
5 Quadratically Constrained Quadratic Optimization

A class of optimization problems that has frequently arisen in applications is that of quadratically
constrained quadratic optimization problems (QCQPs); i.e., problems of the form

minimize xTQx

subject to xTAix ≥ bi for i = 1, . . . ,m,
(10)

where Q,A1, . . . , Am ∈ Sn are given. In general, due to the non–convexity of the objective function
and constraints, problem (10) is intractable. Nevertheless, it can be tackled by the so–called
semidefinite relaxation technique. To introduce this technique, we first observe that for any
Q ∈ Sn,

xTQx = tr(xTQx) = tr(QxxT ).

Hence, problem (10) is equivalent to

minimize tr(QxxT )

subject to tr(Aixx
T ) ≥ bi for i = 1, . . . ,m.

Now, using the spectral theorem for symmetric matrices (see Section 3.1 of Handout B), one can
verify that

X = xxT ⇐⇒ X ⪰ 0, rank(X) ≤ 1.

It follows that problem (10) is equivalent to the following rank–cosntrained SDP problem:

minimize tr(QX)

subject to tr(AiX) ≥ bi for i = 1, . . . ,m,

X ⪰ 0, rank(X) ≤ 1.

(11)

The advantage of the formulation in (11) over that in (10) is that it reveals where the difficulty of
the problem lies; namely, in the non–convex constraint rank(X) ≤ 1. By dropping this constraint,
we obtain the following semidefinite relaxation of problem (10):

minimize tr(QX)

subject to tr(AiX) ≥ bi for i = 1, . . . ,m,

X ⪰ 0.

(12)

Note that problem (12) is an SDP, and hence can be efficiently solved. Of course, an optimal
solution X∗ to problem (12) may not even be feasible for problem (10), since we need not have
rank(X∗) ≤ 1. Moreover, it is generally impossible to convert X∗ into an optimal solution x∗

to problem (10). However, as it turns out, it is often possible to extract a near–optimal solution
to problem (10) from an optimal solution to problem (12). In the next section, we will illustrate
how this can be done for a well–known combinatorial problem—the Maximum Cut Problem (Max–
Cut). For a survey of the theory and the many applications of the semidefinite relaxation technique,
see [18].
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5.1 An Approximation Algorithm for Maximum Cut in Graphs

Suppose that we are given a simple undirected graph G = (V,E) and a function w : E → R+ that
assigns to each edge e ∈ E a non–negative weight we. The Maximum Cut Problem (Max–Cut) is
that of finding a set S ⊂ V of vertices such that the total weight of the edges in the cut (S, V \S);
i.e., sum of the weights of the edges with one endpoint in S and the other in V \S, is maximized.
By setting wij = 0 if (i, j) ̸∈ E, we may denote the weight of a cut (S, V \S) by

w(S, V \S) =
∑

i∈S,j∈V \S

wij , (13)

and our goal is to choose a set S ⊂ V such that the quantity in (13) is maximized. The Max–Cut
problem is one of the fundamental computational problems on graphs and has been extensively
studied by many researchers. It has been shown that the Max–Cut problem is unlikely to have
a polynomial–time algorithm (see, e.g, [12]). On the other hand, in a seminal work, Goemans and
Williamson [13] showed how SDP can be used to design a 0.878–approximation algorithm for the
Max–Cut problem; i.e., given an instance (G,w) of the Max–Cut problem, the algorithm will
find a cut (S, V \S) whose value w(S, V \S) is at least 0.878 times the optimal value. In this section,
we will describe the algorithm of Goemans and Williamson and prove its approximation guarantee.

To begin, let (G,w) be a given instance of the Max–Cut problem, with n = |V |. Then, we
can formulate the Max–Cut problem as an integer quadratic program, viz.

v∗ = maximize
1

2

∑
(i,j)∈E

wij(1− xixj)

subject to x2i = 1 for i = 1, . . . , n.

(14)

Here, the variable xi indicates which side of the cut vertex i belongs to. Specifically, the cut
(S, V \S) is given by S = {i ∈ {1, . . . , n} : xi = 1}. Note that if vertices i and j belong to the same
side of a cut, then xi = xj , and hence its contribution to the objective function in (14) is zero.
Otherwise, we have xi ̸= xj , and its contribution to the objective function is wij(1− (−1))/2 = wij .

In general, problem (14) is hard to solve. Thus, we consider relaxations of (14). One approach
is to observe that both the objective function and the constraints in (14) are linear in xixj , where
1 ≤ i, j ≤ n. In particular, if we let X = xxT ∈ Rn×n, then problem (14) can be written as

v∗ = maximize
1

2

∑
(i,j)∈E

wij(1−Xij)

subject to diag(X) = e,

X = xxT .

(15)

Since X = xxT iff X ⪰ 0 and rank(X) ≤ 1, from our earlier discussion, we can drop the non–convex
rank constraint and arrive at the following relaxation of (15):

v∗sdp = maximize
1

2

∑
(i,j)∈E

wij(1−Xij)

subject to diag(X) = e,

X ⪰ 0.

(16)
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Note that (16) is an SDP. Moreover, since (16) is a relaxation of (15), we have v∗sdp ≥ v∗.
Now, suppose that we have an optimal solution X∗ to (16). In general, the matrix X∗ need not

be in the form xxT , and hence it does not immediately yield a feasible solution to (15). However,
we can extract from X∗ a solution x′ ∈ {−1, 1}n to (15) via the following randomized rounding
procedure:

1. Compute the Cholesky factorization X∗ = UTU of X∗, where U ∈ Rn×n. Let ui ∈ Rn be the
i–th column of U . Note that ∥ui∥22 = 1 for i = 1, . . . , n.

2. Let r ∈ Rn be a vector uniformly distributed on the unit sphere Sn−1 = {x ∈ Rn : ∥x∥2 = 1}.

3. Set x′i = sgn
(
uTi r

)
for i = 1, . . . , n, where

sgn(z) =

{
1 if z ≥ 0,

−1 otherwise.

In other words, we choose a random hyperplane through the origin (with r as its normal) and
partition the vertices according to whether their corresponding vectors lie “above” or “below” the
hyperplane.

Since the solution x′ ∈ {−1, 1}n is produced via a randomized procedure, we are interested in
its expected objective value; i.e.,

1

2
E

 ∑
(i,j)∈E

wij

(
1− x′ix

′
j

) =
1

2

∑
(i,j)∈E

wijE
[
1− x′ix

′
j

]
=

∑
(i,j)∈E

wij Pr
[
sgn

(
uTi r

)
̸= sgn

(
uTj r

)]
.

(17)
The following theorem provides a lower bound on the expected objective value (17) and allows us
to compare it with the optimal value v∗sdp of (15).

Theorem 1 Let u, v ∈ Sn−1, and let r be a vector uniformly distributed on Sn−1. Then, we have

Pr
[
sgn

(
uT r

)
̸= sgn

(
vT r

)]
=

1

π
arccos

(
uT v

)
. (18)

Furthermore, for any z ∈ [−1, 1], we have

1

π
arccos(z) ≥ α · 1

2
(1− z) > 0.878 · 1

2
(1− z), (19)

where

α = min
0≤θ≤π

2θ

π(1− cos θ)
.

Proof To establish (18), observe that by symmetry, we have

Pr
[
sgn

(
uT r

)
̸= sgn

(
vT r

)]
= 2Pr

(
uT r ≥ 0, vT r < 0

)
.

Now, by projecting r onto the plane containing u and v, we see that uT r ≥ 0 and vT r < 0 iff the
projection lies in the wedge formed by u and v. Since r is chosen from a spherically symmetric
distribution, its projection will be a random direction on the plane containing u and v. Hence, we
have

Pr
(
uT r ≥ 0, vT r < 0

)
=

arccos
(
uT v

)
2π

,
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as desired.
To establish the first inequality in (19), consider the change of variable z = cos θ. Since z ∈

[−1, 1], we have θ ∈ [0, π]. Thus, it follows that

1

π
arccos(z) =

θ

π
=

2θ

π(1− cos θ)
· 1
2
(1− cos θ) ≥ α · 1

2
(1− z),

as desired. The second inequality in (19) can be established using calculus and we leave the proof
to the readers. ⊔⊓

Corollary 1 Given an instance (G,w) of the Max–Cut problem and an optimal solution to (16),
the randomized rounding procedure above will produce a cut (S′, V \S′) whose expected objective
value satisfies w(S′, V \S′) ≥ 0.878v∗.

Proof Let x′ be the solution obtained from the randomized rounding procedure, and let S′ be the
corresponding cut. By (17) and Theorem 1, we have

E
[
w(S′, V \S′)

]
=

1

π

∑
(i,j)∈E

wij · arccos
(
uTi uj

)
≥ 0.878 · 1

2

∑
(i,j)∈E

wij

(
1− uTi uj

)
= 0.878v∗sdp

≥ 0.878v∗,

as desired. ⊔⊓

6 Sparse Principal Component Analysis

Principal Component Analysis (PCA) (see, e.g, [23]) is a very important tool in data analysis. It
provides a way to reduce the dimension of a given data set, thus revealing the sometimes hidden
underlying structure of and facilitating further analysis on the data set. To motivate the problem
of finding principal components, consider the following scenario. Suppose that we are interested
in some attributes X1, . . . , Xn of a population. In order to estimate the values of these attributes,
one may sample from the population. Specifically, let Xij be the value of the j–th attribute of the
i–th individual, where i = 1, . . . ,m and j = 1, . . . , n. For j, k = 1, . . . , n, define

X̄j =
1

m

m∑
i=1

Xij , σjk =
1

m

m∑
i=1

(Xij − X̄j)(Xik − X̄k)

to be the sample mean of Xj and the sample covariance between Xj and Xk, respectively. Define
Σ = [σjk]j,k to be the sample covariance matrix. The goal is then to find the principal compo-
nents u1, . . . , un such that the linear combination

∑n
j=1 ujXj has maximum sample variance. In

other words, we would like to solve the following problem:

max
∥u∥2≤1

uTΣu, (20)
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