
1. In implementing time-dependent Fourier representations, we employ sampling in 

both the time and frequency dimensions. In this problem we investigate the effects 

of both types of sampling. 

Consider a sequence x[n] with conventional Fourier transform: 
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These samples can be thought of as the discrete Fourier transform of the sequence 
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(b) What are the conditions on x[n] so that no aliasing distortion occurs in the time 

domain when ( )jwX e  is sampled? 

 

(c) Now consider “sampling” the sequence x[n]; i.e., let us form the new sequence 

[ ] [ ]y n x nM=  

consisting of every thM sample of x[n]. Show that the Fourier transform of y[n] is: 
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In proving this result you may wish to begin by considering the sequence: 

[ ] [ ] [ ]v n x n p n=  

where 
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Then note that [ ] [ ] [ ]y n v nM x nM= = . 

(d) What are the conditions on ( )jwX e  so that no aliasing distortion in the frequency 



domain occurs when x[n] is sampled? 

 

2. A linear time-invariant system has the transfer function, 
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(a) Determine the complex cepstral coefficients, ˆ( )h n , for all n. 

(b) Plot ˆ( )h n versus n for the range 10 10n−   . 

(c) Determine the(real) cepstrum coefficients, c[n], for all n. 

 

 

3. A casual LTI system has system function: 
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(a) Use the Levinson-Durbin recursion to determine whether or not the system is 

stable. 

(b) Is the system minimum phase? 

 


