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DSP and Discrete Signals



What is DSP?

Input

Signal Analog-to-

—_— Digital
Conversion

Computer

e Digital

L 4

Output
Digital-to- Signal
Analog
Conversion

— Method to represent a quantity, a phenomenon or an event

e Signal

— something (e.g., a sound, gesture, or object) that carries information

— a detectable physical quantity (e.g., a voltage, current, or magnetic
field strength) by which messages or information can be transmitted

* Processing

— Filtering/spectral analysis

— Analysis, recognition, synthesis and coding of real world signals
— Detection and estimation of signals in the presence of noise or

interference



Digital Processing of Analog Signals

Input Output
Signal Analog-to- Digital-to- Signal
| Digital Computer »  Analog

Conversion Conversion

A-to-D conversion: bandwidth control, sampling and
guantization

Computational processing: implemented on computers or
ASICs(F F£E % HE #%) with finite-precision arithmetic

— basic numerical processing: add, subtract, multiply (scaling,
amplification, attenuation), mute, ...

— algorithmic numerical processing: convolution or linear filtering,
non-linear filtering (e.g., median filtering), difference equations,
DFT, inverse filtering, MAX/MIN, ...

D-to-A conversion: re-quantification and filtering (or
interpolation) for reconstruction



Discrete-Time Signals

A sequence of numbers
Mathematical representation
x[n],—o<n<ow
Sampled from an analog signal, x,(¢) , attime ¢t =nT

x[n]=x,(nT),—0<n<ow

T is called the sampling period (KA JE ), and its
reciprocal F =1/T is called the sampling frequency (AT

%)
F =8000Hz <> T =1/8000=125usec

F. =10000Hz < T =1/10000=100usec
F =16000Hz < T =1/16000=62.5usec
F =20000Hz < T =1/20000=350usec



Amplitude: x,(1)

Amplitude: x[n] = x,(nT)

Speech Waveform Display
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Quantization

Oijt * Transforming a continuously
. 24k - valued input into a representation
w18l that assumes one out of a finite
« 1ol set of values
-  oslL * The finite set of output values is
| L in indexed; e.g., the value 1.8 has an
03 098 15 21 index of 6, or (110) in binary
B representation
B - * Storage or transmission uses
o I binary representation; a

guantization table is needed
A 3-bit uniform quantizer



Discrete Signals
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Issues with Discrete Signals

 what sampling rate is appropriate

— 6.4 kHz (telephone bandwidth), 8 kHz (extended
telephone BW), 10 kHz (extended bandwidth), 16 kHz
(Hi-Fi speech)

* how many quantization levels are necessary at
each bit rate (bits/sample)

— 16, 12, 8, ... => ultimately determines the S/N ratio of
the speech

— speech coding is concerned with answering this
guestion in an optimal manner



The Sampling Theorem

Sampled 1000 Hz and 7000 Hz Cosine Waves; F. = 8000 Hz

amplitude

0 0.2 0.4 0.6 0.8 1 1.0
time in ms

* A bandlimited signal can be reconstructed exactly from
samples taken with sampling frequency

1 27
—=F >2 or — =
T S fmax T S max
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Demo Examples

* 5kHz analog bandwidth

— sampled at 10, 5, 2.5, 1.25 kHz (notice the aliasing
that arises when the sampling rate is below 10 kHz)

e quantization to various levels

—16,12,8, and 4 bit quantization (notice the
distortion introduced when the number of bits is
too low)

q{ll q{ll q{ll q{ll



Discrete-Time (DT) Signals are
Sequences

x[-1] ¢+ 0]

TTLLI[ -Iz 10 11

-9 8-7T-6-54-3-2-101 2 3

* Xx|n] denotes the “sequence value at ‘time’ n”
* Sources of sequences
— Sampling a continuous-time signal

x[n]=x.(nT)=x,)|_,

— Mathematical formulas — generative system

e.g., x[n]=03x[n—1]-1; x[0]=40




Impulse Representation of Sequences

i

o x;” Value of the
_ . function at k
A sequence, x[n] o Z x[k]5[n k]
a function .- k=—o0
a a,oln—1
a_,o|n+3] t — [n—1]

\fi_j’ p|n|
0—'—1—'—0—' = /
o oo o

4 2 01 34561\8 n
a,0ln—-2] a, aN a,5[n—17]

x[n]l=a_0ln+3]+aoln—1]+a,0[ln-2]+a,0[n-T]



Some Useful Sequences

unit sample

{1, n=>0
oln]=

0, n#0

unit step

real
exponential

x[n]=a"

™

Sinusoidal

it

.TIIT TT
0 Llll

sine wave

(d)

x[n]= Acos(wn+ @)
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Variants on Discrete-Time Step
Function

uln]

uln, —nj

uln—n,|

(C)

n— —n < signalflipsaround O




LTI Systems



Signal Processing

* Transform digital signal into more desirable form

— T[ ] L I
x[n] yin]=T[x[n]]
x[n] yinl
(a) (b)
single input—single output single input—multiple output,

e.g., filter bank analysis, etc.



LTI Discrete-Time Systems

1] | n
x| n| LT il

. | System
(.5_}‘?_ y h[n]

* Linearity (superposition)

T{ax,[n]+bx,[n]} = aTix[n]} +bT{x,[n]}

* Time-Invariance (shift-invariance)

x,[n]=xln—-n,] = yln]l=yln-n,]

LTl implies discrete convolution

o0

yinl= Y x[k]h[n—k]= x[n]* h[n] = h[n]* x[n]

k=—o0



LTI Discrete-Time Systems

Example

Is system y[n] = x[n]+ 2x[n +1]+3 linear?
n)=x,[n]+2x,[n+1]+3

X, [n]+ 2%, [n +1]+3

<

)
S

| —
Il

viln] =x, [n]+x, [n]+ 2x, [n +1]+ 2x, [n +1 |+3=y][n]+ y2[n]
= Not a linear system!
s system y[n] = x[n]+2x[n +1]+3 time/shift invariant?
yln] =x[n]+ 2x[n +1]+3
yln —ny| =x|n —nyl+ 2x[n —ny +1]+3 = System is time invariant!
Is system y[n] = x[n]+2x[n +1]+3 causal?

y[n] depends on x[n +1] = System is not causal !

21



Convolution Example

x[n].h[n]
I, 0<n<3 I, 0<n<3
x[n]= . hln]= .
0, otherwise 0, otherwise

What is y[n] for this system?

- 012 3-¢=1 I5
Solution y[n]=x[n]*h[n]= > h[m]x{n—m]

m=—a0

d1-l=n+l, 0<n<3
m=0

0, otherwise

22




hfm] x[m]

L il

1 1
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L1 || I L]
1T 1T 11 m" 1T 1 1T 1 mIIIIIIIIII
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Convolution Example

The impulse response of an LTI system is of the form
hn]=a"u[n] a| <1

and the input to the system is of the form
x[n]=b"u[n] b| <LLb#a

Determine the output of the system using the formula for discrete convolution.

o0

Solution y[n]= Z a"ulm]b" "u[n—m]

m=—a0o

n

=p" Z a"b"uln]=b"» (a/b)"u[n]

m=0

o 1_(a/b)n+1 - bn+1_an+1
= { 1—(a/b) }”["]{ b—a }‘["]




Convolution Example

Consider a digital system with input x[n] =1 for n=0,1,2,3 and 0 everywhere
else, and with impulse response A[n]|=a"u[n], a| <1

Determine the response y[n] of this linear system.

Solution

* We recognize that x[n] can be written as the difference between two step
functions, i.e., x[n]= u[n]- u[n-4].

* Hence we can solve for y[n] as the difference between the output of the
linear system with a step input and the output of the linear system with a
delayed step input.

* Thus we solve for the response to a unit step as:

yinl=S ulmla™ "uln—m] = {u}u[n]

l—a

m=—0

yn]l=yln]-y[n—4]



Linear Time-Invariant Systems

e easiest to understand
e easiest to manipulate
* powerful processing capabilities

* characterized completely by their response to unit sample,
h|n], via convolution relationship

o0 o0

yin]=x{n]*h[n]= Y x{klhln—k]= Y hlklx[n—k]=h[n]*x{n]

k=—0 k=—

* basis for linear filtering

* used as models for speech production (source convolved with
system)

26



Signal Processing Operations

X 4[]
>D—- LA

X,[N]
(a)

B
X[n] —[>—>B X[n]

(b)

xX[n] —= D

- X[N-1]

(c)

D is a delay of 1-sample
Can replace D with delay element z-!



Equivalent LTI Systems

W hyn] [ 7z[n]) T”]F hy[n]
x[n] ] y[n]
x[n] Pt [ ul] y[n]

—— liy[n]Thon] /———

x[n] yln]

— hi[n)*hn] ——

x[n] y[r]

hi[n]*h;[n]= hy[n]*h;[n] hi[nl+h;[n]= h;[n]+h;[n]



More Complex Filter Interconnections

hq[n]

{f |

= hy[n] l
@
A
s E W y(n)
hyln] T

yln]=x[n]*h.[n]
h.[n]= h[n]*(hn]+ h[n])+h,[n]

29



x[n]

Network View of Filtering (FIR Filter)

ylnl=bx[n]+bx[n—1]1+...+b,,_x[n—M + 1]+ b, x[n—M]

y[n]

30



Network View of Filtering (lIR Filter)

bo

x[n] D yln]

ylnl=—-a,y[n—-1]+b,x[n]+bx[n—1]



z-Transform Representations



Transform Representations

e z-Transform

x|n|l < X(2)
. Infinite power series in z!, with
X(2)= Z x[n]z x[n] as coefficients of term in z
n— * direct evaluation using residue theorem
x| n X(2)z"'dz L
7= ZEJ(]S (@) (P HUE )
« partial fraction expansion (#5435 =\ &
H)of X(z)

* long division (&%)
 power series expansion(& 2% 1 & )

33



Transform Representations

* X(z) converges (is finite) only for certain values of z

— Sufficient condition for convergence

i |x[n]Hz—”

n=—x0

< o0

iz

* region of convergence

R <|z|<R,

m Re{z)}

dh
\.|/




Examples of Converge Regions

1. Delayed impulse x[n]=9d[n—n,]

X (z)=z" converges for |Z| >0,n, > 0; z| <oo,n, <0;Vz,n,=0

2. Boxpulsex[n]=u[n]—u[n— N]

X(z)=) z"= “__ converges for 0<|z| <0
Z

all finite length sequences converge in the region 0 < |z| < 00
3. x[n]=a"u[n] (|a| <1)

n_-—n 1
X(z)= Za _l—az‘l convergesfor|z| |a|

all |nf|n|te duration sequences which are non-zero for n>0
converge in the region |z| >R




Examples of Converge Regions

4. x[n]=-b"ul-n-1]

X(z)=) -b"z"

-1

n—=—a0

__ 1 1 convergesfor|Z|<|b|

1-bz

all infinite duration sequences which are non-zero for n<0

converge in the region |z| <R,

5. x[n] non-zero for -oo<n< o can be viewed as a combination of

3 and 4, giving a convergence region of the form R, < |z| <R,

— sub-sequence for n20 = |Z| > R,

— sub-sequence for n<0 = |Z| <R,

total sequence

= R <|z|<R,

R

2

Q

o/



Examples

If x[n] has z-transform X(z) with ROC of r<|z|<r,_, find the z-
transform, Y(z), and the region of convergence for the sequence
yln]=a" x[n] in terms of X(z)

Solution X (z)= i x[n]z™"

Z a'x[n]z™"

n=—0 n=—00

= Z x[n](z/a)" =X(z/a)

n=—00

ROC: |a|rl. <|Z|<|a

~!
~
(W
~'
I
[
<
|
=,
(W
S
I

rO



Examples

The sequence x[n] has z-transform X(z). Show that the sequence
nx[n] has z-transform —zdX(z)/dz

Solution

o0

X(z)= ), x[n]z”"

n=—0

ax(z) =— i nx[n]z" = 1 i nx[n]z™"

dZ 71=—00 n=—aoo

=L Z(um))

Z



Inverse z-Transform

L

xnl= 27 j

9SC X(2)z" 'dz

where C'is a closed contour that encircles the origin of the z-
plane and lies inside the region of convergence

for X(z) rational(‘5 ##), can use
a partial fraction expansion

(#4757 =& HT) for finding
inverse transforms

39



Partial Fraction Expansion

M -1
b,z" +bz"" +..+b,

H(z)=
Z'+az"'"+. . +a,

b2 +b 2"+ + b, (N> M)

(Z-p)EZ=P)-(Z2-Py)
H(z)= A + A, +..+ Ay
zZ-p, zZ-p, Z—p,

Az __A + A 1 A Fo al

4 Z—P, Z£—P Z2—P, Z— Py

A :(Z—,OI.)M i=0,1,..,N
4

i
Z=p;



Example of Partial Fractions

Z2+z+1
(z°+32+2)

Find the inverse z-transform of H(z) = 1< z|<?2

H(z) zZ'+z+l —Aﬂ+ A N A
Z zZ(z+1)z+2) z z+1 z+2

22 +z+1 o Z+z+] o
P o(z+D)(z+2)|,, 2 Lo Z(z+2) |,
A}:zz+z+l 3

S Z(z+D) |, 2
Hzy=L1-2 B2z o)

2 Z+1 Z+2

h[n]= % S[n]—(D"u[ln]—=(=2)"u[-n—1]

o | w2



Transform Properties

Linearity

Shift

Exponential
Weighting

Linear Weighting
Time Reversal

Convolution

Multiplication of
Sequences

ax,[n]+ bx,[n]
xn—n,]
a"x[n]
nx[n]
x[—n]

x[n]*h[n]

x[n]w|n]

aX,(z)+bX,(2)

1
2 j

z " X(z)
X(a'2)
—zdX (z)/dz

Xz
X(z)H(2)

43:*: X)W (z/v)v 'dvy

42



Discrete-Time Fourier Transform
(DTFT)



Discrete-Time Fourier Transform

e evaluation of X{(z) on the unit circle in the z-plane

X=X .= dn

| a

inl=— ﬂXeja) eja)nda) - ) ——
[m=——] X K Y,

* sufficient condition for existence of Fourier transform is

i |x[n]Hz_” = i |x[n]| < 00, SINCe |Z| =1

n=—00 n=—00




Impulse

Delayed impulse

Step function

Rectangular
window

Exponential

Backward
exponential

Simple DTFTs

x[n] = o[n], X(e'”)=1
x[n]=3d[n-n,], X(e’)=e’"™
x[n]=u[n], X(e'")= l_.
l—-e’”
_ l_e—ij
n] = u[n] - uln - N], X(e"*) =———
—-e
x[n]=a" u[n], X(e'°)= : ,a<l
|—ae™”
x[n]=-b" u[-n-1], X(e’?) = : — b>1
1—be



DTFT Examples

| X(c)| & x[n] _

46



X(e’) =

DTFT Examples

X[n] = cos(w,n),

K=—=

—oo < N <o

Z [70(0 — w, +27K) + m0 (0 + o, + 27K )]

Within interval —7 <@ < 7, X(e’”) is comprised of a pair of

impulses at T®,

X[n] =cos(w,n)

7N

7

/

n

4t

X[ ( .')::l

T

topot

—4n

-3n -2n T -n

—2T + ()

=g

Wy T 2m ST ()

21 — (g

47



DTFT Examples

x[n] =rect,,[n]

-

5 o o 2l o 9 @ .

-M -3-2-1 1 2 3 M

Xlw) &

EEE e G

48



DTFT Examples

H(

)

(b)

49



Fourier Transform Properties

0.25, 1112, F/ 4, 10 Fgl 2

* Periodicity in w /\
0.5 m, Fgl 2, mFg
0,0,0,0
X(eja)) _ X(ej(a)+27zk)) \/1% Fq, 21 Fg

0.75, 3m/2, 3Fg/ 4, 1w 3F4f 2 f,w, ), w,

* Period of 21 corresponds to once around unit circle in the z-
plane

* normalized frequency: f, 0—0.5 —1 (independent of Fs)
* normalized radian frequency: o, 0—>r —2x (independent of Fs)

» digital frequency : fy=f*Fs, 0—0.5Fs —Fs

* digital radian frequency : ®y= ®*Fs, 0—>nFs—2mFs




Discrete Fourier Transform
(DFT)



Discrete-Time Fourier Series

consider a periodic signal with period N (samples)
X[n]=x[n+N],—0o<n<ow

~

x[n] can be represented exactly by a discrete sum of
sinusoids

N-1
X[k]=>) x[nle”>™"  « N Fourier series coefficients
n=0

1 N-1

X[n]=—

X[k]e/> N N-sequence values
N i



Finite Length Sequences

e consider a finite length (but not periodic) sequence, x[#n], that
is zero outside the interval 0<n <N-1

N-1
X(z)=) x[n]z™"
n=0
» evaluate X(z) at equally spaced points on the unit circle,
z, =™ k=0,1,..,N-1

N-1
X[k]=X (™)=Y xn]le”’>™*" k=0,1,..,N -1

n=0

— looks like discrete-time Fourier series of periodic sequence



Relation to Periodic Sequence

e consider a periodic sequence, x[n], consisting of an infinite
sequence of replicas of x|n]
o0

in]= D x[n+rN]
* The Fourier coefficients, X[k], are then identical to the values
of X (e’*™") for the finite duration sequence =

a sequence of N length can be exactly represented by a DFT

representation of the form
N-1

X[k]1=) x[nle ™", 0<k<N-1

n=0
1N

NS

X[kle””™" 0<n< N-1



Periodic and Finite Length Sequences

x[n] X[K]
periodic signal => line
I | ‘ spectrum in frequency

x[n] X(EJW)
‘ ‘ - finite duration =>

continuous spectrum
in frequency




Sampling in Frequency
(Time Domain Aliasing)

Consider a finite duration sequence: v ja
a S(€”)
x[n]z0 forO0=n=<L-1
l.e., an L —point sequence, with discrete time Fourier transform

L-1

X(e'*) =3 x[n]le” 0<w<2x

01234 N-1 k
Consider sampling the discrete time Fourier transform by w=21k/N
multiplying it by a signal that is defined as: s{n]
_ N-1
S(e?)=> dlo-2xk/N]
i
with time-domain representation
-N 0 N 2N n

s[n]= > é[n—rN]

f=—x

Thus we form the spectral sequence
X(e') = X(e'?)-S(e')
which transforms in the time domain to the convolution

x[n]= x[n]*s[n]= x[n]* i oln—rN]= i x[n—riN]

x[n]=x[n]+ x[n—N]+ x[n+N]+...
56



Sampling in Frequency
(Time Domain Aliasing)

If the duration of the finite duration signal satisfies the relation
N > L, then only the first term in the infinite summation affects
the interval 0 <n<[ -1 and there is no time domain aliasing, I.e.,
X[n]=X[n] 0<n<[-1
If N<L. i.e., the number of frequency samples is smaller than the
duration of the finite duration signal, then there is time domain aliasing
and the resulting aliased signal (over the interval 0 <n <[ —1) satisfies
the aliasing relation:
X[n]=x[n]+x[n+N]+x[n-N] 0<n<N-1



Time Domain Aliasing Example

Consider the finite duration sequence

xX[n]= i (Mm+1)o[n—m]=o[n]+20[n—1]+30[n—-2]+40[n—3]+50[n—4]

m=0

OOQ?TT oo
2-10 123 4586 7 8 n

The discrete time Fourier transform of x[n] is computed and sampled at NV frequencies
around the unit circle. The resulting sampled Fourier transform is inverse

transformed back to the time domain. What is the resulting time domain signal, x[n].
(over the interval 0<=n<L-1) forthe cases N=11, N=5 and N =4,

SOLUTION:
For the cases N=11and N =5. we have no aliasing (since N = L) and we get x[n] = x[n]
over the interval 0=n<L—-1. Forthe case N =4, the n=0 value is aliased, giving

X[0]=6 (as opposed to 1 for x[0]) with the remaining values unchanged.
58



DFT Properties

Period = N Length=N
Sequence defined for all n Sequence defined forn=0,1,..., N-1
DFS defined for k=0,1,..., N-1 DTFT defined for all @

 when using DFT representation, all sequences behave as if they
were infinitely periodic = DFT is really the representation of
the extended periodic function x[n]= Z_w x[n+rN]

59



DFT Properties for Finite Sequences

X[k], the DFT of the finite sequence x[n], can be viewed as a
sampled version of the z-transform (or Fourier transform) of
the finite sequence (used to design finite length filters via
frequency sampling method)

the DFT has properties very similar to those of the z-transform
and the Fourier transform

the N values of X[k] can be computed very efficiently (time
proportional to N log N) using the set of FFT methods

DFT used in computing spectral estimates, correlation

functions, and in implementing digital filters via convolutional
methods



DFT Properties

_ N-point sequences N-point DFT

Linearity ax,[n]+bx,[n] aX, [k]+bX,[k]
Shift x([n—n,1)y e/ XTk]
Time Reversal x([-n])y X[k]
Convolution fo[m]h([n —ml]), X[k]H[K]

Multiplication x[nlwln] %NZ_fX[r]W([k—rDN

r=0

61



Circular Shifting Sequences

- x[n-21 + x((n-2))
x[n]
i TR
x[n-11 ""' x((n-1)) 1. X[-n], | : x((-n)) |
1 PR Y| N 1
1l—,| ” h LLLL X I L o
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Digital Filters



Digital Filters

digital filter is a discrete-time linear, shift invariant system
with input-output relation -

y[n]=x[n]*h[n]= > x[mlh[n—m]

Y(z)=X(z)-H(z) |
H(z) is the system function (R4t kR £) with H(e’”) as the
complex frequency response (H1 M )

H(e™)=H, (') + jH (')

H(e') = ‘ H(efw)‘ o/ el H ()]

log H(e’") =log|H (¢'*)|+ jarg[H (/)]
log ‘H(ej“’)‘ = Re[log H(e’”)]

arg[H (e’*)] = Im[log H (¢’)]



Digital Filters

* causal linear shift-invariant
= h[n]=0 for n<0
e stable system
—> every bounded input produces a bounded output

—> a necessary and sufficient condition for stability and for the
existence of H(e’”)

o0

> |Aln]| <o

n=—00



Digital Filters

* input and output satisfy linear difference equation (£ 4%
7 FE) of the form

—iaky[n—k] = ibrx[n—r]

* evaluating z-transforms of both sides gives:

Y(z)— Zak *Y(2) = Zb z ' X(2)

r=0

sz_r
Y(z) _ 2.5,

r

=()
o N
Xy

k=1

H(z)=




Digital Filters

e H(z) is a rational function of z* with M zeros and N poles
o)

A[Ja-¢z) f \
H(z)=—~ o X
H(l—dkz_l) &j

o)
* converges for |z|>R,, with R, <1 for stability =

all poles of H(z) inside the unit circle for a stable, causal system




|HLp(0)]

| Hgp(w)]

ldeal Filter Responses

| Hplo)|

.I

|Hgs(®)]

1
=
1
=
1
=
1
[
®, T ®
(b)
1
;
1
=
1
i
oy , n ®
(d)
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FIR System

* If q,=0, all k, then

y[n]= ibrx[n —r|=byx[n]+bx[n—-1]+..+ b, x[n-M]=

=

1) h[n]=b, 0<n<M

=0 otherwise
M M

2) H(z)= anz_” = H (1-c,z™") = Mzeros
n=0 m=1

3) if h[n]==xh[M —n] (symmetric, anti-symmetric)
H(eja)) — A(eja))e—ja)M/2

A(e’?) = real(symmetric), imaginary(anti-symmetric)



Linear Phase Filter

* no signal dispersion (H{17i) because of non-linear phase =
precise time alignment of events in signal

event at t, . FIR Linear | » event at t, +
Phase Filter | fixed delay




FIR Filters

e cost of linear phase filter designs

— can theoretically approximate any desired response to any degree of
accuracy

— requires longer filters than non-linear phase designs

* FIR filter design methods
— window approximation = analytical, closed form method
— frequency sampling approximation = optimization method
— optimal (minimax error) approximation = optimization method



1.
2.

3.

4.

Matlab FIR Design

Use fdatool to design digital filters

Use firpm to design FIR filters

B=firpm(N,F,A)

N+1 point linear phase, FIR design

B=filter coefficients (numerator polynomial)

F=ideal frequency response band edges (in pairs) (normalized to 1.0)

A=ideal amplitude response values (in pairs)

Use freqz to convert to frequency response (complex)

[H,W]=fregz(B,den,NF)

H=complex frequency response

W=set of radian frequencies at which FR is evaluated (0 to pi)
B=numerator polynomial=set of FIR filter coefficients
den=denominator polynomial=[1] for FIR filter

NF=number of frequencies at which FR is evaluated

Use plot to evaluate log magnitude response

plot(\W/pi, 20log10(abs(H)))
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Lowpass Fliltelr DlesignlExampIe

0.4
]
= 0
Z
‘J: : .I. I_ I_
0 5 il 15 20 25 A0
Time in Samples

1 1 1
0.2 0.4 (.6 (L8 |

Mormalized Frequency wim

N=30
F=[00.4 0.5 1];
A=[1100];

B=firpm(N,F,A)

NF=512; number of frequency points
[H,W]=freqz(B,1,NF);

plot(\W/pi,20log10(abs(H)));



FIR Implementation

* linear phase filters can be implemented with half the
multiplications (because of the symmetry of the coefficients)
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lIR Systems

yn]=> ayn—kl]+D bxin—r]

* y[n] depends ony [n-1],..., y[n-N] as well as x[#n], ..., x[n-M]
e forM<N u

Zer_r N A

H(z)=—"] = £ — (partial fraction expansion)

1-> aqz" * 1-d,z

k
k=1

N
h[n] = ZAk (d,)"u[n] (for casual systems)

k=1

an infinite duration impulse response




lIR Filters

* [IR filter issues
— efficient implementations in terms of computations

— can approximate any desired magnitude response with
arbitrarily small error

— non-linear phase =time dispersion of waveform




IR Design Methods

* Analog filter design

Butterworth designs: maximally flat amplitude

Bessel designs: maximally flat group delay

Chebyshev designs: equi-ripple in either passband or stopband
Elliptic designs: equi-ripple in both passband and stopband

* Transform to digital filter

Impulse invariant transformation {47 NSV

* match the analog impulse response by sampling

* resulting frequency response is aliased version of analog frequency response
Bilinear transformation XX Z& 1445 .y

* use a transformation to map an analog filter to a digital filter by warping the
analog frequency scale (0 to infinity) to the digital frequency scale (0 to pi)

» use frequency pre-warping to preserve critical frequencies of transformation
(i.e., filter cutoff frequencies)



Matlab Elliptic Filter Design

« use ellip to design elliptic filter
— [B,A]=ellip(N,Rp,Rs,Wn)
— B=numerator polynomial—N+1 coefficients
— A=denominator polynomial—N+1 coefficients
— N=order of polynomial for both numerator and denominator
— Rp=maximum in-band (passband) approximation error (dB)
— Rs=out-of-band (stopband) ripple (dB)
— Wp=end of passband (normalized radian frequency)
« use filter to generate impulse response
— y=filter(B,A x)
— y=filter impulse response
— Xx=filter input (impulse)
« use zplane to generate pole-zero plot
— zplane(B,A)



Matlab Elliptic Filter Design

Elliptic Filter-N: 6, Rp: 0.1, Rs: 40, Wn: 0.45

I I T
| — Impulse Response [

i i
0 10 20 30 40 1] 0] 0 il O

Time in Samples

Imaginary Part
I
I
|
=~
|
|
|
|
I
I
1
|
I
|
I
I
I

— Frequency Response

-20

|
£
=

wn

Log Magnitude in dB

-1 —0.5 1] 0.5 |
Eeal Part

el L L i i H
] 0.1 0.2 0.3 0.4 0.5 (.6 0.7 0.8 0.9

Normalized Frequency (0-1)

[b,al=ellip(6,0.1,40,0.45); [h,w]=freqz(b,a,512); x=[1,zeros(1,511)]; y=filter(b,a,x); zplane(b,a);

appropriate plotting commands; 79




lIR Filter Implementation

zin)

M=N=4
xin} S 3
- y[n=> a,yln—k1+> bx[n—r]
k=1 r=0
w[n]= iakw[n — K1+ x[n]
Fﬂ:l
yln]=> bw[n-r]

Fig. 2.6 (a) Direct form IIR structure; (b) direct form structure with
minimum storage.
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lIR Filter Implementation

Aﬁ (1-c,z™)
H(z)=

N

[]a-d.z™

k=l
- since a, and b, are real, poles and zeros occur in complex conjugate pairs =>

|

K -1 -2
H(Z):AHb +byz +by,Z

0
-1 -2

- cascade of second order systems

K|

N +1

2

Fa

-zerosatz=c,, polesatz=d,

Used in formant
synthesis
systems based
on ABS
methods
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lIR Filter Implementation

K
c,+C, 2"
H(z)=) —% k& parallel system
—l-a,z'-a,z"’

—’?~ = +
o T | Common form

M) | @__,,m for spegch
synthesizer

Implementation

Coz

1 iT
D




Sampling



Sampling of Waveforms

Xa(t) | Sampler and X[n],x(nT)
Quantizer

‘ Period, T
x[n]=x,(nT),—0<n<oo

F =8000Hz < T =1/8000=125usec

F. =10000Hz <> T =1/10000 =100z sec
F, =16000Hz <> T =1/16000=62.5usec
F. =20000Hz <> T'=1/20000=50usec



The Sampling Theorem

If a signal x(¢) has a bandlimited Fourier transform X (;j€2) such
that X (jQ2) =0 for Q > 2z F ), then x_(¢) can be uniquely
reconstructed from equally spaced samples x_ (nT), -eo<n<eo, if
1/T 22 F) (F¢22F,) (A-D or C/D converter)



Sampling Theorem Equations

X, (1)« X, (jQ) = j X, (t)e ' dt

x[n]«— X (") = i x,(nT) "

X (&) :% S X, (jQ+ jark/T)
K=—op

EEEEEEEEE




Sampling Theorem Interpretation

[ X (j()
| (a)
/ \ _ Toavoid aliasing need:
—Q, 0 Q,=27F, 0 ,_
27/T-Q, >Q,
b X(e 0Ty
_ T:____TI;}: —————— : {h}' :> 2}?. T } 2Q||"'.‘I'
/\ | /\ - /\E = F.=1/T >2F,
|I|I | \ |
I I | | | | | \I .
_2m Tz -0, 0 Q, = 27 0
: : : : case where 1/T < 2F,,
Xe™) ., aliasing occurs
. / \
rm| | /\\ o) R
_ 4w _2m 0 2w 4 ()
L Z z -
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Sampling Rates

* I = Nyquist frequency (highest frequency with significant
spectral level in signal)

* must sample at least twice the Nyquist frequency to prevent
aliasing (frequency overlap)

— telephone speech (300-3200 Hz)= F(=6400 Hz
— wideband speech (100-7200 Hz) = F¢=14400 Hz
— audio signal (50-21000 Hz) = F¢=42000 Hz

— AM broadcast (100-7500 Hz) = F'¢=15000 Hz

e can always sample at rates higher than twice the Nyquist
frequency (but that is wasteful of processing)



Recovery from Sampled Signal

If 1/T > 2 F,,, the Fourier transform of the sequence of
samples is proportional to the Fourier transform of the
original signal in the baseband, i.e.,
. 1
X (™) ==X, (o),
T
can show that the original signal can be recovered from the

sampled signal by interpolation using an ideal LPF of
bandwidth t /T i.e.,

x,(0=Y x,nT)

n=—00

Q|<£
T

sin(zz(t —nT)/T)
w(t—nl)/T

— digital-to-analog converter



Decimation (1) and Interpolation( 4 %)
of Sampled Waveforms

CD rate (44.06 kHz) to DAT rate (48 kHz)—media conversion

Wideband (16 kHz) to narrowband speech rates (8kHz, 6.67
kHz)—storage

oversampled to correctly sampled rates--coding



Decimation and Interpolation of

x[n], T X (e/417)




Decimation

e Standard Sampling: begin with

digitized signal

in]=x (nT) <> X _(jQ)=0,

F=1sar,
=2

] |
X (&)=~ X, (/).

-
Q< Z
T

Q= 27 F,,

X&) =0, 27F, <|Q|<27(F. - F,)

can achieve perfect recovery of

x,(¢) from digitized sample
under these conditions

X“_{,r'il}

/ "_"\H

- {)
E?J-.IF'.‘
Xie "[“
/'if e
\ ! .'f : ()
""er 2wF N ﬂf-’_\. :’.IT[F_\ L,j :f'
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Decimation

to reduce sampling rate of sampled signal by factor of M > 2

to compute new signal x [n] with sampling rate
F'=1/T'=1/(MT)=F, /M

such that x [n]=x (nT") with no aliasing

one solution is to downsample x[n]= x (nT) by retaining one
out of every M samples of x[n] , giving x [n]=x[nM]

x[n] l};[”] = x[Mn]

—— IM —5

r MT



Decimation

X (j()
—27F), 27Fy

T | X/t

—2nFy, 27Fy, wF, 2m(F,— Fy) |
e

—2wFy 2wFy :rr’

27Fy 27Fy,

(a)

Q

()

(d)

Q

need F,">22 F) to
avoid aliasing for M=2

when F.'<2 F,,, we
get aliasing for M=2
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Decimation

* to decimate by factor of M with no aliasing, need to ensure
that the highest frequency in x[#n] is no greater than F/(2M)

* thus we need to filter x[n] using an ideal lowpass filter with

response ,1 |a)| <x/ M

H , (e/?) =
o(e) iO 7Z/M<|a)|£7z

* using the appropriate lowpass filter, we can downsample the

reuslting lowpass-filtered signal by a factor of M without
aliasing

______________________________



Interpolation

assume we have x[n]=x (nT) (no aliasing) and we wish to increase the
sampling rate by the integer factor of L

we need to compute a new sequence of samples of x_(¢) with period
T’=T/L,ie. x[n]l=x,nT”)=x,nT/L)

It is clear that we can create the signal

x;[n]=x[n/L] forn=0,=xL, 2L, ...

but we need to fill in the unknown samples by an interpolation process
can readily show that what we want is

Xi[n] =x (I”lT") — _Z.o: X, (kT)|:Sln7§7(Trf;]':_";€§f/);T)i|

equivalently with 7= T/ L, x[n]=x (nT) , we get

xl_[n] =x (I’ZT") — i X[k]|:81n7§_7(z-75721;;(;{)):|

k=—o0

which relates x;[n] to x[n] directly



Interpolation

implementing the previous equation by filtering the upsampled sequence

x[n/L] n=0,£L,£2L,...

0 otherwise _
x,[n] has the correct samples forn =0, £L, 2L, ..., but it has zero-valued

samples in between (from the upsampling operation)

x,[n]=

x[n]

— TL ——

{x[n/u 0. = =+
x”[n —

0 otherwise

T T/L
The Fourier transform of x, [n] is simply
X, (e9)=X ()
Xu (EJ"QT") _ X(EJ‘DT"L)
Thus X (e/°"") is periodic with two periods, namely with period 21t/L due to
upsampling and 2mt due to being a digital signal



Interpolation

X(e/0T)

0 2wFy  27F 4mF
Xfr(f'jﬂ’rﬂ) L=2

/T , ,
0 2wFy WE ;.’ 2’]TF: ,;,’

X}.({J-EHT'J} - HE(E}_IHT"} X”(f,jﬂ:r"}

e

/T

0 2nFy =k 27k

(a)

(c)

(a) Plot of X (&™)
(b) Plot of X_(e’*") showing double
periodicity for L=2.T"=T/2
(c) DTFT of desired signal with
Y () = [(2 IT)X_ (jOQ) |Q=27F, |
: 1 0 27F, <|Q<x/T"
can obtain results of (¢) by applying ideal
lowpass filter with gain L (to restore amplitude)
and cutoff frequency 2z F,, =7/ T. giving:

Yoy [ UTIXE@) 0slokr/L
0 TlL<wlsx
Hj(em):{‘{ lol<x/L

0 r/ldo:=nr
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Interpolation

* Original signal, x[n], at sampling period, 7, is first upsampled
to give signal x [n] with sampling period 7'=T/ L

* lowpass filter removes images of original spectrum giving
x; [n]=x,(nT”)=x,(nT/L)

x[n]
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SR Conversion by Non-Integer Factors

o T’=MT/L = convert rate by factor of M/L

* need to interpolate by L, then decimate by M (why can’t it be
done in the reverse order?)

-----------------------------------------------------------------

Lowpass Filter

w,= min(w/L,w/M)

_______________________________________________________________

—r T
T
Lowpass
Filter

— can approximate almost any rate conversion with appropriate
values of L and M

<> Interpolation

LPF

need to combine specifications of both LPFs and
implement in a single stage of lowpass filtering

Decimation
LPF

— for large values of L, or M, or both, can implement in stages, i.e.,
L =1024, use L1=32 followed by L2=32
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Summary -1

speech signals are inherently bandlimited => must sample
appropriately in time and amplitude

LTI systems of most interest in speech processing; can characterize
them completely by impulse response, h(n)

the z-transform and Fourier transform representations enable us to
efficiently process signals in both the time and frequency domains

both periodic and time-limited digital signals can be represented in
terms of their Discrete Fourier transforms

sampling in time leads to aliasing in frequency; sampling in
frequency leads to aliasing in time => when processing time-limited
signals, must be careful to sample in frequency at a sufficiently high
rate to avoid time-aliasing



Summary - 2

digital filtering provides a convenient way of processing
signals in the time and frequency domains

can approximate arbitrary spectral characteristics via either
lIR or FIR filters, with various levels of approximation

can realize digital filters with a variety of structures, including
direct forms, serial and parallel forms

once a digital signal has been obtain via appropriate sampling
methods, its sampling rate can be changed digitally (either up
or down) via appropriate filtering and decimation or
interpolation
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