
Chapter 2

Review of Fundamentals of Digital Signal 
Processing

数字信号处理基础回顾
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Outline

• DSP and Discrete Signals
• LTI Systems
• z-Transform Representations
• Discrete-Time Fourier Transform (DTFT)
• Discrete Fourier Transform (DFT)
• Digital Filtering
• Sampling
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DSP and Discrete Signals
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What is DSP?

• Digital
– Method to represent a quantity, a phenomenon or an event

• Signal
– something (e.g., a sound, gesture, or object) that carries information
– a detectable physical quantity (e.g., a voltage, current, or magnetic 

field strength) by which messages or information can be transmitted
• Processing

– Filtering/spectral analysis
– Analysis, recognition, synthesis and coding of real world signals
– Detection and estimation of signals in the presence of noise or 

interference
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Digital Processing of Analog Signals

• A-to-D conversion: bandwidth control, sampling and 
quantization

• Computational processing: implemented on computers or 
ASICs(专用集成电路) with finite-precision arithmetic
– basic numerical processing: add, subtract, multiply (scaling, 

amplification, attenuation), mute, …
– algorithmic numerical processing: convolution or linear filtering, 

non-linear filtering (e.g., median filtering), difference equations, 
DFT, inverse filtering, MAX/MIN, …

• D-to-A conversion: re-quantification and filtering (or 
interpolation) for reconstruction
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Discrete-Time Signals

• A sequence of numbers
• Mathematical representation

• Sampled from an analog signal,           , at time

• is called the sampling period(采样周期), and its     
reciprocal                   is  called the sampling frequency(采样频
率)
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Speech Waveform Display

7



Varying Sampling Rates

8

0 200 400 600 800 1000 1200 1400 1600
-0.5

0

0.5
16kHz

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5
10kHz

0 100 200 300 400 500 600 700 800
-0.5

0

0.5
8kHz

samples



Quantization

• Transforming a continuously 
valued input into a representation 
that assumes one out of a finite 
set of values

• The finite set of output values is 
indexed; e.g., the value 1.8 has an 
index of 6, or (110) in binary 
representation

• Storage or transmission uses 
binary representation; a 
quantization table is needed
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Discrete Signals
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Issues with Discrete Signals

• what sampling rate is appropriate 
– 6.4 kHz (telephone bandwidth), 8 kHz (extended 

telephone BW), 10 kHz (extended bandwidth), 16 kHz 
(Hi-Fi speech)

• how many quantization levels are necessary at 
each bit rate (bits/sample)
– 16, 12, 8, … => ultimately determines the S/N ratio of 

the speech
– speech coding is concerned with answering this 

question in an optimal manner
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The Sampling Theorem

• A bandlimited signal can be reconstructed exactly from 
samples taken with sampling frequency
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Demo Examples

• 5 kHz analog bandwidth 
– sampled at 10, 5, 2.5, 1.25 kHz (notice the aliasing 

that arises when the sampling rate is below 10 kHz)

• quantization to various levels 
– 16,12,8, and 4 bit quantization (notice the 

distortion introduced when the number of bits is 
too low)
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Discrete-Time (DT) Signals are 
Sequences

• x[n] denotes the “sequence value at ‘time’ n”
• Sources of sequences

– Sampling a continuous-time signal

– Mathematical formulas – generative system
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Impulse Representation of Sequences
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Some Useful Sequences
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Variants on Discrete-Time Step 
Function

signal flips around 0
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LTI Systems
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Signal Processing

• Transform digital signal into more desirable form
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single input—single output single input—multiple output,
e.g., filter bank analysis, etc.



LTI Discrete-Time Systems

• Linearity (superposition)

• Time-Invariance (shift-invariance)

• LTI implies discrete convolution
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LTI Discrete-Time Systems
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Example
Is system y[n] = x[n]+ 2x[n +1]+3 linear?

x1[n] → y1 [n] = x1 [n]+ 2x1 [n +1]+3

x2[n] → y2 [n] = x2 [n]+ 2x2 [n +1]+3
x1 [n]+ x2 [n] →

y3[n] = x1 [n]+ x2 [n]+ 2x1 [n +1]+ 2x2 [n +1]+3≠y1[n]+ y2[n]
⇒ Not a linear system!

Is system y[n] = x[n]+2x[n +1]+3 time/shift invariant?

y[n] = x[n]+ 2x[n +1]+3

y[n −n0] = x[n −n0]+ 2x[n −n0 +1]+3 ⇒ System is time invariant!

Is system y[n] = x[n]+2x[n +1]+3 causal?

y[n] depends on x[n +1] ⇒ System is not causal !



Convolution Example
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What is y[n] for this system?
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Convolution Example
The impulse response of an LTI system is of the form

and the input to the system is of the form

Determine the output of the system using the formula for discrete convolution.

Solution
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Convolution Example
Consider a digital system with input x[n] =1 for n=0,1,2,3 and 0 everywhere 
else, and with impulse response
Determine the response y[n] of this linear system.

Solution
• We recognize that x[n] can be written as the difference between two step 

functions, i.e., x[n]= u[n]- u[n-4]. 
• Hence we can solve for y[n] as the difference between the output of the 

linear system with a step input and the output of the linear system with a 
delayed step input.

• Thus we solve for the response to a unit step as:
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Linear Time-Invariant Systems

• easiest to understand
• easiest to manipulate
• powerful processing capabilities
• characterized completely by their response to unit sample, 

h[n], via convolution relationship

• basis for linear filtering 
• used as models for speech production (source convolved with 

system)
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Signal Processing Operations
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D is a delay of 1-sample
Can replace D with delay element z-1



Equivalent LTI Systems
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More Complex Filter Interconnections
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Network View of Filtering (FIR Filter)
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Network View of Filtering (IIR Filter)
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z-Transform Representations
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Transform Representations

• z-Transform
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Infinite power series in z-1, with 
x[n] as coefficients of term in z-n

• direct evaluation using residue theorem 
(留数定理)

• partial fraction expansion (部分分式展
开)of X(z)

• long division (长除法)
• power series expansion(幂级数展开)



Transform Representations

• X(z) converges (is finite) only for certain values of z
– Sufficient condition for convergence

• region of convergence
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Examples of Converge Regions

1. Delayed impulse
converges for 

2. Box pulse

all finite length sequences converge in the region
3.

all infinite duration sequences which are non-zero for n≥0 
converge in the region 
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Examples of Converge Regions

4.

all infinite duration sequences which are non-zero for n<0 
converge in the region 

5. x[n] non-zero for -∞<n< ∞ can be viewed as a combination of 
3 and 4, giving a convergence region of the form 
– sub-sequence for n≥0  ⇒
– sub-sequence for n<0  ⇒
– total sequence              ⇒
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Examples

If x[n] has z-transform X(z) with ROC of ri<|z|<ro , find the z-
transform, Y(z), and the region of convergence for the sequence 
y[n]=an x[n] in terms of X(z)

Solution
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Examples

The sequence x[n] has z-transform X(z). Show that the sequence 
nx[n]  has z-transform –zdX(z)/dz

Solution
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Inverse z-Transform

where C is a closed contour that encircles the origin of the z-
plane and lies inside the region of convergence
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for X(z) rational(有理), can use 
a partial fraction expansion 
(部分分式展开) for finding 
inverse transforms



Partial Fraction Expansion
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Example of Partial Fractions
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Transform Properties
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Linearity

Shift

Exponential 
Weighting

Linear Weighting

Time Reversal

Convolution

Multiplication of
Sequences
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Discrete-Time Fourier Transform
(DTFT)
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Discrete-Time Fourier Transform

• evaluation of X(z) on the unit circle in the z-plane

• sufficient condition for existence of Fourier transform is
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Simple DTFTs
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Impulse

Delayed impulse

Step function

Rectangular 
window

Exponential

Backward 
exponential



DTFT Examples
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DTFT Examples

Within interval                                       is comprised of a pair of 
impulses at 
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DTFT Examples
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DTFT Examples
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Fourier Transform Properties

• Periodicity in ω

• Period of 2π corresponds to once around unit circle in the z-
plane
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• normalized frequency: f, 0→0.5 →1 (independent of Fs)

• normalized radian frequency: ω, 0→π→2π (independent of Fs)

• digital frequency : fD=f*Fs, 0→0.5Fs →Fs 

• digital radian frequency : ωD= ω*Fs, 0→πFs→2πFs



Discrete Fourier Transform
(DFT)
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Discrete-Time Fourier Series

• consider a periodic signal with period N (samples)

can be represented exactly by a discrete sum of 
sinusoids
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• N Fourier series coefficients 

• N-sequence values



Finite Length Sequences

• consider a finite length (but not periodic) sequence, x[n], that 
is zero outside the interval 0≤n ≤N-1

• evaluate X(z) at equally spaced points on the unit circle,

– looks like discrete-time Fourier series of periodic sequence

53

1

0
( ) [ ]

N
n

n
X z x n z

−
−

=

=∑

2 /

1
2 / 2 /

0

, 0,1,..., 1

[ ] ( ) [ ] , 0,1,..., 1

j k N
k

N
j k N j kn N

n

z e k N

X k X e x n e k N

π

π π
−

−

=

= = −

= = = −∑



Relation to Periodic Sequence

• consider a periodic sequence,         , consisting of an infinite 
sequence of replicas of

• The Fourier coefficients,          , are then identical to the values 
of                      for the finite duration sequence ⇒
a sequence of  N length can be exactly represented by a DFT 
representation of the form

54

[ ]x n
[ ]x n

[ ] [ ]
r

x n x n rN
∞

=−∞

= +∑

[ ]X k
2 /( )j k NX e π

1
2 /

0
1

2 /

0

[ ] [ ] , 0 1

1[ ] [ ] , 0 1

N
j kn N

n
N

j kn N

n

X k x n e k N

x n X k e n N
N

π

π

−
−

=

−

=

= ≤ ≤ −

= ≤ ≤ −

∑

∑



Periodic and Finite Length Sequences
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Sampling in Frequency
(Time Domain Aliasing)
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Sampling in Frequency
(Time Domain Aliasing)
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Time Domain Aliasing Example
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DFT Properties

• when using DFT representation, all sequences behave as if they 
were infinitely periodic  ⇒ DFT is really the representation of 
the extended periodic function
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Periodic Sequence Finite Sequence
Period = N Length = N

Sequence defined for all n Sequence defined for n = 0,1,…, N-1
DFS defined for k = 0,1,…, N-1 DTFT defined  for all ω
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DFT Properties for Finite Sequences

• X[k], the DFT of the finite sequence x[n], can be viewed as a 
sampled version of the z-transform (or Fourier transform) of 
the finite sequence (used to design finite length filters via 
frequency sampling method)

• the DFT has properties very similar to those of the z-transform 
and the Fourier transform 

• the N values of X[k] can be computed very efficiently (time 
proportional to N log N) using the set of FFT methods

• DFT used in computing spectral estimates, correlation 
functions, and in implementing digital filters via convolutional
methods
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DFT Properties
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N-point sequences N-point DFT

Linearity

Shift

Time Reversal

Convolution

Multiplication 
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Circular Shifting Sequences
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Digital Filters
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Digital Filters
• digital filter is a discrete-time linear, shift invariant system 

with input-output relation

• is the system function (系统函数) with                as the 
complex frequency response (频率响应)
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Digital Filters

• causal linear shift-invariant 
⇒ h[n]=0 for n<0

• stable system 
⇒ every bounded input produces a bounded output 
⇒ a necessary and sufficient condition for stability and for the 
existence of
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Digital Filters

• input and output satisfy linear difference equation (线性差分
方程) of the form

• evaluating z-transforms of both sides gives:
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Digital Filters

• H(z) is a rational function of z-1 with M zeros and N poles

• converges for |z|>R1, with R1 <1 for stability ⇒
all poles of H(z) inside the unit circle for a stable, causal system
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Ideal Filter Responses

68



FIR System

• If ak=0, all k, then

1) 

2)                                                                         ⇒ M zeros

3)     if                                        (symmetric, anti-symmetric)

real(symmetric), imaginary(anti-symmetric)
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Linear Phase Filter

• no signal dispersion (散布) because of non-linear phase ⇒
precise time alignment of events in signal
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FIR Filters

• cost of linear phase filter designs
– can theoretically approximate any desired response to any degree of 

accuracy
– requires longer filters than non-linear phase designs

• FIR filter design methods
– window approximation ⇒ analytical, closed form method
– frequency sampling approximation ⇒ optimization method
– optimal (minimax error) approximation ⇒ optimization method
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Matlab FIR Design
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Lowpass Filter Design Example
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FIR Implementation

• linear phase filters can be implemented with half the 
multiplications (because of the symmetry of the coefficients)
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IIR Systems

• y[n] depends on y [n-1],…, y[n-N] as well as x[n], …, x[n-M]
• for M<N

an infinite duration impulse response
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(for casual systems)



IIR Filters

• IIR filter issues
– efficient implementations in terms of computations
– can approximate any desired magnitude response with 

arbitrarily small error
– non-linear phase ⇒time dispersion of waveform
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IIR Design Methods
• Analog filter design

– Butterworth designs: maximally flat amplitude
– Bessel designs: maximally flat group delay
– Chebyshev designs: equi-ripple in either passband or stopband
– Elliptic designs: equi-ripple in both passband and stopband

• Transform to digital filter
– Impulse invariant transformation  冲击不变法

• match the analog impulse response by sampling
• resulting frequency response is aliased version of analog frequency response

– Bilinear transformation  双线性变换法

• use a transformation to map an analog filter to a digital filter by warping the 
analog frequency scale (0 to infinity) to the digital frequency scale (0 to pi)

• use frequency pre-warping to preserve critical frequencies of transformation 
(i.e., filter cutoff frequencies) 
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Matlab Elliptic Filter Design
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Matlab Elliptic Filter Design
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IIR Filter Implementation
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IIR Filter Implementation
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IIR Filter Implementation
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Sampling
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Sampling of Waveforms
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The Sampling Theorem

If a signal xa(t) has a bandlimited Fourier transform Xa(jΩ) such 
that Xa(jΩ) =0 for Ω ≥ 2πFN, then xa(t) can be uniquely 
reconstructed from equally spaced samples xa (nT), -∞<n<∞, if 
1/T ≥ 2 FN (FS ≥ 2FN) (A-D or C/D converter)
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Sampling Theorem Equations
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Sampling Theorem Interpretation
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Sampling Rates

• FN = Nyquist frequency (highest frequency with significant 
spectral level in signal)

• must sample at least twice the Nyquist frequency to prevent 
aliasing (frequency overlap)
– telephone speech (300-3200 Hz)⇒ FS =6400 Hz
– wideband speech (100-7200 Hz) ⇒ FS =14400 Hz
– audio signal (50-21000 Hz) ⇒ FS =42000 Hz
– AM broadcast (100-7500 Hz) ⇒ FS =15000 Hz

• can always sample at rates higher than twice the Nyquist
frequency (but that is wasteful of processing)
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Recovery from Sampled Signal

• If 1/T > 2 FN , the Fourier transform of the sequence of 
samples is proportional to the Fourier transform of the 
original signal in the baseband, i.e.,

• can show that the original signal can be recovered from the 
sampled signal by interpolation using an ideal LPF of 
bandwidth π /T, i.e.,

– digital-to-analog converter
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Decimation(抽取) and Interpolation(内插) 
of Sampled Waveforms

• CD rate (44.06 kHz) to DAT rate (48 kHz)—media conversion
• Wideband (16 kHz) to narrowband speech rates (8kHz, 6.67 

kHz)—storage
• oversampled to correctly sampled rates--coding
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Decimation and Interpolation of
Sampled Waveforms
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Decimation

• Standard Sampling: begin with 
digitized signal

• can achieve perfect recovery of 
xa(t) from digitized sample 
under these conditions
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Decimation

• to reduce sampling rate of sampled signal by factor of M ≥ 2
• to compute new signal xd[n] with sampling rate 

such that xd[n]= xa(nT’) with no aliasing
• one solution is to downsample x[n]= xa(nT) by retaining one 

out of every M samples of x[n] , giving xd[n]=x[nM]
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Decimation

• need Fs’ ≥ 2 FN to 
avoid aliasing for M=2

• when Fs’ < 2 FN , we 
get aliasing for M=2
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Decimation

• to decimate by factor of M with no aliasing, need to ensure 
that the highest frequency in x[n]  is no greater than Fs/(2M)

• thus we need to filter x[n] using an ideal lowpass filter with 
response

• using the appropriate lowpass filter, we can downsample the 
reuslting lowpass-filtered signal by a factor of M without 
aliasing
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Interpolation
• assume we have x[n]= xa(nT) (no aliasing) and we wish to increase the 

sampling rate by the integer factor of L
• we need to compute a new sequence of samples of xa(t) with period 

T’’= T / L, i.e., xi[n]= xa(nT’’)= xa(nT/L) 
• It is clear that we can create the signal

xi[n]=x[n/L]  for n = 0, ±L, ±2L, … 
but we need to fill in the unknown samples by an interpolation process

• can readily show that what we want is

• equivalently with T’’= T / L, x[n]= xa(nT) , we get

which relates xi[n] to x[n] directly
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Interpolation
• implementing the previous equation by filtering the upsampled sequence

• xu[n] has the correct samples for n = 0, ±L, ±2L, … , but it has zero-valued 
samples in between (from the upsampling operation)

• The Fourier transform of xu[n] is simply

• Thus                  is periodic with two periods, namely with period 2π/L due to 
upsampling and 2π due to being a digital signal
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Interpolation
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Interpolation

• Original signal,  x[n] , at sampling period, T, is first upsampled
to give signal xu[n] with sampling period T’’= T / L

• lowpass filter removes images of original spectrum giving
xi [n]= xa(nT’’)= xa(nT/L)
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SR Conversion by Non-Integer Factors
• T’=MT/L ⇒ convert rate by factor of M/L
• need to interpolate by L, then decimate by M (why can’t it be 

done in the reverse order?)

– can approximate almost any rate conversion with appropriate 
values of L and M

– for large values of L, or M, or both, can implement in stages, i.e., 
L =1024, use L1=32 followed by L2=32

100



Summary - 1
• speech signals are inherently bandlimited => must sample 

appropriately in time and amplitude
• LTI systems of most interest in speech processing; can characterize 

them completely by impulse response, h(n)
• the z-transform and Fourier transform representations enable us to 

efficiently process signals in both the time and frequency domains
• both periodic and time-limited digital signals can be represented in 

terms of their Discrete Fourier transforms
• sampling in time leads to aliasing in frequency; sampling in 

frequency leads to aliasing in time => when processing time-limited 
signals, must be careful to sample in frequency at a sufficiently high 
rate to avoid time-aliasing
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Summary - 2

• digital filtering provides a convenient way of processing 
signals in the time and frequency domains

• can approximate arbitrary spectral characteristics via either 
IIR or FIR filters, with various levels of approximation

• can realize digital filters with a variety of structures, including 
direct forms, serial and parallel forms

• once a digital signal has been obtain via appropriate sampling 
methods, its sampling rate can be changed digitally (either up 
or down) via appropriate filtering and decimation or 
interpolation
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