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Section |. Introduction and Application
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Divide and Conquer

An Ancient Strategy

o “WATITI, HAwk”,
“HMIRZ”
—— (IhFIEyk) ( {(SUNTZU,
ART OF WAR) )

#NF (535 - 470 BC)
@ “Divide et impera”
Julius Caesar (100 - 44 BC)

Mathematical Point of View: Split and Alternate
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Splitting Techniques

Case 1: Nondifferentiable Term
minf(x) + g(Bx) J

U
minf(x) + g(y) s.t. Bx—y=0. J

Case 2: Highly Nonconvex
min /(g(x)) J

U
minf(y) s.t. gx)—y=0. J

Case 3: Inconsistent Objective and Constraint
minf(x) s.t. c(x)=0 J

U
minf(x) s.t. ¢(y) =0, x =y. J
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Splitting Instances

Instance 1: Compressive Sensing

min [|Wall; + g‘nAx — b2 J

U
. u 5 -
min |yl + SIAx = bll; st W=y =0, J

Instance 2: Nonlinear £; Minimization

min [[f(x)ll;. J
U
min [[yll;  s.t. f(x) =y. )
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Splitting Instances — Convex Models

Instance 3: Dual Problem of Compressive Sensing (Yang-zhang 2009)

) 1 _
min —b'y + Z||y||§ st. W TATY|le < 1. J

U

. 1 _
min —b'y + Z||y||§ st llzle <1, z=WTTATy. J
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Augmented Lagrangian Method

Equality Constrained Problems

minf(x) s.t. c(x) =0. J

Augmented Lagrangian Function (Henstenes 1969, Powell 1969, Rockafellar 1973)

B

Lpx, ) = ) = ATe@) + Slle@). J

Augmented Lagrangian Method

21— argmin La(x, 5y,

ALM : § A1 dk — 18Ty,
update g if necessary .
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Augmented Lagrangian Method (Cont'd)

Problems with Equality Constraints

r)glglzl f(x) st ocx)=0. J

Augmented Lagrangian Method — Extension

o arg min Lg(x, A5;
xeQ

ALM : /lk+1 — /lk _ TﬂC(xk+1);
update g if necessary .
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Alternating Direction Method of Multiplier

Block Structure

)4
{xler}=ﬂ{x|xi€Ql~}.

i=1

(Augmented Lagrangian) Alternating Direction Method (of Multiplier)
(Glowinski-Marocco 1975, Gabay-Mercier 1976, ...)

x’f“ — argmin,, co, .[Z,g(xl,x’;, ...,x’;,ak);
x’;r1 — arg min,co, .E,g(x’]{“,xz,x';, ...,xlli,/lk);
ADMM : ¢ ......

xpt! e argmin, co, L(x), .. kf]],xp,/lk)

Al ok Tﬁc(x’l‘“, s I’;”).
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Applications |

Phase Retrieval (wen-Yang-L.)
@ X-ray crystallography, transmission electron microscopy
@ Original model:
k

. 1 - 2
e Z 5 171 = b, J

i=1

@ Reformulation:
k
: 1 o
min le§|||zi|—b,-u§ St o= FOd. =1k J

I,@EC",ZEC’”X"

i=

@ Augmented Lagrange function:
k

1
Ly w,y) = ) (Emzlw = billy + Y (F Qiy — z) + §||9-'in - z,-n%) J

i=1
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Applications |

Portfolio Optimization (wen-Peng-L.-Bai-Sun)
@ Asset Allocation under the Basel Accord Risk Measures
(Value-at-Risk) — integer programming
@ Original model:

min (-R s
uely, ( M)(p) J

where U, = {u € RY | uu > ro, 1Tu = 1,u > 0}; () refers to the p-th
smallest component of a vector.
@ Reformulation:

ue’L{rO, x€eR?

min _ x, st x+Ru=0. J

@ Augmented Lagrange function:

Lp(x,u, ) = x¢y) — /lT(x + Ru) + éllx + Rullz.
% ®) >
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Applications Il

Matrix Factorization (zhang et al.)

@ Nonnegative matrix factorization, structure enforcing matrix
factorization

@ Original model:

min  A-WH'|E st WeT, HeTs,
WeR"’Xk, HeRnxk

where Ty, T, can be {X | X'X = I}, or {X | X > 0},
or any other matrix sets allowing ‘easy projection’

@ Reformulation:

min ~WH'IE st W=S, H=S5,.
W, H, S€T), S2€T> A I ! 2

@ Augmented Lagrange function:
L pyW,H,S1,5,N) = |A-WH'|2 - Ay e(W-5))
Ay H =5 + ELw-siR+ 22 - sa1p.
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Brief Introduction

Intuition
@ “Splitting” brings easy subproblem
@ “Splitting” induces equality constraint — Augmented Lagrange

@ “Alternating” solves the split targets in turn
@ From line search to ADM
e Line search based optimization - one dimensional subspace
e Subspace method - multi-dimensional subspace
o ADMM - high-order subspaces
Convergence Based on Strict Conditions

@ Two blocks, joint convexity, separability (Gabay-Mercier 1976)
@ Multiple blocks, variant versions (He, Yuan et al., Goldfarb and Ma, etc.)
e complexity e acceleration e customization

@ Two blocks, linear convergence rate (Yin-Deng 2012)
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Some New Results

Towards a General Scheme
— nonconvex and nonseparable cases
@ Local convergence and rate (Yang-L.-Zhang)
@ Global convergence (L.-Yang-Zhang)
@ under some assumptions (ongoing)
e special case: multiple blocks,
separable + strongly convex + second order differentiable
Nonlinear Splitting and Iteration Scheme
@ Original Nonlinear System: F : R* — R”
@ Splitting: G : R" xR" —» R”
i.e. G(x,x) := L(x) — R(x) = F(x). 0,G £ 0,G, and 9,G £ -0,G.
@ Consider G(x, x, 1) to be a splitting of F := V, Lg(x, 1)
@ A generalized ADMM scheme:
1 G, 5K, %) = 0; J

GADMM :
{ A KB,
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Local Convergence Result

Error System

¢t = M@t + o(lle])) |
where
v [01G*]7'0,G* [0:G* 17 (V)T
O =1 Ve 9,6G10:,G T =1V [0,G ]\ (Ver)T

Local convergence:
° ek A ((xk _ x*)T’ (/lk _ /l*)T)T
@ Implicit Function Theorem + Taylor Expansion

@ Assumptions: V. Lg(x*, ") > 0 and Vc(x*) full row rank
@ Results:

e local convergence: An >0, pM(1)) <1, VY7e(0,n);
o R-linear rate: p(M(7)).
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Global Convergence

Relative Error System
ek+1 = M(T)kek J

where

My =| PiGil'8:Gy Gl AT
—7tA[0,G17'9,GY, 1 -7A[0,G]7'A

Global convergence:
0 & 2 (O = XI)T, Ak = A-HyTT
@ Mean Value Theorem + Average Hessian (9,G%, 6,G¥))
@ Difficulty: non-stationary iteration
L strongly convex and V.£g is Lipschitz continuous =
p(M(1)*) < 1 — € (Vk) @ global convergence

Xin Liu (AMSS) ADMM July 1st, 2012 18/22



Global Convergence (Cont'd)

> Restriction (ongoing)
o M)l < 1 - € (Yk)
@ Assumptions:
e linear constraints e block-wise convexity
e second order differentiability e block diagonal dominance
@ Result: global convergence

Special Case
@ Assumptions:
e separability: ,G%, constant, 9, G non-stationary in block diagonal
o strongly convexity e linear constraints e second order differentiability
@ Result:

e d8>0anddn > 0;
@ global convergence, Y8 € (0,58), Yt € (0, 7).
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Section Ill. Conclusion and Future works
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Conclusion
@ Powerful tool for hard optimization problem with structure;
@ Lack of convergence results for nonconvex problems;
@ Excellent performance in practice.

Future Works
@ There is still room for further improvement of the algorithm;

@ Convergence results for lots of known successful cases are still
unclear;

@ Gap from the stationary point to the global optimizer.
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Thank you for your attention!

Email: liuxin@lsec.cc.ac.cn
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