Beam Orientation Optimization for Intensity Modulated Radiation Therapy using \mathbf{L}_{21} Minimization

Xun Jia xunjia@ucsd.edu 7/10/12

+

Outline

- Introduction to Radiation Therapy
- Motivation of Beam Orientation Optimization (BOO)
- BOO
 - Model and Rationale
 - Algorithm
 - Validation
- Conclusions

Radiotherapy

- Medical applications of radiation for cancer treatment
 - Discovery of x-ray in 1895
 - First cancer treatment in US in 1896
 - First treatment in MV linear accelerator in 1957
 - Nowadays, $\sim 2/3$ of cancer patients receive therapy as part of their cancer treatment
- Mechanism
 - Damaging the DNA of cancerous cells
- Objectives
 - Deliver a prescribed amount of dose to car
 - Spare radiation dose to surrounding organ

A TrueBeam linear accelerator

+

Linear Accelerator

• A linear accelerator (Linac) produces high energy radiation beams for the treatment

Flexible geometry allows the free placem

• Multi-leaf Collimator (MLC)

To shape the beam and form a fluence

+

IMRT

- Intensity Modulated Radiation Therapy
 - A few beam angels are selected
 - A (non-flat) fluence map is delivered at each beam angle
 - Conformed dose distribution to target
 - Sparing dose to critical organs by beam angle selection and fluence map modulation

Mathematical View

- Discretize fluence maps into beamlets $\{x_{j,\theta}\}$
- Discretize 3D patient body into voxels $i \in T \bigcup C$
 - T --- target, C --- critical organs
- Dose deposition matrix D

• $D_{i,j,\theta}$: the dose to the voxel *i* from the beamlet *j* at angle θ at unit intensity

Patient-specific, determined by ph

• Dose calculation: sum the contribution

$$z_i = \sum_{j \in s_\theta, \theta \in \Theta} D_{i,j,\theta} x_{j,\theta}$$

Mathematical View

- Optimization problem:
 - Determine the values of a set of treatment parameters, such that the dose distribution z_agrees with the prescription dose p
- Objective function
 - Designed for various considerations
 - A typical (and simple) one

$$E = \sum_{i \in T \bigcup C} E_i[z_i]$$

$$E_i[z_i] = \alpha_i \max(0, z_i - p_i)^2 \quad i \in C$$

$$E_i[z_i] = \alpha_i \max(0, z_i - p_i)^2 + \beta_i \max(0, p_i - z_i)^2 \quad i \in T$$

- Dose Volume Histogram:
 - To summarize 3D dose distributions in a graphical 2D format
 - A organ-specific curve V(z) --- at least V% of the organ receives a dose level of z

$$V(z) = 1 - \int_0^z dz' \ p(z')$$

- Ideal DVH curves
- In reality...

Beam Orientation Optimization

- Motivation for BOO
 - IMRT optimization
 - Find fluence maps at a certain angles for a good treatment plan
 - At what angles?

B00

- Notations
 - Fluence map $x_{j,\theta}$
 - Dose deposition matrix $D_{i,j,\theta}$
 - Dose distribution

$$z_i = \sum_{j \in s_\theta, \theta \in \Theta} D_{i,j,\theta} x_{j,\theta}$$

• Find a small set of angles for a good plan

$$\Theta = \operatorname{argmin}_{\Theta} \left[\min_{x_{j,\theta}} E[z] \quad \text{s.t.} \quad \theta \in \Theta, \ x_{j,\theta} \ge 0 \right]$$

- Available approaches
 - Trial-and-error
 - Enumeration
 - Geometry consideration
 - Ranking method

Model

- The idea of sparsity
 - Find a solution that has only a few non-zero elements, such that...
 - For BOO, select only a few beam angles among all candidates
 - Sparsity only at the beam angle level
- Dosimetric objective

$$E_{Dose} = \sum_{i} \alpha_{i} [\max(0, p_{i} - z_{i}(x))]^{2} + \beta_{i} [\max(0, z_{i}(x) - p_{i})]^{2}$$

BOO objective

$$E_{Angle} = \sum_{\theta} \mu_{\theta} \left[\sum_{j} (x_{j,\theta})^2 \right]^{1/2}$$

• Optimization model

$$x = \operatorname{argmin}_{x} \mu E_{Dose} + E_{Angle}$$

L₂₁ Norm

• For a beamlet vector

$$x = (x_{1,1}, x_{2,1}, x_{3,1}, \dots x_{1,2}, x_{2,2}, \dots)$$

• Define L_{21} norm

$$|x|_{2,1} = \sum_{\theta} \left[\sum_{j} (x_{j,\theta})^2\right]^{1/2}$$

• Minimization of an L_{21} norm leads to sparsity only at beam angle level, while treating all beamlets in an angle equally

Algorithm

Optimality condition

$$0 \in \mu \frac{\partial E_{Dose}}{\partial x} + \frac{\partial E_{Angle}}{\partial x}$$

• Split

$$0 \in x - g - \lambda \mu \frac{\partial E_{Dose}}{\partial x}$$

$$0 \in x - g + \lambda \frac{\partial E_{Angle}}{\partial x}$$

• Algorithm

$$g = x - \lambda \mu \frac{\partial E_{Dose}}{\partial x}$$

$$x^{\theta} = x \frac{1}{2} |x - \frac{\lambda \mu_{\theta 2}}{|a^{\theta}|_{2}^{2}}, \theta) \lambda E_{Angle}$$

Algorithm

• Varying
$$\mu_{\theta}$$
 $E_{Angle} = \sum_{\theta} \mu_{\theta} [\sum_{j} (x_{j,\theta})^2]^{1/2} = \sum_{\theta} \mu_{\theta} |x^{\theta}|_2$

large $|x^{\theta}|_2 \to \text{more likely a good angle} \to \text{small } \mu_{\theta}$ Only compare to its neighbors

- A heuristic method to speed up the convergence
 - 1. locate two nearby beams θ_+ and θ_- with non vanishing $|x^{\theta}|_2$

2. find
$$A = \max[|x^{\theta}|_2, |x^{\theta_+}|_2, |x^{\theta_-}|_2]$$

3. compute
$$\mu_{\theta} = \exp[-(\frac{|x^{\theta}|_2}{A} - 1)]$$

Algorithm

- Summary of algorithm
 - Sparsify fluence map:

$$g = x - \lambda \mu \frac{\partial E_{Dose}}{\partial x}$$
$$x^{\theta} = g^{\theta} \max(1 - \frac{\lambda \mu_{\theta}}{|g^{\theta}|_{2}}, 0)$$

Adjust weighting factor

$$\mu_{\theta} = \exp\left[-\left(\frac{|x^{\theta}|_2}{A} - 1\right)\right]$$

• Count the number of beam angles; if more than desired, go back to the first step

Iteration Process

• Objective function value

Iteration Process

Results

• A prostate case

Results

• A head-and-neck case

Varying Beam Angles

- Perform FMO based on given angles and compare the resulting objective function value
- Equiangular plans with various starting angles
- BOO plans are always better than non-BOO plans
- Gain of using more angels become diminishing

Objective Function Values

• Summary of FMO objective function values in all cases

N_A Case	5	6	7	8	9
P1	3218 /4655 [4655-6004]	3026 /6343 [4705-6699]	2966 /4052 [3761-4473]	2725 /4966 [4054-4966]	2610 /3766 [3766-3511]
P2	2098 /2268 [2133-2524]	2023 /2070 [2070-2879]	1824 /1934 [1861-1949]	1812 /2009 [1916-2012]	1703 /1864 [1714-1893]
Р3	1541 /1981 [1554-1981]	1404 /1669 [1669-1948]	1308 /1379 [1379-1569]	1255 /1621 [1410-1621]	1244 /1412 [1272-1424]
P4	1946 /2446 [1930-2446]	1919 /2002 [2002-2250]	1815 /1874 [1845-2035]	1799 /2017 [1972-2042]	1627 /1816 [1691-1939]
P5	2289 /2689 [2391-2834]	2111 /2576 [2433-2815]	1963 /2140 [2132-2250]	1956 /2353 [2188-2373]	1938 /2130 [2003-2188]
H1	191 /185 [185-240]	163 /238 [237-265]	157 /181 [163-181]	155 /189 [172-201]	144 /152 [148-168]

Discussions

• L₂₁ VS L₁₁ norms

$$E[x] = \sum_{\theta} \sum_{i} |x_i^{\theta}|$$
$$E[x] = \sum_{\theta} \left[\sum_{i} (x_i^{\theta})^2\right]^{1/2}$$

ADVANCED

RADIOTHERAPY

TECHNOLOGIES

Conclusion

- Beam Orientation Optimization
 - It can be approximately solved by an L_{21} minimization approach and the problem is convex
 - We developed an efficient algorithm to solve the optimization problem
 - We have validated this approach in patient cases
 - L_{21} is a good approximation to the BOO problem

Acknowledgement

- Collaborators on this project
 - Dr. Steve B. Jiang, UCSD
 - Dr. Chunhua Men, Elekta
 - Dr. Yifei Lou, UCLA
- Many other collaborators
- The whole CART group

