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   1. Introduction
Commonsense Reasoning
• An old as well as challenging research area in AI community. 
• Simulating the human ability to make presumptions about 

• The type and essence of ordinary situations in daily life: 
• judgements about the physical properties 

• purpose, intentions and behaviour of people and objects 

• possible outcomes of actions and interactions 

Recently proposed tasks
• Beyond Turing Test 
• The Winograd Schema Challenge

3



Commonsense in Intelligent Tasks
Example 1: Machine Translation 
• Translate text or speech from one language to another 

• Word substitution, corpus statistical, neural techniques 

• Customization by domain or profession; human intervention
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The electrician is working.

The telephone is working.

=>Key issue: how to resolve ambiguities? using nearby words

e.g. MT from English to German

->“laboring”

-> “functioning correctly”
Good

Bad  
The electrician who came to fix the telephone is working.

The telephone on the desk is working.

We need commonsense! 



Commonsense in Intelligent Tasks
Example 2: Computer Vision 
• The ultimate goal is to understand images and videos. 

• e.g., understand a movie requires numerous inferences about 
• intentions of characters, the nature of physical objects….
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Julia Child’s kitchen

• Many objects are small and partially seen 

• metal bowls in the shelf (on the left) 

• chairs at the table

Without commonsense, the 
isolated image would be difficult 

to identify. 

We need commonsense! 



Commonsense in Intelligent Tasks
Example 3: Robotic Manipulation 
• Two biggest technical challenges to robotic advancements. 

• Verification: move in human occupied spaces, need be safety certified. 

• Manipulation: deal with unstructured environments is very difficult. 

• Without commonsense, the robots are rigid….
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We need commonsense! 



Winograd Schema Challenge (WSC)

Winograd Schema Challenge 
• A commonsense reasoning task 
• A coreference resolution task 
• (Levesque et al., 2011; Morgenstern et al., 2016)
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more WSC examples

• Frank felt crushed when his longtime rival Bill revealed that he was 
the winner of the competition. 
• Who was the winner?  

• Frank / Bill 

• Answer: Bill
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• My meeting started at 4:00 and I needed to catch the train at 4:30, so 
there wasn‘t much time. Luckily, it was short, so it worked out. 

• What was short?  

• the meeting / the train 

• Answer: the meeting



WSC 2016
Winograd Schema Challenge 2016 
• New York, IJCAI 2016, organised by NYU and Nuance. 
• Defined a similar task, Pronoun Disambiguation Problems (PDP)
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typical problem



Challenge 1

The main challenge of solving PDP problems
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1. No training data Machine learning? 
No way!

collecting training data? 
No way! (time-consuming)

We can only select unsupervised methods



Challenge 2

The main challenge of solving PDP problems
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2. Need commonsense logic methods? 
Very hard!

collecting commonsense knowledge? 
A choice! (the completeness issue)

How about using the context information? 



   Our motivation
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   2. Approaches

Our approaches: framework
• Focus on feature extraction process 
• Combing context and commonsense knowledge 
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   2.1 Knowledge Enhanced Embeddings
Knowledge Enhanced Embeddings (KEE)
• Combing context and commonsense knowledge  

• Context: from text corpora 

• Commonsense knowledge: from existing KBs
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KEE model framework, improved from skip-gram



KEE Training sources 
Source 1: Context
• two text corpora are used for KEE training 
• CBTest (Hill et al., 2015) 

• a book corpus collected from the Project Gutenberg
• children reading

• Wikipedia (Shaoul, 2010)
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Corpus Size Vocabulary size

CBTest 300 Million 53,541

Wikipedia 1 Billion 235,167



KEE Training sources 
Source 2: Commonsense KBs
• ConceptNet (Liu and Singh, 2004) 

• world knowledge, e.g., (learn, MotivatedByGoal, knowledge).

• WordNet (Miller, 1995) 
• semantic knowledge, relationships between synonym sets. 

• CauseCom (Liu et al., 2016) 

• cause-effect pairs extract from texts, e.g., (win → happy) 
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ConceptNet WordNet CauseCom



Knowledge constraints
We treat knowledge as constraints for KEE training

• ConceptNet 

• WordNet

• CauseCom
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Similarities between linked concepts should be larger than the 
similarities between unlinked concepts.

Constraints: Semantic Similarity Inequalities

similarity(happy, glad) > similarity(happy, sad)

Synonymous rule; Category rule; 
Hierarchy rule.

 generate knowledge constraints by randomly sampling irrelevant words.



KEE training objective
KEE training objective
• based on the skip-gram model 
• constraint optimisation problem
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   2.2 Problem solvers
Problem solver 1
• Unsupervised Semantic Similarity Method (USSM) 

• Extracting features based on contexts and KEE embeddings
• Calculating semantic similarities between pronoun and candidates
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   2.2 Problem solvers
Problem solver 2
• Neural Knowledge Activated Method (NKAM) 

• Extracting features based on contexts and KEE embeddings
• Training a mention pair classifier using OntoNote 5 training data.
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   3. Experiments
Experimental setup
• Knowledge constraints are collected from 3 KBs
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KBs # inequality

ConceptNet 543,540

WordNet 433,428

CauseCom 786,390

• KEE model settings 
• embedding dimension: 100

• window size: 5; SGD learning rate: 0.025

• NKAM model settings 
• 306,903 training mention pairs from OntoNote 5 (Weischedel et al., 2013). 

• 1 hidden layer with 300 units.



Results on PDP task
Results (using CBTest to train KEE models)
• Only using context: 53.3%; adding knowledge: 65.0%
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Results on PDP task

Results (using Wikipedia to train KEE models)
• Only using context: 53.3%; adding knowledge: 66.7%.
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final comparable results

Comparable results on the WSC 2016 challenging task
• we now achieve 66.7% accuracy on the PDP test set. 
• much better than random guessing (45%).
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Model Accuracy (%)

WSC 2016, New York

Denis Robert 31.7
Patrick Dhondt 45.0
Nicos Issak 48.3
Quan Liu (2016) 58.3

Our work (only using context) 53.3
Our work (context + KBs) 66.7



   4. Viewpoints to commonsense reasoning

Viewpoints to commonsense reasoning
• Key modules for commonsense reasoning 
• Each module is very important…
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   (1) Knowledge
Commonsense Knowledge
• the collection of facts and information that an ordinary person is 

expected to know.
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• From Human Brain
• manually constructed, i.e. made by human labelling 
• ConceptNet, Cyc, etc. 

• From Exist KBs
• statistical relational learning to mine new facts 
• Nickel et al. 2015 

• From Texts 
• information extraction from texts 
• OpenIE, NELL, etc.

• Three ways to collect commonsense knowledge:



   (2) Representation
Representation
• representation for all the events in our diary life is very important. 
• distributed representation, word embeddings, etc.
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step 1: unsupervised meaning learning from text corpora

step 2: supervised representation learning from training dataset

• Bag-of-word 
• CNN composition 
• RNN composition 
• etc

model choices need more research efforts



   (3) Language Understanding

Language Understanding
• a challenging research area for machine intelligence.  
• typical example: Winograd schemas
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My meeting started at 4:00 and I needed to catch the train 
at 4:30, so there wasn’t much time. Luckily, it was delayed, so it worked out.

Everyone really loved the oatmeal cookies; only a few people liked the 
chocolate chip cookies. Next time, we should make more of them.

natural sentences are too complex…



   (4) Transfer Learning
Transfer Learning
• in many cases, training data is small… 
• transfer learning from one domain to another domain
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The ultimate goal is to use raw text corpus to learn useful 
knowledge…

one domain another domain
learn knowledge

enormous training data less training data



   (5) Reasoning Model

Reasoning Model
• Traditional logic reasoning models have poor scalability. 

• Bayesian Network (Jensen 1996) 

• Markov Logic Network (Richardson and Domingos 2006)
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we still have many works to do if we want to make more complex 
logic inference via neural network methods.

however



Commonsense Knowledge Construction

+
 Neural Models ?
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see a typical example…



Automatic Knowledge Construction
Automatic Knowledge Construction
• Current KBs are too sparse to be used in real tasks 

• Collect cause-effect pairs from large text corpora 
• 12,500 most commonly used words and phrases
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system framework



Query search in text corpus
• Search query: keyword pairs formed from a common vocabulary 

• E.g. (arrest … because …rob);  (decide … because …explain); 

• Each word/phrase has 4 patterns  =>  16 patterns for each query
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We want to gather the number of active association links.



Association knowledge from dependency parsing
• Subject/Object Matching => Assigning Association links 

• Collect the number of active links
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“He was arrested because he robbed the man”

“rob”  =>  “be arrested”



Knowledge acquisition results
Knowledge acquisition results
• Using 5 different text collections 

• We extract 500,000 cause-effect pairs.  => CauseCom
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(know ⇒ clear) 

(believe ⇒ not disagree) 

(be released ⇒ not hold)



Neural Association Model

Neural Association Model (NAM)
• Neural model to Associate between Events.
• Events emerge everywhere in our diary life. 
• Events are discrete => sparse.
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example: 
possible events associated with event 

“Play basketball”?

association  !=  classification



framework
NAM framework 
• A model for modeling the association probability of two events.
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Two modules of NAM 
• Representation 
• Association



NAM model structures
NAM model structures
• Deep neural networks (DNN) 
• Relation-modulated Neural Networks (RMNN)
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Experiments

Experimental setup
• Dataset is obtained from official website (at NYU) 
• 70 real WS questions
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• dimension of word vector and relation code: 100, 50. 

• negative sample number: 5.





   5. Conclusion
Context is the basic information for commonsense reasoning.

• We achieve 53% accuracy on a challenging task, which is better than 
random guessing. 

• Adding commonsense knowledge is useful, 53% => 66%.  

• Our work provide a flexible framework to do this work. 

• We discuss our recent works on AKBC & NN.
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Coming works 

Commonsense reasoning with logic operations (via NNs) 

Knowledge acquisition & labelling



Thanks! 

(Q/A)
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