
1

Decentralized Low-Rank Matrix Completion

Qing Ling1, Yangyang Xu2, Wotao Yin2, Zaiwen Wen3

1. Department of Automation, University of Science and Technology of China
2. Department of Computational and Applied Mathematics, Rice University

3. Department of Mathematics, Shanghai Jiaotong University



2

Outline

Background: matrix completion
centralized decentralized

Problem formulation
nonconvex matrix factorization model + decentralized computing 

Algorithm design
Gauss-Seidel + decentralized implementation (with the ADM)

Simulation and conclusion

Keywords: matrix completion matrix factorization ADM/ADMM
decentralized computing



3

Background (I): matrix completion

Matrix completion problem
Knowing some entries of a matrix, to recover the others
Important prior: the matrix is low-rank

Related applications
Collaborative filtering
Internet traffic analysis
Sensor node localization



4

Background (II): decentralized matrix completion

Distributed data in distributed agents & no fusion center
Privacy, cost of data collection, etc
Decentralized computing with limited information exchange



5

Problem formulation (I): two models

A connected network with L distributed agents
Agent i observes some entries of a data matrix
The whole data matrix is with rank r<<min(N, M) 

Observation over a subset

Nonconvex matrix factorization model

Convex nuclear norm minimization model



6

Problem formulation (II): decentralized computing

Decentralized matrix completion with the nonconvex model

Public matrix X: common to all agents
Private matrix Yi: held by agent i



7

Problem formulation (III): nonconvex vs. convex

Nonconvex vs. convex in decentralized computing
Nonconvex: efficient computation of X and Yi (and Zi)
Convex: decentralized SVD as a subroutine



8

Algorithm design (I): Gauss-Seidel method

Centralized Gauss-Seidel method: LMaFit

projection

[WYZ10] Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank factorization model for matrix completion by a 
non-linear successive over-relaxation algorithm. Mathematical Programming Computation, To Appear



9

Algorithm design (I): Gauss-Seidel method

Centralized Gauss-Seidel method: LMaFit

A simple but nontrivial revision: replace X(t+1) with

Since we care about Z other than X and Y



10

Algorithm design (II): decentralized implementation

If agent i knows X(i)=X, the updates of Yi and Zi are easy

Y-update

Z-update

How to update X(i)? Choose c=1/L:

X-update is average consensus



11

Algorithm design (III): average consensus

Zi(t)Yi
T(t) Zj(t)Yj

T(t)

How to let all agents have the average? 
Communicating with neighbors and updating the value



12

Algorithm design (IV): average consensus

Exactly solving the average consensus problem
Randomized gossip, alternating direction method (ADM)
Iterative algorithm: dividing each iteration into S slots 

The ADM is a powerful tool for decentralized optimization

[B1999] D. Bertsekas. Numerical Optimization, Second Edition. Athena Scientific, 1999
[SRG2008] I. Schizas, A. Ribeiro, and G. Giannakis. Consensus in ad hoc WSNs with noisy links - Part I: Distributed
estimation of deterministic signals. IEEE Transactions on Signal Processing, 2008
[LTYY2012] Q. Ling, M. Tao, W. Yin, and X. Yuan. A multi-block alternating direction method with parallel splitting 
for decentralized consensus optimization. Journal of Wireless Communications and Networking, Submitted



13

Algorithm design (IV): average consensus

Exactly solving the average consensus problem
Randomized gossip, alternating direction method (ADM)
Iterative algorithm: dividing each iteration into S slots 

Exact average consensus iterates with the ADM

multiplier
positive constant neighbors



14

Algorithm design (V): inexact average consensus

Exact average consensus
Optimal when the network is connected
The decentralized algorithm = the centralized algorithm
Extra communication & coordination costs 

Inexact average consensus
Simply let S=1 in the ADM; no more iterates
Different from the centralized algorithm 



15

Algorithm design (V): optimization framework

Updating own private from own public

Updating own public from own private & neighboring public

Question: can we protect the private information Zi and Yi?



16

Simulation (I): simulation settings

Network settings
L=25 agents are randomly distributed in a 100×100 area
Two agents are neighbors if their distance < 30

Data settings
N=300 rows, M=500 columns, 20 columns per agent
100×p percent randomly chosen entries can be observed
True rank K=4

Performance evaluation: relative error



17

Simulation (II): convergence

Estimated rank r=4=K

Decentralized = centralized
Linear convergence rate

Estimated rank r=6>K

Decentralized > centralized
Centralized with adaptive rank

Knowing 80% data, p=0.8



18

Conclusion

Concluding remarks
Discuss matrix completion in a decentralized manner
Use a nonconvex matrix factorization model
Main feature: private <-> public
Gauss-Seidel for private, average consensus for public 

Open questions
When can we protect data privacy?
Convergence? Nonconvex model + inexact average consensus



19

Thank you!


