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Trust-Region Subproblem

• The trust-region subproblem1:

minimize
x

xTQx− 2bT0 x

subject to ‖x‖2 ≤ δ

• Such type of programs are solved repeatedly in the trust region approach to
unconstrained optimization.

• It is a non-convex Quadratically Constrained Quadratic Program (QCQP).

1A. Conn, N. Gould, and P. Toint, Trust-Region Methods, MPS-SIAM Series on Optimization, 2000.
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The CDT Trust-Region Subproblem

• The CDT (Celis, Dennis, Tapia, 1985) trust-region subproblem:

minimize
x

xTQx− 2bT0 x

subject to ‖Ax− b‖2 ≤ δ1
‖x‖2 ≤ δ2

• To solve it in polynomial time, a sufficient condition is needed2.

• QCQP is homogeneous, if all the quadratic functions (of objective and constraint)
have no linear term; otherwise, inhomogeneous.

• For instance, the previous two QCQP problems are in a inhomogeneous form.

2A. Beck and Y. Eldar, “Strong duality in nonconvex quadratic optimization with two quadratic constraints,” SIAM

Journal on Optimization, 2006.
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Optimal Design of Radar Waveform

Consider a scenario of optimum radar detection in the presence of colored disturbance
(caused by interference, clutter, and operating enviroment)3.

3Y. Huang, A. De Maio, and S. Zhang, “Semidefinite programming, matrix decomposition, and radar code design,”
in Convex Optimization in Signal Processing and Communications, D. P. Palomar and Y. C. Eldar, Eds., Cambridge
University Press, 2020, ch. 6.
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• The class of linearly coded pulse trains are considered.

• A sequence of radar code in the transmitted waveforms is determined, with the
goals:

– maximal detection probability;
– constraining CRB for the target Doppler estimation;
– controlling the shape of the resulting coded waveform similar to a known radar

code;
– energy constraint.
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Problem Formulation

• A coherent burst of pulses transmitted at the radar:

s(t) = atu(t) exp[i(2πf0t+ φ)]

– at is the transmit signal amplitude,
– u(t) is the signal’s complex envelop having the form:

u(t) =
N−1∑

j=0

a(j)p(t− jTr) ,

– [a(0), a(1), . . . , a(N − 1)]T ∈ CN is the radar code (the optimization variable),
– p(t) is the signature of the transmitted pulse,
– Tr is the Pulse Repetition Time (PRT),
– f0 is the carrier frequency,
– φ is a random phase.
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• Signal backscattered by a target, and received at the radar:

r(t) = αre
i2π(f0+fd)(t−τ)u(t− τ) + n(t)

– τ is the two-way time delay of the backscattered signal,
– αr is the complex echo amplitude (accounting for the transmit amplitude,

phase, target reflectivity, and channels propagation effects),
– fd is the target Doppler frequency,
– n(t) is additive disturbance due to clutter and thermal noise.

Yongwei Huang 7



Discrete Signal Model

• The received signal is

– down-converted to baseband, and
– filtered through a linear system with impulse response h(t) = p∗(−t), and
– sampled at tk = τ + kTr, k = 0, 1, . . . , N − 1.

• The samples v(tk) form the vector v = [v(t0), v(t1), . . . , v(tN−1)]
T satisfying

v = αc⊙ p+w

– α = αre
−i2πf0τ ,

– c = [a(0), a(1), . . . , a(N − 1)]T is the radar code vector,
– p = [1, ei2πfdTr, . . . , ei2π(N−1)fdTr]T is the temporal steering vector,
– w = [w(t0), w(t1), . . . , w(tN−1)]

T is the filtered disturbance samples, assumed
to be a zero-mean circular Gaussian vector with known covariance

E[wwH] = M .
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Detection Issues: GLRT Detector

• The problem of detecting a target is formulated in terms of the following binary
hypotheses test: 





H0 : v = w

H1 : v = αc⊙ p+w

• The GLRT is given by

|vHM−1(c⊙ p)|2
H1
>
<
H0

G

where G is the detection threshold set according to a desired value of Pfa.

• The detection probability Pd has the analytical expression:

Pd = Q






√

2|α|2(c⊙ p)HM−1(c⊙ p)
︸ ︷︷ ︸

SNR

,
√

−2 lnPfa






where Q(·, ·) denotes the Marcum Q function of order 1.
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Optimal Radar Code Problem

• The radar code is optimally selected, so that

– maximize the detection performance (the detection probability), while
– providing a control both on the target Doppler estimation accuracy and on the

similarity with a given radar code c0.

• The optimal radar code problem is formulated as:

maximize
c

cHRc

subject to cHR1c ≥ δa
‖c− c0‖2 ≤ ǫ

cHc = 1

– R = M−1 ⊙ (ppH)∗,

– R1 = M−1 ⊙ (ppH)∗ ⊙ (uuH)∗, with u = [0, i2π, . . . , i2π(N − 1)]
T
,

– the feasibility of the problem depends on the parameters δa, ǫ, and the pre-fixed
code c0 of unit norm.
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Commonalities

• In general, QCQP has the form:

minimize
x

q0(x) = xHQ0x− 2Re bH0 x

subject to qj(x) = xHQjx− 2Re bHj x+ cj ≤ 0, j = 1, . . . ,m.

• The trust-region problems and the radar code selction problem are non-convex
QCQP, with a few constraints, in either real or complex variables.
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Matrix Rank-One Decomposition: Symmetric PSD Cases

• Theorem4 Let A ∈ S
n. Let X ∈ S

n
+ with rank r. Then there is a rank-one

decomposition for X, i.e., X =
∑r

j=1xjx
T
j , such that

xT
j Axj =

A •X
r

, j = 1, . . . , r.

• The theorem is true for X being a Hermitian PSD.

• It can be shown easily by example that it is only possible to get a complete
rank-one decomposition for one matrix parameter (i.e., A).

• For two matrix parameters, it is possible to get a partial decomposition:

4J. Sturm and S. Zhang, “On cones of nonnegative quadratic functions,” Mathematics of Operations Research, vol.
28, no. 2, pp. 246-267, 2003.
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• Theorem5 Let A1,A2 ∈ S
n, and X ∈ S

n
+ with rank r. If r ≥ 3, then there is a

rank-one decomposition for X, i.e., X =
∑r

j=1xjx
T
j , such that

xT
j A1xj =

A1 •X
r

, j = 1, . . . , r

xT
j A2xj =

A2 •X
r

, j = 1, . . . , r − 2.

• How about the corresponding Hermitian PSD case?

5W. Ai and S. Zhang, “Strong duality for the CDT subproblem: A Necessary and sufficient condition,” SIAM Journal

on Optimization, vol. 19, no. 4, pp. 1735-1756, 2009.
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Matrix Rank-One Decomposition: Hermitian PSD Cases

• Theorem6 Let A1,A2 ∈ Hn, and X ∈ Hn
+ with rank r. Then there is a rank-one

decomposition for X, i.e., X =
∑r

j=1xjx
H
j , such that

xH
j A1xj =

A1 •X
r

, j = 1, . . . , r

xH
j A2xj =

A2 •X
r

, j = 1, . . . , r.

• Can we do more?

6Y. Huang and S. Zhang, “Complex matrix decomposition and quadratic programming,” Mathematics of Operations

Research, vol. 32, no. 3, pp. 758-768, 2007.
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• Theorem7 Let A1,A2,A3 ∈ H
n, and X ∈ H

n
+ with rank r. If r ≥ 3, then there

is a rank-one decomposition for X, i.e., X =
∑r

j=1xjx
H
j , such that

xH
j A1xj =

A1 •X
r

, j = 1, . . . , r

xH
j A2xj =

A2 •X
r

, j = 1, . . . , r

xH
j A3xj =

A3 •X
r

, j = 1, . . . , r − 2.

7W. Ai, Y. Huang, and S. Zhang, “New results on Hermitian matrix rank-one decomposition,” Mathematical

Programming: Series A, vol. 128, no. 1-2, pp. 253-283, June 2011.
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Computational Complexities and Matlab Programs

• The computational complexity of each decomposition theorem is of O(n3).

• The respective proofs of the theorems are constructive, so that it is convenient to
write Matlab programs to perform the specific rank-one decomposition.

• The software release (with a short user guide), based on Matlab, is online at

http://www.math.hkbu.edu.hk/∼huang/dcmp/dcmp.html
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Solving QCQP by Matrix Decomposition

• QCQP has the general form:

minimize
x

q0(x) = xHQ0x− 2Re bH0 x

subject to qj(x) = xHQjx− 2Re bHj x+ cj ≤ 0, j = 1, . . . ,m.

• Let M(q0) =

[

0 −bH0
−b0 Q0

]

, and M (qj) =

[
cj −bHj
−bj Qj

]

, j = 1, . . . ,m.

• QCQP is recast into the homogeneous form (with one more variable and one more
constraint):

minimize
x, t

M(q0) •
[

t

x

] [
t

x

]H

= xHQ0x− 2Re bH0 xt∗

subject to M(qj) •
[

t

x

] [
t

x

]H

= xHQjx− 2Re bHj xt∗ + cj|t|2 ≤ 0, ∀j
|t|2 = 1.
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SDP Relaxation

• The matrix form of the homogenous QCQP can be further written equivalently as

minimize
X

M (q0) •X
subject to M (qj) •X ≤ 0, j = 1, . . . ,m

I00 •X = 1
X � 0, rank(X) = 1

where I00 =

[
1 0

0 0

]

∈ Sn+1.

• If the rank-one constraint is removed, it becomes an SDP, which is called the
SDP relaxation problem.

• The dual problem is:

maximize
Z, {yj}

ym+1

subject to Z = M(q0) +
∑m

j=1 yjM (qj)− ym+1I00 � 0

yj ≥ 0, j = 1, . . . ,m, ym+1 ∈ R.
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Complementary Slackness

• Under suitable conditions, the primal and dual problems have complementary
optimal solutions, X⋆ and Z⋆:

X⋆Z⋆ = 0.

• If we can decompose X⋆ =
∑r

j=1x
⋆
jx

⋆H
j , so that some x⋆

jx
⋆H
j satisfying all the

constraints of the primal SDP problem, then the rank-one matrix will be optimal.

• Now, our matrix rank-one decomposition theorems can help provide a rank-one
optimal solution.
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Consequences of the Matrix Decomposition Theorems

• Generally, the following cases of QCQP are polynomially solvable:

– real QCQP:
∗ m = 1 (m = 2 for the homogeneous instance);
∗ m = 2 (m = 3 for the homogeneous instance) and rankX⋆ ≥ 3;
∗ m = 2 and one inequality constraint is inactive at X⋆.

– complex QCQP:
∗ m = 2 (m = 3 for the homogeneous instance);
∗ m = 3 (m = 4 for the homogeneous instance) and rankX⋆ ≥ 3;
∗ m = 3 and one inequality constraint is inactive at X⋆.

• Particularly, the optimal radar code selection problem is a complex inhomogeneous
QCQP with m = 3, however, it is solvable, thanks to the problem structure that
two of the constraint functions share the same Hessian.

• The solvability is irrelevant to the convexity of the functions.
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Further Theoretical Applications

• Field of values

– The field of values of a n× n matrix A is given by

F(A) = {xHAx | xHx = 1} ⊆ C.

– It is known to be convex8.

• Joint numerical range

– In general, the joint numerical range of matrices is defined by

F(A1, . . . ,Am) =











xHA1x
...

xHAmx





∣
∣
∣
∣
∣
∣

xHx = 1, x ∈ C
n






∈ C

m.

8R. A. Horn and C. R. Johnson. Topics in Matrix analysis. Cambridge University Press, 1991, ch. 1.
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• The convexity of joint numerical range has a long history.

• Theorem9 If A1 and A2 are Hermitian, then F(A1,A2) is a convex set.

• Brickman generalizes the above Hausdorff theorem:

• Theorem10 If A1, A2, and A3 are Hermitian, then the set











xHA1x

xHA2x

xHA3x





∣
∣
∣
∣
∣
∣

x ∈ C
n






∈ R

3.

is a convex cone.

9F. Hausdorff, “Der Wertvorrat einer Bilinearform,” Mathematische Zeitschrift, vol. 3, pp. 314-316, 1919.
10L. Brickman, “On the field of values of a matrix,” Proceedings of the American Mathematical Society, vol. 12, pp.

61-66, 1961.
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An Extension of Brickman’s Theorem

• Theorem11 Suppose that Aj ∈ Hn with n ≥ 3. If

(A1 •X,A2 •X,A3 •X,A4 •X) 6= (0, 0, 0, 0)

for any nonzero X ∈ H
n
+, then













xHA1x

xHA2x

xHA3x

xHA4x







∣
∣
∣
∣
∣
∣
∣
∣

x ∈ C
n







∈ R
4

is a pointed closed convex cone.

11W. Ai, Y. Huang, and S. Zhang, “New results on Hermitian matrix rank-one decomposition,” Mathematical

Programming: Series A, vol. 128, no. 1-2, pp. 253-283, June 2011.
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The S-Procedure

• It is often useful to consider the following implication:

G1(x) ≥ 0, . . . , Gm(x) ≥ 0 ⇒ F (x) ≥ 0.

• A sufficient condition is:

∃τ1 ≥ 0, . . . , τm ≥ 0, such that F (x)−
m∑

j=1

τjGj(x) ≥ 0, ∀x.

• If the condition is also necessary, then this procedure is called lossless.

• S-lemma (real-valued case)12 Suppose that m = 1, and F , G1 are real quadratic
forms (i.e., F (x) = xTFx, G1(x) = xTG1x, and F , G1 are symmetric).
Moreover, there is x0 ∈ R

n such that xT
0G1x0 > 0. Then the S-procedure is

lossless.
12V. A. Yakubovich, “S-procedure in Nonlinear Control Theory,” Vestnik Leninggrad Univ., vol. 4, no. 1, pp. 73-93,

1977. (In Russian 1971.)
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• S-lemma (complex-valued case)13 Suppose m = 2, and F , G1, G2 are Hermitian
quadratic form (i.e., F (x) = xHFx, G1(x) = xHG1x, G2(x) = xHG2x, and
F , G1, G2 are Hermitian). Moreover, there is x0 ∈ C

n such that xH
0 Gjx0 > 0,

j = 1, 2. Then the S-procedure is lossless.

13A. L. Fradkov and V. A. Yakubovich, “The S-procedure and duality relations in nonconvex problems of quadratic
programming,” Vestnik Leninggrad Univ., vol. 6, pp. 101-109, 1979. (In Russian 1973.)
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Extensions on A Result of Yuan

• Theorem14 Let A1,A2 ∈ Sn. If

max{xTA1x,x
TA2x} ≥ 0, ∀x ∈ R

n, (1)

then there are µ1 ≥ 0, µ2 ≥ 0, µ1 + µ2 = 1 such that

µ1A1 + µ2A2 � 0.

• By our decomposition theorems, we can re-prove it. Indeed, we show that (1)
amounts to

max{A1 •X,A2 •X} ≥ 0, ∀X ∈ S
n
+.

• For the Hermitian case, we can do more.

14Y. X. Yuan, “On a subproblem of trust region algorithms for constrained optimization,” Mathematical Programming,
vol. 47, pp. 53-63, 1990.
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• Theorem15 Let A1,A2,A3 ∈ H
n. If

max{xHA1x,x
HA2x,x

HA3x} ≥ 0, ∀x ∈ C
n,

then there are µ1, µ2, µ3 ≥ 0, µ1 + µ2 + µ3 = 1 such that

µ1A1 + µ2A2 + µ3A3 � 0.

• Theorem15 Suppose that Aj ∈ Hn, j = 1, 2, 3, 4, with n ≥ 3, and suppose that
there are λj ∈ R such that λ1A1 + λ2A2 + λ3A3 + λ4A4 ≻ 0. If

max{xHA1x,x
HA2x,x

HA3xxHA4x} ≥ 0, ∀x ∈ C
n,

then there are µj ≥ 0, µ1 + µ2 + µ3 + µ4 = 1 such that

µ1A1 + µ2A2 + µ3A3 + λ4A4 � 0.

15W. Ai, Y. Huang, and S. Zhang, “New results on Hermitian matrix rank-one decomposition,” Mathematical

Programming: Series A, vol. 128, no. 1-2, pp. 253-283, June 2011.
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One More Application: Multicast Beamforming in CR Networks

Consider a scenario of single-group multicast transmission between secondary users
in a spectrum sharing cognitive radio network16.

• The secondary transmitter, equipped with an antenna array, sends common signals
to its users, with the goals:

– sufficient service quality to the secondary users
– no excessive interference to the primary receivers
– minimal transmission power

16Y. Huang, Q. Li, W.-K. Ma, and S. Zhang, “Robust multicast beamforming for spectrum sharing-based cognitive
radios,”IEEE Transactions on Signal Processing, vol. 60, no. 1, pp. 527-533, 2012.
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Signal Models

• Signal transmitted by the secondary transmitter

y(t) = ws(t)

where s(t) ∈ C is the information signal, and w ∈ C
N is the beamvector.

• Signal received by mth secondary user:

xm(t) = HH
my(t) + nm(t)

where Hm is the channel matrix and nm(t) is Gaussian noise vector having zero
mean and covariance σ2

mI.

Yongwei Huang 29



QoS Constraints and Interference Temperature Constraints

• SNR of the mth secondary user

SNRm =
‖HH

mw‖2
σ2
m

.

• The amount of interference generated to kth primal user

‖GH
k w‖2

where Gk is the channel from the secondary transmitter to kth primary user.

• QoS constraints: SNRm ≥ τm for m = 1, . . . ,M .

• Interference temperature (IT) constraints:

‖GH
k w‖2 ≤ ηk for k = 1, . . . ,K.
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Formulation of Robust Optimal Beamforming Problem

• Non-Robust formulation: Minimization of the secondary transmit power subject
to QoS constraints and IT constraints:

minimize
w

wHw

subject to ‖HH
mw‖2 ≥ σ2

mτm, m = 1, . . . ,M

‖GH
k w‖2 ≤ ηk, k = 1, . . . , K.

• Robust formulation:

minimize
w

wHw

subject to minimize
‖∆m‖ ≤ ǫm

‖(Hm +∆m)Hw‖2 ≥ σ2
mτm, m = 1, . . . ,M

maximize
‖∆′

k‖ ≤ ǫ′k

‖(Gk +∆
′

k)
Hw‖2 ≤ ηk, k = 1, . . . ,K.
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• The equivalent formulation of the robust problem can be derived:

minimize
w

wHw

subject to ‖HH
mw‖ ≥ σm

√
τm + ǫm‖w‖, m = 1, . . . ,M

‖GH
k w‖ ≤ √

ηk − ǫ′k‖w‖, k = 1, . . . , K.

• By the matrix rank-one decomposition theorems, we identify several polynomially
solvable scenarios (corresponding to different
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Summary

• We have presented our specific matrix rank-one decomposition techniques, which
have manageable computational complexity. The software release based on Matlab
has been ready.

• Efficiently solving some nonconvex QCQP problems has showcased one significant
application.

• In connection to engineering applications, we have demonstrated two optimal
design problems, one from radar and the other from wireless communications.

• The theoretical applications we have displayed include the CDT trust-region
problems, S-lemma, the convexity of joint numerical range, and the extension on
Yuan’s theorem.
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