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Outline

Background: matrix completion
centralized decentralized

Problem formulation
nonconvex matrix factorization model + decentralized computing 

Algorithm design
Gauss-Seidel + decentralized implementation (with the ADM)

Simulation and conclusion
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Background (I): matrix completion

Matrix completion problem
Knowing some entries of a matrix, to recover the others
Important prior: the matrix is low-rank

Related applications
Collaborative filtering
Internet traffic analysis
Sensor node localization
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Background (II): decentralized matrix completion

Distributed data in distributed agents & no fusion center
Privacy, cost of data collection, etc
Decentralized computing with limited information exchange
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Problem formulation (I): two models

A connected network with L distributed agents
Agent i observes some entries of a data matrix
The whole data matrix is with rank r<<min(N, M) 

Observation over a subset

Nonconvex matrix factorization model

Convex nuclear norm minimization model
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Problem formulation (II): decentralized computing

Decentralized matrix completion with the nonconvex model

Public matrix X: common to all agents
Private matrix Yi: held by agent i
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Problem formulation (III): nonconvex vs. convex

Nonconvex vs. convex in decentralized computing
Nonconvex: efficient computation of X and Yi (and Zi)
Convex: decentralized SVD as a subroutine
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Algorithm design (I): Gauss-Seidel method

Centralized Gauss-Seidel method: LMaFit

projection

[WYZ10] Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank factorization model for matrix completion by a 
non-linear successive over-relaxation algorithm. Mathematical Programming Computation, To Appear
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Algorithm design (I): Gauss-Seidel method

Centralized Gauss-Seidel method: LMaFit

A simple but nontrivial revision: replace X(t+1) with

Since we care about Z other than X and Y
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Algorithm design (II): decentralized implementation

If agent i knows X(i)=X, the updates of Yi and Zi are easy

Y-update

Z-update

How to update X(i)? Choose c=1/L:

X-update is average consensus
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Algorithm design (III): average consensus

Zi(t)Yi
T(t) Zj(t)Yj

T(t)

How to let all agents have the average? 
Communicating with neighbors and updating the value
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Algorithm design (IV): average consensus

Exactly solving the average consensus problem
Randomized gossip, alternating direction method (ADM)
Iterative algorithm: dividing each iteration into S slots 

The ADM is a powerful tool for decentralized optimization

[B1999] D. Bertsekas. Numerical Optimization, Second Edition. Athena Scientific, 1999
[SRG2008] I. Schizas, A. Ribeiro, and G. Giannakis. Consensus in ad hoc WSNs with noisy links - Part I: Distributed
estimation of deterministic signals. IEEE Transactions on Signal Processing, 2008
[LTYY2012] Q. Ling, M. Tao, W. Yin, and X. Yuan. A multi-block alternating direction method with parallel splitting 
for decentralized consensus optimization. Journal of Wireless Communications and Networking, Submitted
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Algorithm design (IV): average consensus

Exactly solving the average consensus problem
Randomized gossip, alternating direction method (ADM)
Iterative algorithm: dividing each iteration into S slots 

Exact average consensus iterates with the ADM

multiplier
positive constant neighbors
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Algorithm design (V): inexact average consensus

Exact average consensus
Optimal when the network is connected
The decentralized algorithm = the centralized algorithm
Extra communication & coordination costs 

Inexact average consensus
Simply let S=1 in the ADM; no more iterates
Different from the centralized algorithm 



15

Algorithm design (V): optimization framework

Updating own private from own public

Updating own public from own private & neighboring public

Question: can we protect the private information Zi and Yi?
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Simulation (I): simulation settings

Network settings
L=25 agents are randomly distributed in a 100×100 area
Two agents are neighbors if their distance < 30

Data settings
N=300 rows, M=500 columns, 20 columns per agent
100×p percent randomly chosen entries can be observed
True rank K=4

Performance evaluation: relative error
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Simulation (II): convergence

Estimated rank r=4=K

Decentralized = centralized
Linear convergence rate

Estimated rank r=6>K

Decentralized > centralized
Centralized with adaptive rank

Knowing 80% data, p=0.8



18

Conclusion

Concluding remarks
Discuss matrix completion in a decentralized manner
Use a nonconvex matrix factorization model
Main feature: private <-> public
Gauss-Seidel for private, average consensus for public 

Open questions
When can we protect data privacy?
Convergence? Nonconvex model + inexact average consensus
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Thank you!


