Chapter 2

Review of Fundamentals of Digital Signal Processing 数字信号处理基础回顾

Outline

- DSP and Discrete Signals
- LTI Systems
- z-Transform Representations
- Discrete-Time Fourier Transform (DTFT)
- Discrete Fourier Transform (DFT)
- Digital Filtering
- Sampling

DSP and **Discrete** Signals

What is DSP?

- Digital
 - Method to represent a quantity, a phenomenon or an event
- Signal
 - something (e.g., a sound, gesture, or object) that carries information
 - a detectable physical quantity (e.g., a voltage, current, or magnetic field strength) by which messages or information can be transmitted

Processing

- Filtering/spectral analysis
- Analysis, recognition, synthesis and coding of real world signals
- Detection and estimation of signals in the presence of noise or interference

Digital Processing of Analog Signals

- A-to-D conversion: bandwidth control, sampling and quantization
- Computational processing: implemented on computers or ASICs(专用集成电路) with finite-precision arithmetic
 - basic numerical processing: add, subtract, multiply (scaling, amplification, attenuation), mute, ...
 - algorithmic numerical processing: convolution or linear filtering, non-linear filtering (e.g., median filtering), difference equations, DFT, inverse filtering, MAX/MIN, ...
- D-to-A conversion: re-quantification and filtering (or interpolation) for reconstruction

Discrete-Time Signals

- A sequence of numbers
- Mathematical representation

 $x[n], -\infty < n < \infty$

- Sampled from an analog signal, $x_a(t)$, at time t = nT $x[n] = x_a(nT), -\infty < n < \infty$
- *T* is called the sampling period(采样周期), and its reciprocal $F_s = 1/T$ is called the sampling frequency(采样频率)

$$F_s = 8000 \text{Hz} \iff T = 1/8000 = 125 \,\mu \,\text{sec}$$

- $F_s = 10000 \text{Hz} \leftrightarrow T = 1/10000 = 100 \,\mu \text{sec}$
- $F_s = 16000 \text{Hz} \leftrightarrow T = 1/16000 = 62.5 \,\mu \text{sec}$
- $F_s = 20000$ Hz $\leftrightarrow T = 1/20000 = 50 \mu$ sec

Varying Sampling Rates

Quantization

A 3-bit uniform quantizer

- Transforming a continuously valued input into a representation that assumes one out of a finite set of values
- The finite set of output values is indexed; e.g., the value 1.8 has an index of 6, or (110) in binary representation
- Storage or transmission uses binary representation; a quantization table is needed

Discrete Signals

Issues with Discrete Signals

- what sampling rate is appropriate
 - 6.4 kHz (telephone bandwidth), 8 kHz (extended telephone BW), 10 kHz (extended bandwidth), 16 kHz (Hi-Fi speech)
- how many quantization levels are necessary at each bit rate (bits/sample)
 - 16, 12, 8, ... => ultimately determines the S/N ratio of the speech
 - speech coding is concerned with answering this question in an optimal manner

The Sampling Theorem

• A bandlimited signal can be reconstructed exactly from samples taken with sampling frequency

$$\frac{1}{T} = F_s \ge 2f_{\max}$$
 or $\frac{2\pi}{T} = \omega_s \ge 2\omega_{\max}$

Demo Examples

- 5 kHz analog bandwidth
 - sampled at 10, 5, 2.5, 1.25 kHz (notice the aliasing that arises when the sampling rate is below 10 kHz)

- quantization to various levels
 - 16,12,8, and 4 bit quantization (notice the distortion introduced when the number of bits is too low)

Discrete-Time (DT) Signals are Sequences

- x[n] denotes the "sequence value at 'time' n"
- Sources of sequences
 - Sampling a continuous-time signal

$$x[n] = x_c(nT) = x_c(t)\Big|_{t=nT}$$

Mathematical formulas – generative system

e.g.,
$$x[n] = 0.3x[n-1]-1; x[0] = 40$$

Impulse Representation of Sequences

 $x[n] = a_{-3}\delta[n+3] + a_1\delta[n-1] + a_2\delta[n-2] + a_7\delta[n-7]$

Some Useful Sequences

16

LTI Systems

Signal Processing

• Transform digital signal into more desirable form

single input—single output

single input—multiple output, e.g., filter bank analysis, etc.

LTI Discrete-Time Systems

- Linearity (superposition) $T\{ax_1[n] + bx_2[n]\} = aT\{x_1[n]\} + bT\{x_2[n]\}$
- Time-Invariance (shift-invariance)

$$x_1[n] = x[n - n_d] \implies y_1[n] = y[n - n_d]$$

• LTI implies discrete convolution

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n] * h[n] = h[n] * x[n]$$

LTI Discrete-Time Systems

<u>Example</u>

Is system y[n] = x[n] + 2x[n+1] + 3 linear?

 $\begin{aligned} x_1[n] \to y_1[n] &= x_1[n] + 2x_1[n+1] + 3 \\ x_2[n] \to y_2[n] &= x_2[n] + 2x_2[n+1] + 3 \\ x_1[n] + x_2[n] \to \\ y_3[n] &= x_1[n] + x_2[n] + 2x_1[n+1] + 2x_2[n+1] + 3 \neq y_1[n] + y_2[n] \end{aligned}$

 \Rightarrow Not a linear system!

Is system y[n] = x[n]+2x[n+1]+3 time/shift invariant?

y[n] = x[n] + 2x[n+1] + 3

 $y[n-n_0] = x[n-n_0] + 2x[n-n_0+1] + 3 \implies$ System is time invariant!

Is system y[n] = x[n]+2x[n+1]+3 causal?

y[n] depends on $x[n+1] \Rightarrow$ System is not causal !

Convolution Example

Convolution Example

The impulse response of an LTI system is of the form

$$h[n] = a^n u[n] \qquad |a| < 1$$

and the input to the system is of the form

$$x[n] = b^n u[n] \qquad |b| < 1, b \neq a$$

Determine the output of the system using the formula for discrete convolution.

Solution
$$y[n] = \sum_{m=-\infty}^{\infty} a^m u[m] b^{n-m} u[n-m]$$

 $= b^n \sum_{m=0}^n a^m b^{-m} u[n] = b^n \sum_{m=0}^n (a/b)^m u[n]$
 $= b^n \left[\frac{1 - (a/b)^{n+1}}{1 - (a/b)} \right] u[n] = \left[\frac{b^{n+1} - a^{n+1}}{b - a} \right] u[n]$

Convolution Example

Consider a digital system with input x[n] = 1 for n=0,1,2,3 and 0 everywhere else, and with impulse response $h[n] = a^n u[n], |a| < 1$

Determine the response y[n] of this linear system.

<u>Solution</u>

- We recognize that *x*[*n*] can be written as the difference between two step functions, i.e., *x*[*n*]= *u*[*n*]- *u*[*n*-4].
- Hence we can solve for y[n] as the difference between the output of the linear system with a step input and the output of the linear system with a delayed step input.
- Thus we solve for the response to a unit step as:

$$y_1[n] = \sum_{m=-\infty}^{\infty} u[m] a^{n-m} u[n-m] = \left[\frac{a^n - a^{-1}}{1 - a^{-1}}\right] u[n]$$

 $y[n] = y_1[n] - y_1[n-4]$

Linear Time-Invariant Systems

- easiest to understand
- easiest to manipulate
- powerful processing capabilities
- characterized completely by their response to unit sample, h[n], via convolution relationship

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] = h[n] * x[n]$$

- basis for linear filtering
- used as models for speech production (source convolved with system)

Signal Processing Operations

Equivalent LTI Systems

 $h_1[n] * h_2[n] = h_2[n] * h_1[n]$

 $h_1[n]+h_2[n]=h_2[n]+h_1[n]$

More Complex Filter Interconnections

$$y[n] = x[n] * h_c[n]$$
$$h_c[n] = h_1[n] * (h_2[n] + h_3[n]) + h_4[n]$$

Network View of Filtering (FIR Filter)

$$y[n] = b_0 x[n] + b_1 x[n-1] + \dots + b_{M-1} x[n-M+1] + b_M x[n-M]$$

Network View of Filtering (IIR Filter)

 $y[n] = -a_1y[n-1] + b_0x[n] + b_1x[n-1]$

z-Transform Representations

Transform Representations

• z-Transform

$$x[n] \leftrightarrow X(z)$$
$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
$$x[n] = \frac{1}{2\pi j} \oint_{C} X(z) z^{n-1} dz$$

Infinite power series in z^{-1} , with x[n] as coefficients of term in z^{-n}

- direct evaluation using residue theorem (留数定理)
- partial fraction expansion (部分分式展 开)of X(z)
- long division (长除法)
- power series expansion(幂级数展开)

Transform Representations

- X(z) converges (is finite) only for certain values of z
 - Sufficient condition for convergence

$$\sum_{n=-\infty}^{\infty} |x[n]| |z^{-n}| < \infty$$

• region of convergence

$$R_1 < |z| < R_2$$

Examples of Converge Regions

- 1. Delayed impulse $x[n] = \delta[n n_0]$
 - $X(z) = z^{-n_0}$ converges for $|z| > 0, n_0 > 0; |z| < \infty, n_0 < 0; \forall z, n_0 = 0$
- 2. Box pulse x[n] = u[n] u[n N]

$$X(z) = \sum_{n=0}^{N-1} z^{-n} = \frac{1 - z^{-N}}{1 - z^{-1}} \text{ converges for } 0 < |z| < \infty$$

<u>all finite length sequences converge in the region</u> $0 < |z| < \infty$

3.
$$x[n] = a^n u[n] (|a| < 1)$$

 $X(z) = \sum_{n=0}^{\infty} a^n z^{-n} = \frac{1}{1 - az^{-1}} \text{ converges for } |z| > |a|$ all infinite duration sequences which are non-zero for $n \ge 0$ converge in the region $|z| > R_1$

Examples of Converge Regions

$$4. \quad x[n] = -b^n u[-n-1]$$

$$X(z) = \sum_{n = -\infty}^{-1} -b^n z^{-n} = \frac{1}{1 - bz^{-1}} \text{ converges for } |z| < |b|$$

<u>all infinite duration sequences which are non-zero for n<0</u> <u>converge in the region</u> $|z| < R_2$

- 5. x[n] non-zero for $-\infty < n < \infty$ can be viewed as a combination of <u>3 and 4</u>, giving a convergence region of the form $R_1 < |z| < R_2$
 - sub-sequence for $n \ge 0 \implies |z| > R_1$
 - sub-sequence for $n < 0 \Rightarrow |z| < R_2$ total sequence $\Rightarrow R_1 < |z| < R_2$

Examples

If x[n] has z-transform X(z) with ROC of $r_i < |z| < r_o$, find the ztransform, Y(z), and the region of convergence for the sequence $y[n]=a^n x[n]$ in terms of X(z)

Solution

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

$$Y(z) = \sum_{n=-\infty}^{\infty} y[n] z^{-n} = \sum_{n=-\infty}^{\infty} a^n x[n] z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x[n] (z/a)^{-n} = X(z/a)$$

$$ROC: |a|r_i < |z| < |a|r_o$$

Examples

The sequence x[n] has z-transform X(z). Show that the sequence nx[n] has z-transform -zdX(z)/dz

Solution

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
$$\frac{dX(z)}{dz} = -\sum_{n=-\infty}^{\infty} nx[n] z^{-n-1} = -\frac{1}{z} \sum_{n=-\infty}^{\infty} nx[n] z^{-n}$$
$$= -\frac{1}{z} Z(nx[n])$$

Inverse z-Transform

$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

where C is a closed contour that encircles the origin of the zplane and lies inside the region of convergence

for X(z) rational(有理), can use a partial fraction expansion (部分分式展开) for finding inverse transforms

Partial Fraction Expansion

$$H(z) = \frac{b_0 z^M + b_1 z^{M-1} + \dots + b_M}{z^N + a_1 z^{N-1} + \dots + a_N}$$

= $\frac{b_0 z^M + b_1 z^{M-1} + \dots + b_M}{(z - p_1)(z - p_2)\dots(z - p_N)}; \quad (N \ge M)$
 $H(z) = \frac{A_1}{z - p_1} + \frac{A_2}{z - p_2} + \dots + \frac{A_N}{z - p_N}$
 $\frac{H(z)}{z} = \frac{A_0}{z - p_0} + \frac{A_1}{z - p_1} + \frac{A_2}{z - p_2} + \dots + \frac{A_N}{z - p_N}; \quad p_0 = 0$
 $A_i = (z - p_i) \frac{H(z)}{z} \Big|_{z = p_i} \quad i = 0, 1, \dots, N$

Example of Partial Fractions

Find the inverse z-transform of $H(z) = \frac{z^2 + z + 1}{(z^2 + 3z + 2)}$ 1 < |z| < 2

$$\frac{H(z)}{z} = \frac{z^2 + z + 1}{z(z+1)(z+2)} = \frac{A_0}{z} + \frac{A_1}{z+1} + \frac{A_2}{z+2}$$

$$A_0 = \frac{z^2 + z + 1}{(z+1)(z+2)} \bigg|_{z=0} = \frac{1}{2} \qquad A_1 = \frac{z^2 + z + 1}{z(z+2)} \bigg|_{z=-1} = -1$$

$$A_2 = \frac{z^2 + z + 1}{z(z+1)} \bigg|_{z=-2} = \frac{3}{2}$$

$$H(z) = \frac{1}{2} - \frac{z}{z+1} + \frac{(3/2)z}{z+2} \qquad 1 < |z| < 2$$

$$h[n] = \frac{1}{2} \delta[n] - (-1)^n u[n] - \frac{3}{2} (-2)^n u[-n-1]$$

Transform Properties

Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$
Shift	$x[n-n_0]$	$z^{-n_0}X(z)$
Exponential Weighting	$a^n x[n]$	$X(a^{-1}z)$
Linear Weighting	nx[n]	-z dX(z) / dz
Time Reversal	x[-n]	$X(z^{-1})$
Convolution	x[n] * h[n]	X(z)H(z)
Multiplication of Sequences	x[n]w[n]	$\frac{1}{2\pi j} \oint_C X(v) W(z/v) v^{-1} dv$

Discrete-Time Fourier Transform (DTFT)

Discrete-Time Fourier Transform

• evaluation of X(z) on the unit circle in the z-plane

• sufficient condition for existence of Fourier transform is

$$\sum_{n=-\infty}^{\infty} |x[n]| |z^{-n}| = \sum_{n=-\infty}^{\infty} |x[n]| < \infty, \text{ since } |z| = 1$$

Simple DTFTs

Impulse	$x[n] = \delta[n],$	$X(e^{j\omega}) = 1$
Delayed impulse	$\boldsymbol{x}[\boldsymbol{n}] = \delta[\boldsymbol{n} - \boldsymbol{n}_0],$	$X(e^{j\omega}) = e^{-j\omega n_0}$
Step function	x[n] = u[n],	$X(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}}$
Rectangular window	x[n] = u[n] - u[n]	$-N], X(e^{j\omega}) = \frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}}$
Exponential	$x[n] = a^n u[n],$	$X(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}, a < 1$
Backward exponential	$x[n] = -b^n u[-n -$	-1], $X(e^{j\omega}) = \frac{1}{1 - be^{-j\omega}}, b > 1$

DTFT Examples

$$x[n] = \cos(\omega_0 n), \quad -\infty < n < \infty$$

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} [\pi \delta(\omega - \omega_0 + 2\pi k) + \pi \delta(\omega + \omega_0 + 2\pi k)]$$

Within interval $-\pi < \omega < \pi$, $X(e^{j\omega})$ is comprised of a pair of impulses at $\pm \omega_0$

DTFT Examples

Fourier Transform Properties

• Periodicity in ω

 $X(e^{j\omega}) = X(e^{j(\omega+2\pi k)})$

- Period of 2π corresponds to once around unit circle in the z-plane
 - normalized frequency: f, $0 \rightarrow 0.5 \rightarrow 1$ (independent of Fs)
 - normalized radian frequency: ω , $0 \rightarrow \pi \rightarrow 2\pi$ (independent of Fs)
 - digital frequency : $f_D = f^*Fs$, $0 \rightarrow 0.5Fs \rightarrow Fs$
 - digital radian frequency : $\omega_{D} = \omega^{*}Fs$, $0 \rightarrow \pi Fs \rightarrow 2\pi Fs$

Discrete Fourier Transform (DFT)

Discrete-Time Fourier Series

• consider a periodic signal with period N (samples)

$$\tilde{x}[n] = \tilde{x}[n+N], -\infty < n < \infty$$

 $\tilde{x}[n]$ can be represented exactly by a discrete sum of sinusoids

$$\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n] e^{-j2\pi kn/N} \quad \bullet \text{ N Fourier series coefficients}$$
$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{j2\pi kn/N} \quad \bullet \text{ N-sequence values}$$

Finite Length Sequences

 consider a finite length (but not periodic) sequence, x[n], that is zero outside the interval 0≤n ≤N-1

$$X(z) = \sum_{n=0}^{N-1} x[n] z^{-n}$$

• evaluate X(z) at equally spaced points on the unit circle,

$$z_{k} = e^{j2\pi k/N}, k = 0, 1, ..., N - 1$$
$$X[k] = X(e^{j2\pi k/N}) = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}, k = 0, 1, ..., N - 1$$

looks like discrete-time Fourier series of periodic sequence

Relation to Periodic Sequence

consider a periodic sequence, x̃[n], consisting of an infinite sequence of replicas of x[n]

$$\tilde{x}[n] = \sum_{r=-\infty}^{\infty} x[n+rN]$$

• The Fourier coefficients, $\tilde{X}[k]$, are then identical to the values of $X(e^{j2\pi k/N})$ for the finite duration sequence \Rightarrow

<u>a sequence of N length can be exactly represented by a DFT</u> <u>representation of the form</u>

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N}, 0 \le k \le N-1$$
$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j2\pi kn/N}, 0 \le n \le N-1$$

Periodic and Finite Length Sequences

Sampling in Frequency (Time Domain Aliasing)

Consider a finite duration sequence:

$$x[n] \neq 0$$
 for $0 \le n \le L - 1$

i.e., an *L*-point sequence, with discrete time Fourier transform

$$X(e^{j\omega}) = \sum_{n=0}^{L-1} x[n]e^{-j\omega n} \quad 0 \le \omega \le 2\pi$$

Consider sampling the discrete time Fourier transform by multiplying it by a signal that is defined as:

$$S(\boldsymbol{e}^{j\omega}) = \sum_{k=0}^{N-1} \delta[\omega - 2\pi k / N]$$

with time-domain representation

$$\mathbf{s}[n] = \sum_{r=-\infty}^{\infty} \delta[n - rN]$$

Thus we form the spectral sequence

$$\tilde{X}(e^{j\omega}) = X(e^{j\omega}) \cdot S(e^{j\omega})$$

which transforms in the time domain to the convolution

$$\widetilde{x}[n] = x[n] * s[n] = x[n] * \sum_{r=-\infty}^{\infty} \delta[n-rN] = \sum_{r=-\infty}^{\infty} x[n-rN]$$
$$\widetilde{x}[n] = x[n] + x[n-N] + x[n+N] + \dots$$

Sampling in Frequency (Time Domain Aliasing)

If the duration of the finite duration signal satisfies the relation $N \ge L$, then only the first term in the infinite summation affects the interval $0 \le n \le L - 1$ and there is no time domain aliasing, i.e.,

 $\tilde{\mathbf{x}}[n] = \mathbf{x}[n] \quad 0 \le n \le L - 1$

If N < L, i.e., the number of frequency samples is smaller than the duration of the finite duration signal, then there is time domain aliasing and the resulting aliased signal (over the interval $0 \le n \le L - 1$) satisfies the aliasing relation:

 $\tilde{x}[n] = x[n] + x[n+N] + x[n-N] \quad 0 \le n \le N-1$

Time Domain Aliasing Example

Consider the finite duration sequence

The discrete time Fourier transform of x[n] is computed and sampled at N frequencies around the unit circle. The resulting sampled Fourier transform is inverse transformed back to the time domain. What is the resulting time domain signal, $\tilde{x}[n]$, (over the interval $0 \le n \le L-1$) for the cases N = 11, N = 5 and N = 4.

SOLUTION:

For the cases N = 11 and N = 5, we have no aliasing (since $N \ge L$) and we get $\tilde{x}[n] = x[n]$ over the interval $0 \le n \le L - 1$. For the case N = 4, the n = 0 value is aliased, giving $\tilde{x}[0] = 6$ (as opposed to 1 for x[0]) with the remaining values unchanged.

DFT Properties

Periodic Sequence	Finite Sequence	
Period = N	Length = N	
Sequence defined for all <i>n</i>	Sequence defined for <i>n</i> = 0,1,, <i>N</i> -1	
DFS defined for <i>k</i> = 0,1,, <i>N</i> -1	DTFT defined for all ω	

• when using DFT representation, <u>all sequences behave as if they</u> <u>were infinitely periodic</u> \Rightarrow DFT is really the representation of the extended periodic function $\tilde{x}[n] = \sum_{-\infty}^{\infty} x[n+rN]$

DFT Properties for Finite Sequences

- X[k], the DFT of the finite sequence x[n], can be viewed as a <u>sampled version</u> of the z-transform (or Fourier transform) of the finite sequence (used to design finite length filters via frequency sampling method)
- the DFT has properties very similar to those of the z-transform and the Fourier transform
- the *N* values of *X*[*k*] can be computed very efficiently (time proportional to *N* log *N*) using the set of FFT methods
- DFT used in computing spectral estimates, correlation functions, and in implementing digital filters via convolutional methods

DFT Properties

	N-point sequences	N-point DFT
Linearity	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$
Shift	$x([n-n_0])_N$	$e^{-j2\pi k n_0/N}X[k]$
Time Reversal	$x([-n])_N$	$X^{*}[k]$
Convolution	$\sum_{m=0}^{N-1} x[m]h([n-m])_N$	X[k]H[k]
Multiplication	x[n]w[n]	$\frac{1}{N} \sum_{r=0}^{N-1} X[r] W([k-r])_N$

Circular Shifting Sequences

- digital filter is a discrete-time linear, shift invariant system with input-output relation $y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$
- $Y(z) = X(z) \cdot H(z)$ • H(z) is the system function (系统函数) with $H(e^{j\omega})$ as the complex frequency response (频率响应)

$$H(e^{j\omega}) = H_r(e^{j\omega}) + jH_i(e^{j\omega})$$
$$H(e^{j\omega}) = \left| H(e^{j\omega}) \right| e^{j\arg[H(e^{j\omega})]}$$
$$\log H(e^{j\omega}) = \log \left| H(e^{j\omega}) \right| + j\arg[H(e^{j\omega})]$$
$$\log \left| H(e^{j\omega}) \right| = \operatorname{Re}[\log H(e^{j\omega})]$$
$$\arg[H(e^{j\omega})] = \operatorname{Im}[\log H(e^{j\omega})]$$

- causal linear shift-invariant
 - \Rightarrow *h*[*n*]=0 for *n*<0
- stable system

 \Rightarrow every bounded input produces a bounded output

 \Rightarrow a necessary and sufficient condition for stability and for the existence of $H(e^{j\omega})$

$$\sum_{n=-\infty}^{\infty} \left| h[n] \right| < \infty$$

 input and output satisfy linear difference equation (线性差分 方程) of the form

$$y[n] - \sum_{k=1}^{N} a_k y[n-k] = \sum_{r=0}^{M} b_r x[n-r]$$

• evaluating z-transforms of both sides gives:

$$Y(z) - \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{r=0}^{M} b_r z^{-r} X(z)$$
$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{r=0}^{M} b_r z^{-r}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

• H(z) is a rational function of z^{-1} with M zeros and N poles

• converges for $|z| > R_1$, with $R_1 < 1$ for stability \Rightarrow all poles of H(z) inside the unit circle for a stable, causal system

Ideal Filter Responses

FIR System

• If $a_k=0$, all k, then

$$y[n] = \sum_{r=0}^{M} b_r x[n-r] = b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M] \Longrightarrow$$

1)
$$h[n] = b_n \quad 0 \le n \le M$$

$$= 0$$
 otherwise

2)
$$H(z) = \sum_{n=0}^{M} b_n z^{-n} = \prod_{m=1}^{M} (1 - c_m z^{-1}) \Rightarrow M \text{ zeros}$$

3) if
$$h[n] = \pm h[M - n]$$
 (symmetric, anti-symmetric)

$$H(e^{j\omega}) = A(e^{j\omega})e^{-j\omega M/2}$$

 $A(e^{j\omega}) =$ real(symmetric), imaginary(anti-symmetric)

Linear Phase Filter

 no signal dispersion (散布) because of non-linear phase ⇒ precise time alignment of events in signal

FIR Filters

- cost of linear phase filter designs
 - can theoretically approximate any desired response to any degree of accuracy
 - requires longer filters than non-linear phase designs
- FIR filter design methods
 - window approximation \Rightarrow analytical, closed form method
 - frequency sampling approximation \Rightarrow optimization method
 - optimal (minimax error) approximation \Rightarrow optimization method

Matlab FIR Design

- 1. Use fdatool to design digital filters
- 2. Use firpm to design FIR filters
 - B=firpm(N,F,A)
 - N+1 point linear phase, FIR design
 - B=filter coefficients (numerator polynomial)
 - F=ideal frequency response band edges (in pairs) (normalized to 1.0)
 - A=ideal amplitude response values (in pairs)
- 3. Use freqz to convert to frequency response (complex)
 - [H,W]=freqz(B,den,NF)
 - H=complex frequency response
 - W=set of radian frequencies at which FR is evaluated (0 to pi)
 - B=numerator polynomial=set of FIR filter coefficients
 - den=denominator polynomial=[1] for FIR filter
 - NF=number of frequencies at which FR is evaluated
- 4. Use **plot** to evaluate log magnitude response
 - plot(W/pi, 20log10(abs(H)))
Lowpass Filter Design Example

FIR Implementation

 linear phase filters can be implemented with half the multiplications (because of the symmetry of the coefficients)

IIR Systems

$$y[n] = \sum_{k=1}^{N} a_k y[n-k] + \sum_{r=0}^{M} b_r x[n-r]$$

- *y*[*n*] depends on *y* [*n*-1],..., *y*[*n*-*N*] as well as *x*[*n*], ..., *x*[*n*-*M*]
- for M < N $H(z) = \frac{\sum_{r=0}^{M} b_r z^{-r}}{1 \sum_{r=1}^{N} a_k z^{-k}} = \sum_{k=1}^{N} \frac{A_k}{1 d_k z^{-1}}$ (partial fraction expansion)

 $h[n] = \sum_{k=1}^{N} A_k (d_k)^n u[n]$ (for casual systems)

an infinite duration impulse response

IIR Filters

- IIR filter issues
 - efficient implementations in terms of computations
 - can approximate any desired magnitude response with arbitrarily small error
 - non-linear phase \Rightarrow <u>time dispersion of waveform</u>

IIR Design Methods

• Analog filter design

- Butterworth designs: maximally flat amplitude
- Bessel designs: maximally flat group delay
- Chebyshev designs: equi-ripple in either passband or stopband
- Elliptic designs: equi-ripple in both passband and stopband
- Transform to digital filter
 - Impulse invariant transformation 冲击不变法
 - match the analog impulse response by sampling
 - resulting frequency response is aliased version of analog frequency response
 - Bilinear transformation 双线性变换法
 - use a transformation to map an analog filter to a digital filter by warping the analog frequency scale (0 to infinity) to the digital frequency scale (0 to pi)
 - use frequency pre-warping to preserve critical frequencies of transformation (i.e., filter cutoff frequencies)

Matlab Elliptic Filter Design

- use ellip to design elliptic filter
 - [B,A]=ellip(N,Rp,Rs,Wn)
 - B=numerator polynomial—N+1 coefficients
 - A=denominator polynomial—N+1 coefficients
 - N=order of polynomial for both numerator and denominator
 - Rp=maximum in-band (passband) approximation error (dB)
 - Rs=out-of-band (stopband) ripple (dB)
 - Wp=end of passband (normalized radian frequency)
- use filter to generate impulse response
 - y=filter(B,A,x)
 - y=filter impulse response
 - x=filter input (impulse)
- use zplane to generate pole-zero plot
 - zplane(B,A)

Matlab Elliptic Filter Design

appropriate plotting commands;

IIR Filter Implementation

M=N=4

$$y[n] = \sum_{k=1}^{N} a_{k} y[n-k] + \sum_{r=0}^{M} b_{r} x[n-r]$$
$$w[n] = \sum_{k=1}^{N} a_{k} w[n-k] + x[n]$$
$$y[n] = \sum_{r=0}^{M} b_{r} w[n-r]$$

Fig. 2.6 (a) Direct form IIR structure; (b) direct form structure with minimum storage.

IIR Filter Implementation $H(z) = \frac{A\prod_{r=1}^{N} (1 - c_r z^{-1})}{\prod_{r=1}^{N} (1 - d_k z^{-1})} - \text{zeros at } z = c_r, \text{ poles at } z = d_k$

- since a_k and b_r are real, poles and zeros occur in complex conjugate pairs =>

$$H(z) = A \prod_{k=1}^{K} \frac{b_{0k} + b_{1k} z^{-1} + b_{2k} z^{-2}}{1 - a_{1k} z^{-1} - a_{2k} z^{-2}}, \quad K = \left[\frac{N+1}{2}\right]$$

- cascade of second order systems

Used in formant synthesis systems based on ABS methods

IIR Filter Implementation

Common form for speech synthesizer implementation

Sampling

Sampling of Waveforms

$$x[n] = x_a(nT), -\infty < n < \infty$$

 $F_{s} = 8000 \text{Hz} \iff T = 1/8000 = 125 \mu \text{ sec}$ $F_{s} = 10000 \text{Hz} \iff T = 1/10000 = 100 \mu \text{ sec}$ $F_{s} = 16000 \text{Hz} \iff T = 1/16000 = 62.5 \mu \text{ sec}$ $F_{s} = 20000 \text{Hz} \iff T = 1/20000 = 50 \mu \text{ sec}$

The Sampling Theorem

If a signal $x_a(t)$ has a bandlimited Fourier transform $X_a(j\Omega)$ such that $X_a(j\Omega) = 0$ for $\Omega \ge 2\pi F_N$, then $x_a(t)$ can be uniquely reconstructed from equally spaced samples $x_a(nT)$, $-\infty < n < \infty$, if $1/T \ge 2 F_N(F_S \ge 2F_N)$ (A-D or C/D converter)

Sampling Theorem Equations

Sampling Theorem Interpretation

To avoid aliasing need: $2\pi / T - \Omega_N > \Omega_N$ $\Rightarrow 2\pi / T > 2\Omega_N$ $\Rightarrow F_s = 1/T > 2F_N$

case where $1/T < 2F_N$, aliasing occurs

Sampling Rates

- F_N = Nyquist frequency (highest frequency with significant spectral level in signal)
- must sample at least twice the Nyquist frequency to prevent aliasing (frequency overlap)
 - telephone speech (300-3200 Hz) \Rightarrow F_S =6400 Hz
 - wideband speech (100-7200 Hz) \Rightarrow F_S =14400 Hz
 - audio signal (50-21000 Hz) \Rightarrow F_S =42000 Hz
 - AM broadcast (100-7500 Hz) \Rightarrow F_S =15000 Hz
- can always sample at rates higher than twice the Nyquist frequency (but that is wasteful of processing)

Recovery from Sampled Signal

 If 1/T > 2 F_N, the Fourier transform of the sequence of samples is proportional to the Fourier transform of the original signal in the baseband, i.e.,

$$X(e^{j\Omega T}) = \frac{1}{T} X_a(j\Omega), \ \left|\Omega\right| < \frac{\pi}{T}$$

 can show that the original signal can be recovered from the sampled signal by interpolation using an ideal LPF of bandwidth π /T, i.e.,

$$x_a(t) = \sum_{n=-\infty}^{\infty} x_a(nT) \left[\frac{\sin(\pi(t-nT)/T)}{\pi(t-nT)/T} \right]$$

digital-to-analog converter

Decimation(抽取) and Interpolation(内插) of Sampled Waveforms

- CD rate (44.06 kHz) to DAT rate (48 kHz)—media conversion
- Wideband (16 kHz) to narrowband speech rates (8kHz, 6.67 kHz)—storage
- oversampled to correctly sampled rates--coding

 can achieve perfect recovery of x_a(t) from digitized sample under these conditions

- to reduce sampling rate of sampled signal by factor of $M \ge 2$
- to compute new signal $x_d[n]$ with sampling rate

 $F_{s}' = 1/T' = 1/(MT) = F_{s}/M$

such that $x_d[n] = x_a(nT')$ with no aliasing

 one solution is to downsample x[n] = x_a(nT) by retaining one out of every M samples of x[n], giving x_d[n]=x[nM]

$$\begin{array}{c|c} x[n] \\ \hline \\ T \\ T \\ M \\ MT \end{array} = x[Mn]$$

• need $F_s' \ge 2 F_N$ to avoid aliasing for M=2

- to decimate by factor of M with no aliasing, need to ensure that the highest frequency in x[n] is no greater than $F_s/(2M)$
- thus we need to filter x[n] using an ideal lowpass filter with response

$$H_{d}(e^{j\omega}) = \begin{cases} 1 & |\omega| < \pi / M \\ 0 & \pi / M < |\omega| \le \pi \end{cases}$$

 using the appropriate lowpass filter, we can downsample the reuslting lowpass-filtered signal by a factor of M without aliasing

- assume we have x[n] = x_a(nT) (no aliasing) and we wish to increase the sampling rate by the integer factor of L
- we need to compute a new sequence of samples of x_a(t) with period
 T''= T / L, i.e., x_i[n]= x_a(nT'')= x_a(nT/L)
- It is clear that we can create the signal x_i[n]=x[n/L] for n = 0, ±L, ±2L, ...

but we need to fill in the unknown samples by an interpolation process

• can readily show that what we want is

$$x_{i}[n] = x_{a}(nT") = \sum_{k=-\infty}^{\infty} x_{a}(kT) \left[\frac{\sin(\pi(nT"-kT)/T)}{\pi(nT"-kT)/T} \right]$$

• equivalently with T'' = T / L, $x[n] = x_a(nT)$, we get $x_i[n] = x_a(nT") = \sum_{k=-\infty}^{\infty} x[k] \left[\frac{\sin(\pi(n/L-k))}{\pi(n/L-k)} \right]$

which relates $x_i[n]$ to x[n] directly

• implementing the previous equation by filtering the upsampled sequence

$$x_u[n] = \begin{cases} x[n/L] & n = 0, \pm L, \pm 2L, \dots \\ 0 & \text{otherwise} \end{cases}$$

• $x_u[n]$ has the correct samples for $n = 0, \pm L, \pm 2L, \dots$, but it has zero-valued samples in between (from the upsampling operation)

$$x[n] \qquad \qquad x_u[n] = \begin{cases} x[n/L] & 0, \pm L, \pm 2L, \dots \\ 0 & \text{otherwise} \end{cases}$$

• The Fourier transform of $x_u[n]$ is simply

$$X_{u}(e^{j\omega}) = X(e^{j\omega L})$$
$$X_{u}(e^{j\Omega T^{*}}) = X(e^{j\Omega T^{*}L})$$

• Thus $X_u(e^{j\Omega T^*})$ is periodic with two periods, namely with period $2\pi/L$ due to upsampling and 2π due to being a digital signal

(a) Plot of $X(e^{j\Omega T})$ (b) Plot of $X_u(e^{j\Omega T^*})$ showing double periodicity for L = 2, $T^* = T/2$ (c) DTFT of desired signal with $X_i(e^{j\Omega T^*}) = \begin{cases} (2/T)X_a(j\Omega) & |\Omega| \le 2\pi F_N \\ 0 & 2\pi F_N < |\Omega| \le \pi/T^* \\ 0 & 2\pi F_N < |\Omega| \le \pi/T^* \end{cases}$ can obtain results of (c) by applying ideal lowpass filter with gain L (to restore amplitude) and cutoff frequency $2\pi F_N = \pi/T$, giving:

$$\begin{split} X_i(e^{j\omega}) &= \begin{cases} (1/T") \, X(e^{j\omega L}) & 0 \leq \mid \omega \mid < \pi \, / \, L \\ 0 & \pi \, / \, L \leq \mid \omega \mid \leq \pi \\ H_i(e^{j\omega}) &= \begin{cases} L & \mid \omega \mid < \pi \, / \, L \\ 0 & \pi \, / \, L \leq \mid \omega \mid \leq \pi \end{cases} \end{split}$$

- Original signal, x[n], at sampling period, T, is first upsampled to give signal x_u[n] with sampling period T' = T / L
- lowpass filter removes images of original spectrum giving $x_i[n] = x_a(nT'') = x_a(nT/L)$

SR Conversion by Non-Integer Factors

- $T'=MT/L \Rightarrow$ convert rate by factor of M/L•
- need to interpolate by L, then decimate by M (why can't it be done in the reverse order?)

implement in a single stage of lowpass filtering

- can approximate almost any rate conversion with appropriate values of L and M
- for large values of L, or M, or both, can implement in stages, i.e., L =1024, use L1=32 followed by L2=32

Summary - 1

- speech signals are inherently bandlimited => must sample appropriately in time and amplitude
- LTI systems of most interest in speech processing; can characterize them completely by impulse response, h(n)
- the z-transform and Fourier transform representations enable us to efficiently process signals in both the time and frequency domains
- both periodic and time-limited digital signals can be represented in terms of their Discrete Fourier transforms
- sampling in time leads to aliasing in frequency; sampling in frequency leads to aliasing in time => when processing time-limited signals, must be careful to sample in frequency at a sufficiently high rate to avoid time-aliasing

Summary - 2

- digital filtering provides a convenient way of processing signals in the time and frequency domains
- can approximate arbitrary spectral characteristics via either IIR or FIR filters, with various levels of approximation
- can realize digital filters with a variety of structures, including direct forms, serial and parallel forms
- once a digital signal has been obtain via appropriate sampling methods, its sampling rate can be changed digitally (either up or down) via appropriate filtering and decimation or interpolation