New Rank-One Matrix Decomposition Techniques and Applications to Signal Processing

Yongwei Huang
Hong Kong Baptist University

SPOC 2012
Hefei China
July 1, 2012

Outline

- Trust-region subproblems in nonlinear programming
- Radar code selection problems
- The new matrix rank-one decomposition techniques
- Theoretical applications
- Optimal transmit beamforming in cognitive radio networks
- Summary

Trust-Region Subproblem

- The trust-region subproblem ${ }^{1}$:

$$
\begin{array}{ll}
\underset{\boldsymbol{x}}{\operatorname{minimize}} & \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x}-2 \boldsymbol{b}_{0}^{T} \boldsymbol{x} \\
\text { subject to } & \|\boldsymbol{x}\|^{2} \leq \delta
\end{array}
$$

- Such type of programs are solved repeatedly in the trust region approach to unconstrained optimization.
- It is a non-convex Quadratically Constrained Quadratic Program (QCQP).

[^0]
The CDT Trust-Region Subproblem

- The CDT (Celis, Dennis, Tapia, 1985) trust-region subproblem:

$$
\begin{array}{ll}
\underset{\boldsymbol{x}}{\operatorname{minimize}} & \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x}-2 \boldsymbol{b}_{0}^{T} \boldsymbol{x} \\
\text { subject to } & \|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2} \leq \delta_{1} \\
& \|\boldsymbol{x}\|^{2} \leq \delta_{2}
\end{array}
$$

- To solve it in polynomial time, a sufficient condition is needed ${ }^{2}$.
- QCQP is homogeneous, if all the quadratic functions (of objective and constraint) have no linear term; otherwise, inhomogeneous.
- For instance, the previous two QCQP problems are in a inhomogeneous form.

[^1]
Optimal Design of Radar Waveform

Consider a scenario of optimum radar detection in the presence of colored disturbance (caused by interference, clutter, and operating enviroment) ${ }^{3}$.

[^2]- The class of linearly coded pulse trains are considered.

- A sequence of radar code in the transmitted waveforms is determined, with the goals:
- maximal detection probability;
- constraining CRB for the target Doppler estimation;
- controlling the shape of the resulting coded waveform similar to a known radar code;
- energy constraint.

Problem Formulation

- A coherent burst of pulses transmitted at the radar:

$$
s(t)=a_{t} u(t) \exp \left[i\left(2 \pi f_{0} t+\phi\right)\right]
$$

- a_{t} is the transmit signal amplitude,
$-u(t)$ is the signal's complex envelop having the form:

$$
u(t)=\sum_{j=0}^{N-1} a(j) p\left(t-j T_{r}\right)
$$

- $[a(0), a(1), \ldots, a(N-1)]^{T} \in \mathbb{C}^{N}$ is the radar code (the optimization variable),
- $p(t)$ is the signature of the transmitted pulse,
- T_{r} is the Pulse Repetition Time (PRT),
- f_{0} is the carrier frequency,
- ϕ is a random phase.
- Signal backscattered by a target, and received at the radar:

$$
r(t)=\alpha_{r} e^{i 2 \pi\left(f_{0}+f_{d}\right)(t-\tau)} u(t-\tau)+n(t)
$$

- τ is the two-way time delay of the backscattered signal,
- α_{r} is the complex echo amplitude (accounting for the transmit amplitude, phase, target reflectivity, and channels propagation effects),
- f_{d} is the target Doppler frequency,
- $n(t)$ is additive disturbance due to clutter and thermal noise.

Discrete Signal Model

- The received signal is
- down-converted to baseband, and
- filtered through a linear system with impulse response $h(t)=p^{*}(-t)$, and
- sampled at $t_{k}=\tau+k T_{r}, k=0,1, \ldots, N-1$.
- The samples $v\left(t_{k}\right)$ form the vector $\boldsymbol{v}=\left[v\left(t_{0}\right), v\left(t_{1}\right), \ldots, v\left(t_{N-1}\right)\right]^{T}$ satisfying

$$
\boldsymbol{v}=\alpha \boldsymbol{c} \odot \boldsymbol{p}+\boldsymbol{w}
$$

$-\alpha=\alpha_{r} e^{-i 2 \pi f_{0} \tau}$,

- $\boldsymbol{c}=[a(0), a(1), \ldots, a(N-1)]^{T}$ is the radar code vector,
$-\boldsymbol{p}=\left[1, e^{i 2 \pi f_{d} T_{r}}, \ldots, e^{i 2 \pi(N-1) f_{d} T_{r}}\right]^{T}$ is the temporal steering vector,
$-\boldsymbol{w}=\left[w\left(t_{0}\right), w\left(t_{1}\right), \ldots, w\left(t_{N-1}\right)\right]^{T}$ is the filtered disturbance samples, assumed to be a zero-mean circular Gaussian vector with known covariance

$$
\mathrm{E}\left[\boldsymbol{w} \boldsymbol{w}^{H}\right]=\boldsymbol{M}
$$

Detection Issues: GLRT Detector

- The problem of detecting a target is formulated in terms of the following binary hypotheses test:

$$
\left\{\begin{array}{l}
H_{0}: \boldsymbol{v}=\boldsymbol{w} \\
H_{1}: \boldsymbol{v}=\alpha \boldsymbol{c} \odot \boldsymbol{p}+\boldsymbol{w}
\end{array}\right.
$$

- The GLRT is given by

$$
\left|\boldsymbol{v}^{H} \boldsymbol{M}^{-1}(\boldsymbol{c} \odot \boldsymbol{p})\right|^{2} \stackrel{H_{1}}{\underset{H_{0}}{\gtrless}} G
$$

where G is the detection threshold set according to a desired value of $P_{f a}$.

- The detection probability P_{d} has the analytical expression:

$$
P_{d}=Q(\underbrace{\sqrt{2|\alpha|^{2}(\boldsymbol{c} \odot \boldsymbol{p})^{H} \boldsymbol{M}^{-1}(\boldsymbol{c} \odot \boldsymbol{p})}}_{S N R}, \sqrt{-2 \ln P_{f a}})
$$

where $Q(\cdot, \cdot)$ denotes the Marcum Q function of order 1 .

Optimal Radar Code Problem

- The radar code is optimally selected, so that
- maximize the detection performance (the detection probability), while
- providing a control both on the target Doppler estimation accuracy and on the similarity with a given radar code \boldsymbol{c}_{0}.
- The optimal radar code problem is formulated as:

$$
\begin{array}{cl}
\underset{\boldsymbol{c}}{\operatorname{maximize}} & \boldsymbol{c}^{H} \boldsymbol{R} \boldsymbol{c} \\
\text { subject to } & \boldsymbol{c}^{H} \boldsymbol{R}_{1} \boldsymbol{c} \geq \delta_{a} \\
& \left\|\boldsymbol{c}-\boldsymbol{c}_{0}\right\|^{2} \leq \epsilon \\
& \boldsymbol{c}^{H} \boldsymbol{c}=1
\end{array}
$$

- $\boldsymbol{R}=\boldsymbol{M}^{-1} \odot\left(\boldsymbol{p p}^{H}\right)^{*}$,
- $\boldsymbol{R}_{1}=\boldsymbol{M}^{-1} \odot\left(\boldsymbol{p} \boldsymbol{p}^{H}\right)^{*} \odot\left(\boldsymbol{u} \boldsymbol{u}^{H}\right)^{*}$, with $\boldsymbol{u}=[0, i 2 \pi, \ldots, i 2 \pi(N-1)]^{T}$,
- the feasibility of the problem depends on the parameters δ_{a}, ϵ, and the pre-fixed code \boldsymbol{c}_{0} of unit norm.

Commonalities

- In general, QCQP has the form:

$$
\begin{array}{cl}
\underset{\boldsymbol{x}}{\operatorname{minimize}} & q_{0}(\boldsymbol{x})=\boldsymbol{x}^{H} \boldsymbol{Q}_{0} \boldsymbol{x}-2 \operatorname{Re} \boldsymbol{b}_{0}^{H} \boldsymbol{x} \\
\text { subject to } & q_{j}(\boldsymbol{x})=\boldsymbol{x}^{H} \boldsymbol{Q}_{j} \boldsymbol{x}-2 \operatorname{Re} \boldsymbol{b}_{j}^{H} \boldsymbol{x}+c_{j} \leq 0, j=1, \ldots, m .
\end{array}
$$

- The trust-region problems and the radar code selction problem are non-convex QCQP, with a few constraints, in either real or complex variables.

Matrix Rank-One Decomposition: Symmetric PSD Cases

- Theorem ${ }^{4}$ Let $\boldsymbol{A} \in \mathbb{S}^{n}$. Let $\boldsymbol{X} \in \mathbb{S}_{+}^{n}$ with rank r. Then there is a rank-one decomposition for \boldsymbol{X}, i.e., $\boldsymbol{X}=\sum_{j=1}^{r} \boldsymbol{x}_{j} \boldsymbol{x}_{j}^{T}$, such that

$$
\boldsymbol{x}_{j}^{T} \boldsymbol{A} \boldsymbol{x}_{j}=\frac{\boldsymbol{A} \bullet \boldsymbol{X}}{r}, j=1, \ldots, r
$$

- The theorem is true for \boldsymbol{X} being a Hermitian PSD.
- It can be shown easily by example that it is only possible to get a complete rank-one decomposition for one matrix parameter (i.e., \boldsymbol{A}).
- For two matrix parameters, it is possible to get a partial decomposition:

[^3]- Theorem ${ }^{5}$ Let $\boldsymbol{A}_{1}, \boldsymbol{A}_{2} \in \mathbb{S}^{n}$, and $\boldsymbol{X} \in \mathbb{S}_{+}^{n}$ with rank r. If $r \geq 3$, then there is a rank-one decomposition for \boldsymbol{X}, i.e., $\boldsymbol{X}=\sum_{j=1}^{r} \boldsymbol{x}_{j} \boldsymbol{x}_{j}^{T}$, such that

$$
\begin{aligned}
& \boldsymbol{x}_{j}^{T} \boldsymbol{A}_{1} \boldsymbol{x}_{j}=\frac{\boldsymbol{A}_{1} \bullet \boldsymbol{X}}{r}, \quad j=1, \ldots, r \\
& \boldsymbol{x}_{j}^{T} \boldsymbol{A}_{2} \boldsymbol{x}_{j}=\frac{\boldsymbol{A}_{2} \bullet \boldsymbol{X}}{r}, \quad j=1, \ldots, r-2 .
\end{aligned}
$$

- How about the corresponding Hermitian PSD case?

[^4]
Matrix Rank-One Decomposition: Hermitian PSD Cases

- Theorem ${ }^{6}$ Let $\boldsymbol{A}_{1}, \boldsymbol{A}_{2} \in \mathbb{H}^{n}$, and $\boldsymbol{X} \in \mathbb{H}_{+}^{n}$ with rank r. Then there is a rank-one decomposition for \boldsymbol{X}, i.e., $\boldsymbol{X}=\sum_{j=1}^{r} x_{j} \boldsymbol{x}_{j}^{H}$, such that

$$
\begin{aligned}
& \boldsymbol{x}_{j}^{H} \boldsymbol{A}_{1} \boldsymbol{x}_{j}=\frac{\boldsymbol{A}_{1} \bullet \boldsymbol{X}}{r}, \quad j=1, \ldots, r \\
& \boldsymbol{x}_{j}^{H} \boldsymbol{A}_{2} \boldsymbol{x}_{j}=\frac{\boldsymbol{A}_{2} \bullet \boldsymbol{X}}{r}, \quad j=1, \ldots, r .
\end{aligned}
$$

- Can we do more?

[^5]- Theorem ${ }^{7}$ Let $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3} \in \mathbb{H}^{n}$, and $\boldsymbol{X} \in \mathbb{H}_{+}^{n}$ with rank r. If $r \geq 3$, then there is a rank-one decomposition for \boldsymbol{X}, i.e., $\boldsymbol{X}=\sum_{j=1}^{r} \boldsymbol{x}_{j} \boldsymbol{x}_{j}^{H}$, such that

$$
\begin{array}{ll}
\boldsymbol{x}_{j}^{H} \boldsymbol{A}_{1} \boldsymbol{x}_{j}=\frac{\boldsymbol{A}_{1} \bullet \boldsymbol{X}}{r}, & j=1, \ldots, r \\
\boldsymbol{x}_{j}^{H} \boldsymbol{A}_{2} \boldsymbol{x}_{j}=\frac{\boldsymbol{A}_{2} \bullet \boldsymbol{X}}{r}, & j=1, \ldots, r \\
\boldsymbol{x}_{j}^{H} \boldsymbol{A}_{3} \boldsymbol{x}_{j}=\frac{\boldsymbol{A}_{3} \bullet \boldsymbol{X}}{r}, & j=1, \ldots, r-2 .
\end{array}
$$

[^6]
Computational Complexities and Matlab Programs

- The computational complexity of each decomposition theorem is of $O\left(n^{3}\right)$.
- The respective proofs of the theorems are constructive, so that it is convenient to write Matlab programs to perform the specific rank-one decomposition.
- The software release (with a short user guide), based on Matlab, is online at
http://www.math.hkbu.edu.hk/~huang/dcmp/dcmp.html

Solving QCQP by Matrix Decomposition

- QCQP has the general form:
$\underset{\boldsymbol{x}}{\operatorname{minimize}} \quad q_{0}(\boldsymbol{x})=\boldsymbol{x}^{H} \boldsymbol{Q}_{0} \boldsymbol{x}-2 \operatorname{Re} \boldsymbol{b}_{0}^{H} \boldsymbol{x}$
$\stackrel{\boldsymbol{x}}{\text { subject to }} \quad q_{j}(\boldsymbol{x})=\boldsymbol{x}^{H} \boldsymbol{Q}_{j} \boldsymbol{x}-2 \operatorname{Re} \boldsymbol{b}_{j}^{H} \boldsymbol{x}+c_{j} \leq 0, j=1, \ldots, m$.
- Let $\boldsymbol{M}\left(q_{0}\right)=\left[\begin{array}{cc}0 & -\boldsymbol{b}_{0}^{H} \\ -\boldsymbol{b}_{0} & \boldsymbol{Q}_{0}\end{array}\right]$, and $\boldsymbol{M}\left(q_{j}\right)=\left[\begin{array}{cc}c_{j} & -\boldsymbol{b}_{j}^{H} \\ -\boldsymbol{b}_{j} & \boldsymbol{Q}_{j}\end{array}\right], j=1, \ldots, m$.
- QCQP is recast into the homogeneous form (with one more variable and one more constraint):

$$
\begin{array}{ll}
\underset{\boldsymbol{x}, t}{\operatorname{minimize}} & \boldsymbol{M}\left(q_{0}\right) \bullet\left[\begin{array}{c}
t \\
\boldsymbol{x}
\end{array}\right]\left[\begin{array}{c}
t \\
\boldsymbol{x}
\end{array}\right]^{H}=\boldsymbol{x}^{H} \boldsymbol{Q}_{0} \boldsymbol{x}-2 \operatorname{Re} \boldsymbol{b}_{0}^{H} \boldsymbol{x} t^{*} \\
\text { subject to } & \boldsymbol{M}\left(q_{j}\right) \bullet\left[\begin{array}{c}
t \\
\boldsymbol{x}
\end{array}\right]\left[\begin{array}{c}
t \\
\boldsymbol{x}
\end{array}\right]^{H}=\boldsymbol{x}^{H} \boldsymbol{Q}_{j} \boldsymbol{x}-2 \operatorname{Re} \boldsymbol{b}_{j}^{H} \boldsymbol{x} t^{*}+c_{j}|t|^{2} \leq 0, \forall j \\
& |t|^{2}=1
\end{array}
$$

SDP Relaxation

- The matrix form of the homogenous QCQP can be further written equivalently as

$$
\begin{array}{cl}
\underset{\boldsymbol{X}}{\operatorname{minimize}} & \boldsymbol{M}\left(q_{0}\right) \bullet \boldsymbol{X} \\
\text { subject to } & \boldsymbol{M}\left(q_{j}\right) \bullet \boldsymbol{X} \leq 0, j=1, \ldots, m \\
& \boldsymbol{I}_{00} \bullet \boldsymbol{X}=1 \\
& \boldsymbol{X} \succeq \mathbf{0}, \operatorname{rank}(\boldsymbol{X})=1
\end{array}
$$

where $\boldsymbol{I}_{00}=\left[\begin{array}{ll}1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right] \in \mathbb{S}^{n+1}$.

- If the rank-one constraint is removed, it becomes an SDP, which is called the SDP relaxation problem.
- The dual problem is:

$$
\begin{array}{cl}
\underset{Z}{\operatorname{maximize},\left\{y_{j}\right\}} & y_{m+1} \\
\text { subject to } & \boldsymbol{Z}=\boldsymbol{M}\left(q_{0}\right)+\sum_{j=1}^{m} y_{j} \boldsymbol{M}\left(q_{j}\right)-y_{m+1} \boldsymbol{I}_{00} \succeq \mathbf{0} \\
& y_{j} \geq 0, j=1, \ldots, m, y_{m+1} \in \mathbb{R} .
\end{array}
$$

Complementary Slackness

- Under suitable conditions, the primal and dual problems have complementary optimal solutions, \boldsymbol{X}^{\star} and \boldsymbol{Z}^{\star} :

$$
X^{\star} Z^{\star}=0 .
$$

- If we can decompose $\boldsymbol{X}^{\star}=\sum_{j=1}^{r} \boldsymbol{x}_{j}^{\star} \boldsymbol{x}_{j}^{\star H}$, so that some $\boldsymbol{x}_{j}^{\star} \boldsymbol{x}_{j}^{\star H}$ satisfying all the constraints of the primal SDP problem, then the rank-one matrix will be optimal.
- Now, our matrix rank-one decomposition theorems can help provide a rank-one optimal solution.

Consequences of the Matrix Decomposition Theorems

- Generally, the following cases of QCQP are polynomially solvable:
- real QCQP:
* $m=1$ ($m=2$ for the homogeneous instance);
* $m=2$ ($m=3$ for the homogeneous instance) and rank $\boldsymbol{X}^{\star} \geq 3$;
* $m=2$ and one inequality constraint is inactive at \boldsymbol{X}^{*}.
- complex QCQP:
* $m=2$ ($m=3$ for the homogeneous instance);
* $m=3$ ($m=4$ for the homogeneous instance) and rank $\boldsymbol{X}^{\star} \geq 3$;
* $m=3$ and one inequality constraint is inactive at \boldsymbol{X}^{*}.
- Particularly, the optimal radar code selection problem is a complex inhomogeneous QCQP with $m=3$, however, it is solvable, thanks to the problem structure that two of the constraint functions share the same Hessian.
- The solvability is irrelevant to the convexity of the functions.

Further Theoretical Applications

- Field of values
- The field of values of a $n \times n$ matrix \boldsymbol{A} is given by

$$
\mathcal{F}(\boldsymbol{A})=\left\{\boldsymbol{x}^{H} \boldsymbol{A} \boldsymbol{x} \mid \boldsymbol{x}^{H} \boldsymbol{x}=1\right\} \subseteq \mathbb{C} .
$$

- It is known to be convex ${ }^{8}$.
- Joint numerical range
- In general, the joint numerical range of matrices is defined by

$$
\mathcal{F}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{m}\right)=\left\{\left.\left[\begin{array}{c}
\boldsymbol{x}^{H} \boldsymbol{A}_{1} \boldsymbol{x} \\
\vdots \\
\boldsymbol{x}^{H} \boldsymbol{A}_{m} \boldsymbol{x}
\end{array}\right] \right\rvert\, \boldsymbol{x}^{H} \boldsymbol{x}=1, \boldsymbol{x} \in \mathbb{C}^{n}\right\} \in \mathbb{C}^{m}
$$

[^7]- The convexity of joint numerical range has a long history.
- Theorem ${ }^{9}$ If \boldsymbol{A}_{1} and \boldsymbol{A}_{2} are Hermitian, then $\mathcal{F}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}\right)$ is a convex set.
- Brickman generalizes the above Hausdorff theorem:
- Theorem ${ }^{10}$ If $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}$, and \boldsymbol{A}_{3} are Hermitian, then the set

$$
\left\{\left.\left[\begin{array}{l}
\boldsymbol{x}^{H} \boldsymbol{A}_{1} \boldsymbol{x} \\
\boldsymbol{x}^{H} \boldsymbol{A}_{2} \boldsymbol{x} \\
\boldsymbol{x}^{H} \boldsymbol{A}_{3} \boldsymbol{x}
\end{array}\right] \right\rvert\, \boldsymbol{x} \in \mathbb{C}^{n}\right\} \in \mathbb{R}^{3}
$$

is a convex cone.

[^8]
An Extension of Brickman's Theorem

- Theorem ${ }^{11}$ Suppose that $\boldsymbol{A}_{j} \in \mathbb{H}^{n}$ with $n \geq 3$. If

$$
\left(\boldsymbol{A}_{1} \bullet \boldsymbol{X}, \boldsymbol{A}_{2} \bullet \boldsymbol{X}, \boldsymbol{A}_{3} \bullet \boldsymbol{X}, \boldsymbol{A}_{4} \bullet \boldsymbol{X}\right) \neq(0,0,0,0)
$$

for any nonzero $\boldsymbol{X} \in \mathbb{H}_{+}^{n}$, then

$$
\left\{\left.\left[\begin{array}{l}
\boldsymbol{x}^{H} \boldsymbol{A}_{1} \boldsymbol{x} \\
\boldsymbol{x}^{H} \boldsymbol{A}_{2} \boldsymbol{x} \\
x^{H} \boldsymbol{A}_{3} \boldsymbol{x} \\
\boldsymbol{x}^{H} \boldsymbol{A}_{4} \boldsymbol{x}
\end{array}\right] \right\rvert\, x \in \mathbb{C}^{n}\right\} \in \mathbb{R}^{4}
$$

is a pointed closed convex cone.

[^9]
The S-Procedure

- It is often useful to consider the following implication:

$$
G_{1}(\boldsymbol{x}) \geq 0, \ldots, G_{m}(\boldsymbol{x}) \geq 0 \Rightarrow F(\boldsymbol{x}) \geq 0
$$

- A sufficient condition is:

$$
\exists \tau_{1} \geq 0, \ldots, \tau_{m} \geq 0, \text { such that } F(\boldsymbol{x})-\sum_{j=1}^{m} \tau_{j} G_{j}(\boldsymbol{x}) \geq 0, \forall \boldsymbol{x}
$$

- If the condition is also necessary, then this procedure is called lossless.
- S-lemma (real-valued case) ${ }^{12}$ Suppose that $m=1$, and F, G_{1} are real quadratic forms (i.e., $F(\boldsymbol{x})=\boldsymbol{x}^{T} \boldsymbol{F} \boldsymbol{x}, G_{1}(\boldsymbol{x})=\boldsymbol{x}^{T} \boldsymbol{G}_{1} \boldsymbol{x}$, and $\boldsymbol{F}, \boldsymbol{G}_{1}$ are symmetric). Moreover, there is $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$ such that $\boldsymbol{x}_{0}^{T} \boldsymbol{G}_{1} \boldsymbol{x}_{0}>0$. Then the S-procedure is lossless.

[^10]- S-lemma (complex-valued case) ${ }^{13}$ Suppose $m=2$, and F, G_{1}, G_{2} are Hermitian quadratic form (i.e., $F(\boldsymbol{x})=\boldsymbol{x}^{H} \boldsymbol{F} \boldsymbol{x}, G_{1}(\boldsymbol{x})=\boldsymbol{x}^{H} \boldsymbol{G}_{1} \boldsymbol{x}, G_{2}(\boldsymbol{x})=\boldsymbol{x}^{H} \boldsymbol{G}_{2} \boldsymbol{x}$, and $\boldsymbol{F}, \boldsymbol{G}_{1}, \boldsymbol{G}_{2}$ are Hermitian). Moreover, there is $\boldsymbol{x}_{0} \in \mathbb{C}^{n}$ such that $\boldsymbol{x}_{0}^{H} \boldsymbol{G}_{j} \boldsymbol{x}_{0}>0$, $j=1,2$. Then the S-procedure is lossless.

[^11]
Extensions on A Result of Yuan

- Theorem ${ }^{14}$ Let $\boldsymbol{A}_{1}, \boldsymbol{A}_{2} \in \mathbb{S}^{n}$. If

$$
\begin{equation*}
\max \left\{\boldsymbol{x}^{T} \boldsymbol{A}_{1} \boldsymbol{x}, \boldsymbol{x}^{T} \boldsymbol{A}_{2} \boldsymbol{x}\right\} \geq 0, \forall \boldsymbol{x} \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

then there are $\mu_{1} \geq 0, \mu_{2} \geq 0, \mu_{1}+\mu_{2}=1$ such that

$$
\mu_{1} \boldsymbol{A}_{1}+\mu_{2} \boldsymbol{A}_{2} \succeq \mathbf{0}
$$

- By our decomposition theorems, we can re-prove it. Indeed, we show that (1) amounts to

$$
\max \left\{\boldsymbol{A}_{1} \bullet \boldsymbol{X}, \boldsymbol{A}_{2} \bullet \boldsymbol{X}\right\} \geq 0, \forall \boldsymbol{X} \in \mathbb{S}_{+}^{n}
$$

- For the Hermitian case, we can do more.

[^12]- Theorem ${ }^{15}$ Let $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3} \in \mathbb{H}^{n}$. If

$$
\max \left\{\boldsymbol{x}^{H} \boldsymbol{A}_{1} \boldsymbol{x}, \boldsymbol{x}^{H} \boldsymbol{A}_{2} \boldsymbol{x}, \boldsymbol{x}^{H} \boldsymbol{A}_{3} \boldsymbol{x}\right\} \geq 0, \forall \boldsymbol{x} \in \mathbb{C}^{n}
$$

then there are $\mu_{1}, \mu_{2}, \mu_{3} \geq 0, \mu_{1}+\mu_{2}+\mu_{3}=1$ such that

$$
\mu_{1} \boldsymbol{A}_{1}+\mu_{2} \boldsymbol{A}_{2}+\mu_{3} \boldsymbol{A}_{3} \succeq \mathbf{0} .
$$

- Theorem ${ }^{15}$ Suppose that $\boldsymbol{A}_{j} \in \mathbb{H}^{n}, j=1,2,3,4$, with $n \geq 3$, and suppose that there are $\lambda_{j} \in \mathbb{R}$ such that $\lambda_{1} \boldsymbol{A}_{1}+\lambda_{2} \boldsymbol{A}_{2}+\lambda_{3} \boldsymbol{A}_{3}+\lambda_{4} \boldsymbol{A}_{4} \succ \mathbf{0}$. If

$$
\max \left\{\boldsymbol{x}^{H} \boldsymbol{A}_{1} \boldsymbol{x}, \boldsymbol{x}^{H} \boldsymbol{A}_{2} \boldsymbol{x}, \boldsymbol{x}^{H} \boldsymbol{A}_{3} \boldsymbol{x} \boldsymbol{x}^{H} \boldsymbol{A}_{4} \boldsymbol{x}\right\} \geq 0, \forall \boldsymbol{x} \in \mathbb{C}^{n}
$$

then there are $\mu_{j} \geq 0, \mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}=1$ such that

$$
\mu_{1} \boldsymbol{A}_{1}+\mu_{2} \boldsymbol{A}_{2}+\mu_{3} \boldsymbol{A}_{3}+\lambda_{4} \boldsymbol{A}_{4} \succeq \mathbf{0} .
$$

[^13]
One More Application: Multicast Beamforming in CR Networks

Consider a scenario of single-group multicast transmission between secondary users in a spectrum sharing cognitive radio network ${ }^{16}$.

- The secondary transmitter, equipped with an antenna array, sends common signals to its users, with the goals:
- sufficient service quality to the secondary users
- no excessive interference to the primary receivers
- minimal transmission power

[^14]
Signal Models

- Signal transmitted by the secondary transmitter

$$
\boldsymbol{y}(t)=\boldsymbol{w} s(t)
$$

where $s(t) \in \mathbb{C}$ is the information signal, and $\boldsymbol{w} \in \mathbb{C}^{N}$ is the beamvector.

- Signal received by m th secondary user:

$$
\boldsymbol{x}_{m}(t)=\boldsymbol{H}_{m}^{H} \boldsymbol{y}(t)+\boldsymbol{n}_{m}(t)
$$

where \boldsymbol{H}_{m} is the channel matrix and $\boldsymbol{n}_{m}(t)$ is Gaussian noise vector having zero mean and covariance $\sigma_{m}^{2} \boldsymbol{I}$.

QoS Constraints and Interference Temperature Constraints

- SNR of the m th secondary user

$$
\mathrm{SNR}_{m}=\frac{\left\|\boldsymbol{H}_{m}^{H} \boldsymbol{w}\right\|^{2}}{\sigma_{m}^{2}}
$$

- The amount of interference generated to k th primal user

$$
\left\|\boldsymbol{G}_{k}^{H} \boldsymbol{w}\right\|^{2}
$$

where \boldsymbol{G}_{k} is the channel from the secondary transmitter to k th primary user.

- QoS constraints: $\quad \mathrm{SNR}_{m} \geq \tau_{m} \quad$ for $\quad m=1, \ldots, M$.
- Interference temperature (IT) constraints:

$$
\left\|\boldsymbol{G}_{k}^{H} \boldsymbol{w}\right\|^{2} \leq \eta_{k} \quad \text { for } \quad k=1, \ldots, K
$$

Formulation of Robust Optimal Beamforming Problem

- Non-Robust formulation: Minimization of the secondary transmit power subject to QoS constraints and IT constraints:

$$
\begin{array}{lll}
\underset{\boldsymbol{w}}{\operatorname{minimize}} & \boldsymbol{w}^{H} \boldsymbol{w} & \\
\text { subject to } & \left\|\boldsymbol{H}_{m}^{H} \boldsymbol{w}\right\|^{2} \geq \sigma_{m}^{2} \tau_{m}, & m=1, \ldots, M \\
& \left\|\boldsymbol{G}_{k}^{H} \boldsymbol{w}\right\|^{2} \leq \eta_{k}, & k=1, \ldots, K .
\end{array}
$$

- Robust formulation:

$$
\begin{array}{lll}
\underset{\boldsymbol{w}}{\operatorname{minimize}} & \boldsymbol{w}^{H} \boldsymbol{w} & \\
\text { subject to } & \operatorname{minimize}_{\operatorname{minimize}} \quad\left\|\left(\boldsymbol{H}_{m}+\boldsymbol{\Delta}_{m}\right)^{H} \boldsymbol{w}\right\|^{2} \geq \sigma_{m}^{2} \tau_{m}, & m=1, \ldots, M \\
& \operatorname{maximize}_{m}\left\|\left(\boldsymbol{G}_{k}+\boldsymbol{\Delta}_{k}^{\prime}\right)^{H} \boldsymbol{w}\right\|^{2} \leq \eta_{k}, & k=1, \ldots, K \\
& \left\|\boldsymbol{\Delta}_{k}^{\prime}\right\| \leq \epsilon_{k}^{\prime}
\end{array}
$$

- The equivalent formulation of the robust problem can be derived:

$$
\begin{array}{lll}
\underset{\boldsymbol{w}}{\operatorname{minimize}} & \boldsymbol{w}^{H} \boldsymbol{w} & \\
\text { subject to } & \left\|\boldsymbol{H}_{m}^{H} \boldsymbol{w}\right\| \geq \sigma_{m} \sqrt{\tau_{m}}+\epsilon_{m}\|\boldsymbol{w}\|, & m=1, \ldots, M \\
& \left\|\boldsymbol{G}_{k}^{H} \boldsymbol{w}\right\| \leq \sqrt{\eta_{k}}-\epsilon_{k}^{\prime}\|\boldsymbol{w}\|, & k=1, \ldots, K .
\end{array}
$$

- By the matrix rank-one decomposition theorems, we identify several polynomially solvable scenarios (corresponding to different

Summary

- We have presented our specific matrix rank-one decomposition techniques, which have manageable computational complexity. The software release based on Matlab has been ready.
- Efficiently solving some nonconvex QCQP problems has showcased one significant application.
- In connection to engineering applications, we have demonstrated two optimal design problems, one from radar and the other from wireless communications.
- The theoretical applications we have displayed include the CDT trust-region problems, S-lemma, the convexity of joint numerical range, and the extension on Yuan's theorem.

[^0]: ${ }^{1}$ A. Conn, N. Gould, and P. Toint, Trust-Region Methods, MPS-SIAM Series on Optimization, 2000.

[^1]: ${ }^{2}$ A. Beck and Y. Eldar, "Strong duality in nonconvex quadratic optimization with two quadratic constraints," SIAM Journal on Optimization, 2006.

[^2]: ${ }^{3}$ Y. Huang, A. De Maio, and S. Zhang, "Semidefinite programming, matrix decomposition, and radar code design," in Convex Optimization in Signal Processing and Communications, D. P. Palomar and Y. C. Eldar, Eds., Cambridge University Press, 2020, ch. 6.

[^3]: ${ }^{4}$ J. Sturm and S. Zhang, "On cones of nonnegative quadratic functions," Mathematics of Operations Research, vol. 28, no. 2, pp. 246-267, 2003.

[^4]: ${ }^{5} \mathrm{~W}$. Ai and S. Zhang, "Strong duality for the CDT subproblem: A Necessary and sufficient condition," SIAM Journal on Optimization, vol. 19, no. 4, pp. 1735-1756, 2009.

[^5]: ${ }^{6}$ Y. Huang and S. Zhang, "Complex matrix decomposition and quadratic programming," Mathematics of Operations Research, vol. 32, no. 3, pp. 758-768, 2007.

[^6]: ${ }^{7} \mathrm{~W}$. Ai, Y. Huang, and S. Zhang, "New results on Hermitian matrix rank-one decomposition," Mathematical Programming: Series A, vol. 128, no. 1-2, pp. 253-283, June 2011.

[^7]: ${ }^{8}$ R. A. Horn and C. R. Johnson. Topics in Matrix analysis. Cambridge University Press, 1991, ch. 1.

[^8]: ${ }^{9}$ F. Hausdorff, "Der Wertvorrat einer Bilinearform," Mathematische Zeitschrift, vol. 3, pp. 314-316, 1919.
 ${ }^{10} \mathrm{~L}$. Brickman, "On the field of values of a matrix," Proceedings of the American Mathematical Society, vol. 12, pp. 61-66, 1961.

[^9]: ${ }^{11}$ W. Ai, Y. Huang, and S. Zhang, "New results on Hermitian matrix rank-one decomposition," Mathematical Programming: Series A, vol. 128, no. 1-2, pp. 253-283, June 2011.

[^10]: ${ }^{12}$ V. A. Yakubovich, "S-procedure in Nonlinear Control Theory," Vestnik Leninggrad Univ., vol. 4, no. 1, pp. 73-93, 1977. (In Russian 1971.)

[^11]: ${ }^{13}$ A. L. Fradkov and V. A. Yakubovich, "The S-procedure and duality relations in nonconvex problems of quadratic programming," Vestnik Leninggrad Univ., vol. 6, pp. 101-109, 1979. (In Russian 1973.)

[^12]: ${ }^{14}$ Y. X. Yuan, "On a subproblem of trust region algorithms for constrained optimization," Mathematical Programming, vol. 47, pp. 53-63, 1990.

[^13]: ${ }^{15} \mathrm{~W}$. Ai, Y. Huang, and S. Zhang, "New results on Hermitian matrix rank-one decomposition," Mathematical Programming: Series A, vol. 128, no. 1-2, pp. 253-283, June 2011.

[^14]: ${ }^{16}$ Y. Huang, Q. Li, W.-K. Ma, and S. Zhang, "Robust multicast beamforming for spectrum sharing-based cognitive radios," IEEE Transactions on Signal Processing, vol. 60, no. 1, pp. 527-533, 2012.

