F/L, with sidelobe levels of -40
dB or lower



Windows
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Frequency Responses of Windows
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Effect of Window Length - HW

(a) Voiced Speech with 251- and 81-point Hamming Windows
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Effect of Window Length - HW
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Effect of Window Len th RW

(a) Voiced Speech with 501—and 151 pmnt RectangWlar Windows
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Effect of Window Length - HW

{a) Unvoiced Speech with 501 and 151-point Hamming Windows
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Relation to Short-Time Autocorrelation

X .(e’”)is the discrete-time Fourier transform of w7 —m]x[m]
for each value of 7 , then it is seen that

S (€)= X, (") =X, (") X;(e”)

is the Fourier transform of

v s}

R,()= > wn—mlx[mw{n—1—m]x{m+]I]

M=—00

which is the short-time autocorrelation function of the
previous chapter. Thus the above equations relate the short-
time spectrum to the short-time autocorrelation.

29



Short-Time Autocorrelation and STFT
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Summary of FT view of STFT

Interpret X . (e’) as the normal Fourier transform of the
sequence w(n—m)x(m),—0 < m < o
properties of this Fourier transform depend on the window

— frequency resolution of X (ej‘”) varies inversely with the length of
the window => want long windows for high resolution

— want x(n) to be relatively stationary (non-time-varying) during
duration of window for most stable spectrum => want short windows

as usual in speech processing, there needs to be a
compromise between good temporal resolution (short
windows) and good frequency resolution (long windows)



Linear Filtering Interpretation of STFT



Linear Filtering Interpretation

modulation-lowpass filter form

X, (@)= x(m)e”’*"w(n—m)

M=—x

=w(n)*(x(n)e”’®"), n variable, & fixed

_ L [ W(e”) X(e**)e " dg
27 7

bandpass filter-demodulation

0o

X (eirb) — Z W(m)}((n _ m)e—jra(n—m)

n
M=—0

—g /" i (w(m)e’®™)x(n —m)

M=—0C

=e”*"[(w(n)e’®)* x(n)], n variable, & fixed



Linear Filtering Interpretation

x[n]e!”” < X(e!”) = FT(e!")
= X(e)* 5(w— &)
— X(ef(m—r-'*}))
X(ef“’) X(e“"”“%))

SIS AN

-w 0 w o-W 0, o+ W




Linear Filtering Interpretation

/R) m

— 2r o = ©
M M

l]ry{e_f{ﬁ}_f:l:l} (t’!}

—I’n‘ 0 {Ia (0]

35



x[n]

Linear Filtering Interpretation

x[n]

I

Tk
{'.l N

cos(wrn)

1

O

sin(wn)

Impulse Xu(e’™) .
Response - : .
1. modulation-lowpass filter form:
wln]
@) X (&)= x(m)e”*"w(n-m),
M=—wm
n variable, & fixed
Impulse '”.rrff_:}:l — e P Vew(n
Response ] ( ( ) ) ( )
wln] Z(X(H)COS(&}”)) W(n)_
- X\n Sln n win
Impulse hn‘i').] ( 2 )) ( )
Response = n(() jb (f})
wn|
(b)
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Linear Filtering Interpretation

2. bandpass filter-demodulation form
X (%) =e /" [(W(n)ef‘f’”) * x(n)] n variable, & fixed

x[n] Impulse
-
Response

I

X, (e’ X, (e :
) e complex bandpass filter output

T modulated by signal e~*"
eI o if W(e'?)is lowpass, then filter
WTW ~ is bandpass around 6 = &
a,(w)

e Impulse a,(w)
Response
wln]cos(@n)
x[n]
- 1“'7 sinfan)
- : b ()
Impulse J,,;\ b WD
Response ;‘; . S TS
pl@) T
wln]sin(awn) (b)

cos{wn) 37



Summary - STFT

X.(e'7)= Z xi[mw[n-m)e "™,

m=—x

Fat

—w<hN<w 0< <27

* Fixed value of 7 , varying @ -- DFT Interpretation
* Fixed value of @ , varying n -- Filter Bank Interpretation



Summary — DFT Interpretation

o0

0, L L

lo

0 R 2R 3R n

DFT: X.(e’”)= Zn: (xImw[A—m])e~*"

m=n—L+1

X;(e’”)=DFT(x[mw[n —m])
0<@<2r, n=0R,2R,..



Summary — Modulation/Lowpass Filter

o0

ot

X.(e%)="> xImlw[n—-m]e”™" —w<fi<w 0<d<2r

n
Filter Bank: X, (e’”)= > (x[m]e”™" )w[n—m]

m=n-L+1

X,(e"")=(x[n]le”*" )w[n —m]

= (x[nle™™" )= w[n]



Summary — Bandpass Filter/Demodulation

o0

ot

X.(e%)="> xImlw[n—-m]e”™" —w<fi<w 0<d<2r

0)

n

o0

Filter Bank: X, (e’”)= > (x[n—m]e "™ )w[m]

m=—=

X,(e'")= e | (wln]e’™)« x[n] |



STFT Magnitude Only

for many applications you only need the magnitude of the
STFT(not the phase)

in such cases, the bandpass filter implementation is less
complex, since

| X, (€)= [a2(@)+bi() ]

~ " o ~, . 2
=| X, (") = | & () +b}(®)



Sampling Rates of STFT



Sampling Rates of STFT

need to sample STFT in both time and frequency to produce
an unaliased representation from which x(n) can be exactly
recovered

27 -+
™ 1 ()
0
0 ] 2 3 4 5 6 7 8 n
Xolk] X, (k] X5[k]
N-1¢ o .
(b)
k
U [ ]
0 R 2R n
0 ] 2

r 44



Sampling Rate in Time

* to determine the sampling rate in time, we take a linear
filtering view
1. X (ejfb) is the output of a filter with impulse response w(n)
2. W(e’”) is alowpass response with effective bandwidth of B Hertz

» thus the effective bandwidth of X (e’?) is B Hertz =>X (e’*)
has to be sampled at a rate of 2B samples/second to avoid
aliasing

Example: Hamming Window
w(n)=0.54-0.46cos(2zn/(L-1)) 0<n<L-1
=0 otherwise

2F,
L
rate of 100/sec (every 100 samples) for sampling rate in time

—B=x

(Hz); for L =400, F, =10,000 Hz => B =50 Hz => need




Sampling Rate in Frequency

* since Xn(ej‘?’) is periodic in @ with period 27, it is only necessary to sample over an
interval of length 2 &t

* need to determine an appropriate finite set of frequencies, @, =2zk/N,k=0,1,...,N -1
at which X (e’*) must be specified to exactly recover x(n)

« use the Fourier transform interpretation of X, (¢’”)

1. if the window w(n) is time-limited, then the inverse transform of X (/) is
time-limited

2. since the inverse Fourier transform of X (e/®) is the signal x(m)w(n-m) and
this signal is of duration L samples (the duration of w(n)), then according to
the sampling theorem X (e/”) must be sampled (in frequency) at the set of
frequencies @, =27k / N,k =0,1,..,N—1,N > L in order to exactly recover x(n)
from X (e/*)

e thus for a Hamming window of duration L=400 samples, we require that the STFT
be evaluated at least 400 uniformly spaced frequencies around the unit circle



“Total” Sampling Rate of STFT

the “total” sampling rate for the STFT is the product of the sampling rates in time
and frequency, i.e.,

SR = SR(time) x SR(frequency)
= 2B x L samples/sec
B = frequency bandwidth of window (Hz)
L = time width of window (samples)
for most windows of interest, B is a multiple of F/L, i.e.,
B = CFy/L (Hz), C=1 for Rectangular Window
C=2 for Homming Window
SR = 2C F samples/second
can define an ‘oversampling rate’ of
SR/ F¢ = 2C = oversampling rate of STFT as compared to
conventional sampling representation of x(n)
for RW, 2C=2; for HW 2C=4 => range of oversampling is 2-4
this oversampling gives a very flexible representation of the speech signal



Sampling the STFT

DFT Notation 2, LI
X [kl=X eV )=e N | X [k]

let w[-m] # 0 for 0 < m < L-1 (finite duration window with no zero-valued

samples) ] L1 2
X, [kl=> x[rR+m]w[-m]le "V

m=l]

(r fixed, 0=k<N-1)

if L < N then (DFT defined with no aliasing => can recover sequence exactly
using inverse DFT)

= 2,
X[r R+ mlw[-m] = %Z X [kle N

(r fixed, 0=m=N-1)

if R <L, then all samples can be recovered from X,[k] (R > L =>gaps in
sequence)



Spectrographic Displays



Spectrographic Displays

* Sound Spectrograph-one of the earliest embodiments of the time-
dependent spectrum analysis techniques

Time-varying average energy in the output of a variable frequency bandpass
filter is measured and used as a crude measure of the STFT

thus energy is recorded by an ingenious electro-mechanical system on special
electrostatic(iff H) paper called teledeltos paper(H.ic 3% 4K)

result is a two-dimensional representation of the time-dependent spectrum:
with vertical intensity being spectrum level at a given frequency, and
horizontal intensity being spectral level at a given time; with spectrum
magnitude being represented by the darkness of the marking

wide bandpass filters (300 Hz bandwidth) provide good temporal resolution
and poor frequency resolution (resolve pitch pulses in time but not in
frequency)—called wideband spectrogram

narrow bandpass filters (45 Hz bandwidth) provide good frequency resolution
and poor time resolution (resolve pitch pulses in frequency, but not in time)—
called narrowband spectrogram
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Fraquency (kHz)

Frequancy (kHz)

.

=]

Digital Speech Spectrograms

file: every, 8k, wideband/narrowband bw: 300 30, dynamicrange: 50« wideband spectrogram

L]

g%

.
T

follows broad spectral peaks
(formants) over time

resolves most individual pitch
periods as vertical striations since
the IR of the analyzing filter is
comparable in duration to a pitch
period

what happens for low pitch
males—high pitch females

for unvoiced speech there are no
vertical pitch striations

* narrowband spectrogram

individual harmonics are resolved
in voiced regions

formant frequencies are still in
evidence

usually can see fundamental
frequency

unvoiced regions show no strong

structure
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Digital Speech Spectrograms

Speech Parameters (“This is a test”): @
— sampling rate: 16 kHz
— speech duration: 1.406 seconds
— speaker: male
Wideband Spectrogram Parameters:
— analysis window: Hamming window
— analysis window duration: 6 msec (96 samples)
— analysis window shift: 0.625 msec (10 samples)
— FFT size: 512
Narrowband Spectrogram Parameters:
— analysis window: Hamming window
— analysis window duration: 60 msec (960 samples)
— analysis window shift: 6 msec (96 samples)
— FFT size: 1024

Matlab Example
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Digital Speech Spectrograms

wideband spectragram

T ‘$M II.'I III II i I-
? I.-JI"' |: .: 'I
|

narrowband spectrogram
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Spectrogram - Male

nfft=1024, =80, R=5 “She had your dark suit in.”
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Spectrogram Female
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A Summary on Introduced STFS Methods



Method #1

* since X, (e’”) is the normal Fourier transform of the window
sequence w(n—m)x(m), then

w(i—m)x(m)= L '[Xﬁ(ef‘*“’)ef"?””dra
Zﬂ'—ﬁ

e with the requirement that w(0) # 0, the sequence x(n) can
be recovered from X, (e’”), if X.(e’”) is known for every
value of 7 and for all @

1

X(n)= 27w(0)

:fX (e’®)e’“dé

58



Method #2

« X.(e’”) can be recovered from its sample version

-
- _
i

—krR

X [kl=X (€7 )= "X [K]

r

if R<F/2B and N > L, where B is the window bandwidth

Example: Hamming Window
w(n)=0.54-0.46cos(2zn/(L-1)) 0<n<L-1
=0 otherwise

2F,
L
rate of 100/sec (every 100 samples) for sampling rate in time

—B=x

(Hz); for L =400, F, =10,000 Hz => B =50 Hz => need
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Method #3

Jl— —Jl—’”."krf? ~

X [kl=X (¥ )= N X [K]

DFT Notation

let w[-m] # 0 for 0 < m < L-1 (finite duration window with no zero-valued

samples) i L1 2k
X,[kl=> xlrR+mlw[-m]e "

m=0

(r fixed, 0=k<N-1)

if L <N then (DFT defined with no aliasing => can recover sequence exactly
using inverse DFT)

=

"IFM'

[

—Rm

LS [K]E N

E
(r fixed, 0=m=N-1)

X[rR+mlw[-m] =

if R <L, then all samples can be recovered from X,[k] (R > L =>gaps in
sequence)
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Overlap Addition (OLA) Method



Overlap Addition (OLA) Method

based on normal FT interpretation of short-time spectrum

can reconstruct x(m) by computing IDFT of X (e’*) and
dividing out the window (assumed non-zero for all samples)

this process gives L signal values of x(m) for each window =>
window can be moved by L samples and the process repeated

This procedure is theoretically valid with R<=L<=N

Not practical since small changesin X ,(e’*) will be
amplified by dividing the inverse DFT by the window



Overlap Addition (OLA) Method

)= 3| S X, (e )|

* summation is for overlapping analysis sections
» for each value of m where X, (€’*) is measured, do an inverse FT to give

ym( ) Lx(n)w(m—-n) (where L is the size of the FT)

ZV (n)=Lx(n)2_w(m-n)

* The condition for exact reconstruction of x[n] is

o0

win]= Y wrR—n]=C

y=—00



VALUE

Overlap Addition (OLA) Method

3583
Lid
=
-
g
3019 o
1 TIME IN SAMPLES 40
+
A PPeNTS
3
g
-6244 R R
TIME IN SAMPLES 400
12349 e
Wt fzm'[“:'
=
|
S
=-T905 L g
TIME IN SAMPLES e
15985
Ll ]'m':l'l]
=
b
g
=280
1 TIME IN SAMPLES 400
17144 =
Yano (0
3
-
-11481 1 ' .
TIME IN SAMPLES ® R
27500 e
z (n)
14100 b L —1 1|

TIME IN SAMFLES



Overlap Addition of Bartlett
and Hann Windows

L=2M+1 R=M

w/R—m| w[2R —m| w[3R — m)|

(a)

0 A SM A4M n
b)
>< \(
i 1' I %
0 A ﬂ { IM 4M n
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Spectral Condition

wn] < W(e’)

wl—n]l < W ()

;v:n] = Z wrR—n]l < W (/™)
;V[I/l] i w{rR —n] ZW (ej(27fk/R)) ikl R)n

One sufficient condition for perfect reconstruction is:

W (O = () =0, k=1,2,..,R-1



log magnitude in dB

20

0

=2

—60

80

=100

Window Spectra

T T T T T T T

|

Hann window: L = 2M + 1 = 21 |-

normalized frequency w in rad/s

- == Hamming window: L = 21
i N\ .| = — — Bartlett window: L = 2]
\ g | i
"I. . \ : -~ :
- £ e\~ - R o - -
¥/ W A NTRWEARNITNTTN
Ve . X ; \{. \ . Y T \{
i PN NN LY
v | [ '\ A . lf
I t E _ A '. \ ; '
| ' | | | ' : ’ 1
< ! | | . AW
| i | | [ | ' Ay
| | ' }
| i I i I |
2w M 4 /M 6 /M 8r /M -
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Hamming Window Spectra

20 el s innd I Hlamminnginduﬂ*: L=2M=20 -
+ ==+ = Hamming Window: L = 2M + 1 = 2]
ok Hamming Modified: L = 20 i
o f ﬁ f | ﬁ f _' f
; —0F - IREREE | & PPN PO I ey s i L ANETET
= 2 ( \.. ( ‘, ‘ y 11. f . r\ \: !
S Ak i (A . ‘_,ll- |_|‘_|1
= . b | | - f | '
=11 : I i
3 _60_......_5 ...... i ......... I ..... I ..... ! ...... l ...... ! l_
S et rp gl |
—80F - i [ ..... I ..... ! ...... :l_ ...... l !_
I i [ S I
—100 i | | 1 g 1 ] |

0 27IM AwIM 6m/M 8m/M :
Normalized Frequency w (rad/s)
* DTFTs of even-length, odd-length and modified odd-to-even length Hamming windows
* Odd-to-even: truncate from L = 2M+1 to L = 2M by simply zeroing the last sample; zeros
spaced at 21t/R give perfect reconstruction using OLA 68



Overlap Addition (OLA) Method

r=1 win]

n=L/4 Form window,

— L

k. A

Form

> w[rR-n] x[n]

L
Pad with zeros to
give N point
sequence

w

N-point FFT

Modifications to
short-time
spectrum

v

M-point
Inverse FFT

k.

y[m]=y[m]+y [m],

-~

m=n-N+1,...,n-1,n

w
n=n+L/4
r=r+1

Initialize
y[m]=0, all m

w(n) is an L-point Hamming
window with R=L/4

assume x(n)=0 for n<0
time overlap of 4:1 for HW

first analysis section begins
at n=L/4
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Overlap Addition (OLA) Method

| i rEEeH * 4-overlapping sections
| oL contribute to each interval
T T = e N-point FFT’s done using L
O speech samples, with N-L
| P “aTh sEcTion zeros padded at end to
e ———— allow modifications
v ) I ‘ ’ ‘ without significant aliasing
wi%-ml  SECTION 2 effects
— AP s+ foragiven value of n

| y(n)=x(n)w(R-n)+x(n)w(2R-n)+

W:WECHGN 3 x(n)W(3R-n)+X(n)W(4R-n)=

R » x(n)[w(R-n)+w(2R-n)+w(3R-n)
| +W(4R-n)]=x(n) W(e°)/R

wil- SECTION 4

e —— —

m=n

Fig. 6.17 Reconstruction procedure for w(n) using an L-point Hamming
window, 70



Filter Bank Summation
(FBS)



Filter Bank Summation

* the filter bank interpretation of the STFT shows that for any
frequency @ , X (e/”) is a lowpass representation of the
signal in a band centered at @, ( n =n for FBS)

o0
Xn(e_rmk ) _ g Jon Z X(.-"? B m)Wk(m) e/ oM

m=—x

where w, (m) is the lowpass window used at frequency @y



Filter Bank Summation

» define a bandpass filter and substitute it in the equation to

BVE  h(m=wy(n) e/

0

Jou \ _ a—Joyn _
X, (e )=e x(n—m)h,(m)
m=—w
H/A {€ je }
1
I L
-0, 0 o, T 20— @, 2+ @, ()
H, {f‘"m ) (a)
1 2w, —>
| | | | .
0 @, T 2r rt+w, w

(b)



Filter Bank Summation

* thus X, (e/*) is obtained by bandpass filtering x(n) followed
by modulation with the complex exponential e=/%" . We can
express this in the form

* thus y,(n) is the output of a bandpass filter with impulse
response h, (n)



Filter Bank Summation

x[n] h[1] éX (e’ ogyk[”]

x[n] hk[i’l] yﬂ_[n]}




Filter Bank Summation

ylnl

— 7| n] Yol
100] I e 1)
Yyaln]




Filter Bank Summation

consider a set of N bandpass filters, uniformly spaced, so that the entire
frequency band is covered

o, = ZER, k=01.. N-1

also assume window the same for all channels, i.e.,

w,(n)=w(n), k=0,1,.,N-1

if we add together all the bandpass outputs, the composite response is

N-1
JfJ ZH J’f‘) :ZW(EH@_G"‘J)
k=0

if W(ef"”*'f ) is properly sampled in fre_quency (N>L), where L is the
window duration, then it can be shown that

N-1
%ZW(e“ﬂ—mﬂ):w(o) vo| FBS Formula
k=0




Proof of FBS Formula

derivation of FBS formula

w(m)FTUFT Sy (ede)

if W(ef“’) is sampled in frequency at uniformly spaced points,
the inverse discrete Fourier transform of the sampled version
of W(ef"”k ) is (recall that sampling = multiplication <
convolution = aliasing)
= | | 0
—ZW(e”"’"‘f )l o — Z w(n + rN)
N k=0 s

F=—on

an aliased version of w(n) is obtained.



Proof of FBS Formula

If w(n) is of duration L samples, then
w(n)=0, n<0, n>L

and no aliasing occurs due to sampling in frequency of W(ef“‘")
In this case if we evaluate the aliased formula for n = 0, we get

= |
EZ W (e ) = w(0)
k=0

the FBS formula is seen to be equivalent to the formula above,
since (according to the sampling theorem) any set of N
uniformly spaced samples of W (e/“) is adequate.



Filter Bank Summation

the impulse response of the composite filter bank system is
N-1

N-1
h(n) = th(n) = Zw(n)eff’-‘k” = Nw(0)5(n)
k=0 k=0

thus the composite output is

-~

y(n)=x(n)*h(n)=Nw(0)x(n)

thus for FBS method, the reconstructed signal is

N-1 N-1
y(n)=> y(n)=> X,(e/*)e!™*" = Nw(0)x(n)
k=0

k=0

if X (e/*) is sampled properly in frequency, and is independent
of the shape of w(n)



x[n]

Filter Bank Summation

e

— h,_[n]

Analysis . Synthesis
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FBS Reconstruction

the comp05|te |mpulse response for the FBS system is
-1

Z W E.II I'f"}lr )Z e-ll.rd.l:"r]

k=0

defining a comp05|te of the terms being summed as
MN-1

Z EJ'U n Z g/ 2TknIN

we get for ﬁ( n)
h(n) =w(n)p(n)
it is easy to show that p(n) is a periodic train of impulses of the form

:Mr;a‘{n—rh!) .
giving for h(n) the expression ‘ [ [ [
=N Z w(rN) (n—riN) 0 N 2N IN

thus the composite |mpulse response is the window sequence sampled at
intervals of N samples



Wi

FBS Reconstruction

‘ impulse response of ideal lowpass filter
NN aN with cutoff frequency /N

 forideal LPF we have

_ sin(zn/N) w(rN) = sin(zr) :iaj‘(r)

w(n)
Tn TriN N

giving h(n) = 3(n)
e other cases where perfect
- reconstruction is obtained
| 1. w(n) is of finite length L =< N and causal (no images)
2. w(n) has length > N and has the property
w(n)=1/N, forn=rN
=0 forn=rMN(r=r, r=0=x1+2..)

giving A(n) = p(n)w(n) = 8(n - rN)

H(e'?)=e/®" = y(n)=x(n—-r,N)

o 3 83



Summary of FBS Reconstruction

for perfect reconstruction using FBS methods

1. w(n)does not need to be either time-limited or frequency-limited to
exactly reconstruct x(n) from X, (e’ )

2. w(n) just needs equally spaced zeros, spaced N samples apart for
theoretically perfect reconstruction
exact reconstruction of the input is possible with a number of
frequency channels less than that required by the sampling
theorem

key issue is how to design digital filters that match these
criteria



Practical Implementation of FBS

x[n]

— iy [n]

—jn

e

x[ 7] .é) .

e — J@n | e—_jruk n
|
|
1 :
Decimator | 1 | Interpolator v, [n]
o D, :1 : :D,
X”({f (! ) : X”(L’ Jiooy )
|
|
(a) : o /N
| |
|
Decimator : Interpolator Vi [HJ
w n] — D :1 [ | 1:D
: XH(E-””* )
X, (&) :
|
" I -
Analysis '+ Synthesis
©

85



FBS and OLA Comparisons



FBS and OLA Comparisons

filter bank summation method <225, overlap addition method

— one depends on sampling relation in frequency
— one depends on sampling relation in time

FBS requires sampling in frequency be such that the window transform W (e’®)
obeys the relation

N-1
1 { o—a,
E;W(e” y=w(0) any @

OLA requires that sampling in time be such that the window obeys the

relation © |
Z wW(rR-n)=W(e'°)/R anyn

r=—w

the key to Short-Time Fourier Analysis is the ability to modify the short-
time spectrum via quantization, noise enhancement, signal enhancement,
speed-up/slow-down, etc) and recover an "unaliased" modified signal



Applications of STFT



Applications of STFT

vocoders => voice coders, code speech at rates much
lower than waveform coders

removal of additive noise
de-reverberation

speed-up and slow-down of speech for speed
learning, aids for the handicapped



Codmg of STFT

S _,r.r; "
e (] |2 »L AN
W, | 11 »
i I (]
'r___l_)"r?};.ﬂ X {EJ'.”"I‘ } EE:I
x[n : X, (&™)
lt‘k [H] Decimata —* Encode —Il- Decode HInterpolate
D, :1 | 1: D',
| (X
P W [7]
Analysis (0) Synthesis /o

 elements of STFT
1. set of {w,} chosen to cover frequency range of interest
2. w [(n)-set of lowpass analysis windows

3. P.-set of complex gains to make composite frequency response as
close to ideal as possible

=> goal is to sample STFT at rates lower than x(n)



FREQUENCY

Coding of STFT

A

; 1 lai T M

u.ﬁ N{ML

10(} .25 1.5 .75

(9

TIME (SEC)

| (a)
Al.. l & M Huﬂ if

bl

non-uniform coding
and quantization

28 channels

100/sec SR (gives small
amount of aliasing)

coding log magnitude
and phase using 3 bits
for log magnitude and 4
bits for phase for
channels 1-10; and 2
bits for log magnitude
and 3 bits for phase for
channels 11-28

total rate of 16 Kbps



x[nj

* used for speed-up and slow-down of speech

€05 (wyn)

The Phase Vocoder

o J

win)

sin wyn)

win

lury ) ¥ (el |
LV I (A—— [Xnfern] e e ncooE | QUANTIZED
MAGNITUDE
T0O
MAGNITUDE
AND
PHASE :
bn{wh} En[wﬂ Q‘UANT*ZED
= [DERIVATIVE > DECIMATE ENCODE >
PHASE
b DERIVATIVE
ANALYSIS

* speed-up: divide center frequency and phase derivative by g
* slow-down: multiply center frequency and phase derivative by g

92



Examples of Rate Changes in Speech

 Female Speaker

— Original rate @ Modify sampling rate
+30%

— Speeded up <

— Speeded up more -30%

— Slowed down @
— Slowed down more «

* Male Speaker Modify sampling rate
— Original rate @ +30%
— Speeded up ¢
— Speeded up more
— Slowed down ¢
— Slowed down more ¢

-30%



Phase Vocoder Time Expanded

FREQUENCY IN KCPS

ORIGINAL

HIGH AL

TIME EXPANDED (X2)

Eﬁ e

L

e

TI“MTUDE E““‘-ﬁ'l' WH I £ PA 5 &

“-‘

TIME —— 94



Phase Vocoder Time Compressed

ORIGINAL

A

3—
n e
oL
o
- -
=
g .D_I: i LR -E i i 1 LEEE
E SHOULD WE / CH i BE TH O SE YOU NG OUT L_FA..-‘W"'F E 0 W B O (Y5)
e __r..-*"'
w S . g & - B
5 NME L’U‘MF"HI‘.be‘.D ire) e
o
L
o
Lo

i i 6 TR
SHOULD WE CHASE THOSE "I"QL.INGDUT I.AW cCoOwpBa a Y5

TIME =il
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Channel Vocoder

x[n] atd

~ X, (e™)]
—{ wfn]cos(m,n) Lowpass g

Filter

Magnitude p———

* interpret STFT so that each channel can be thought of as a bandpass filter
with center frequency w,

* magnitude of STFT can be approximated by envelope detection on the BPF
output

* analyzer-bank of channels; need excitation info (the phase component) =>
V/UV detector, pitch detector

* synthesizer-channel signal control channel amplitude; excitation signals
control detailed structure of output for a given channel; V/UV choice of
excitation source

=> highly reverberant speech because of total lack of control of composite
filter bank response



Channel Vocoder

Bandpass Lowpass .
Filter 1 — Magnitude Fitar 1 [ Decimate — Encode —»
L] . ¥ &
* ' ' . Magnitude
Signals
L] . " .
Bandpass | Magnitude | Lowpass || Decimate = Encode =
Filter N Filter N
Voicing VILY Signal
Detector
Pitch Pitch Signal
Deetector

* 1200-9600 bps
* 600 bps for pitch and V/UV
e easy to modify pitch, timing

BaNDP&SS
—)@—>_| FILTER 1

BANDPASS
FILTER 2
MAGHIT UDE
SIGHNALS
(7 iy BANDPASS
'_*[ T | FILTER M

V/UY SIGNAL
—_————

PITCH BULSE
SIGMAL | GENERATOR

SWITCH

| HCISE
|GENEH£I.TEIF!

WOCODER
_.-"-EI-
QuUTAUT
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Channel Vocoder

A5 = Crarnmes :
v g Woceder gl
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