
DISTRIBUTED NETWORK RESOURCE ALLOCATION WITH INTEGER CONSTRAINTS

Yujiao Cheng, Houfeng Huang, Gang Wu, Qing Ling

Department of Automation, University of Science and Technology of China, Hefei, China

ABSTRACT

This paper considers the resource allocation problem defined over a
hybrid data center and edge server network, where the allocations
are subject to integer constraints, taking the granularity of network
resources and service requests into account. We develop two ef-
ficient heuristic algorithms to solve this nonconvex program, both
based on the alternating direction method of multipliers (ADMM)
and a distributed integral projection scheme. The first algorithm ig-
nores the integer constraints and solves the relaxed convex program,
while the second algorithm includes the integer constraints in the
optimization process. We develop a distributed integral projection
scheme, which approximately projects the resulting resource alloca-
tion strategies onto the feasible set. Numerical experiments validate
the effectiveness of the proposed algorithms.

Index Terms— Cloud computing, edge computing, network re-
source allocation, integer programming

1. INTRODUCTION

This paper considers the resource allocation problem defined over
a hybrid data center and edge server network. The hybrid network,
as depicted in Fig. 1, is composed of one virtual cloud center and
multiple edge servers. Upon receiving service requests (for example,
computation or storage tasks) from end users, the edge servers either
process the requests by themselves or assign them to neighboring
edge servers and the cloud center. We say that two edge servers are
neighbors if they are connected with a low-latency communication
link. The communication links between the edge servers and the
cloud center generally have high communication latency. The role
of the edge servers is enabling quick response to the requests in spite
of their limited computation and storage powers. The cloud server
can utilize almost infinite computation and storage resources, but it
often incurs considerable communication cost. Therefore, the hybrid
network infrastructure combines the advantages of cloud computing
[1] and edge computing [2, 3], and provides the end users on-site,
elastic and autonomous services.

The key of implementing such a hybrid network is efficient net-
work resource allocation, which allocates network resources (for ex-
ample, computation and storage resources of the edge servers and
the cloud center, as well as bandwidth resources of the communica-
tion links) to handle the service requests, for the purpose of maxi-
mizing the utility of the whole network. Most of the existing net-
work resource allocation models and algorithms only consider the
collaboration either among distributed nodes [4, 5, 6], or between
one centralized master node and multiple distributed slave nodes [7].
In the recent work [8], the authors propose a collaborative network
resource allocation model, which allows joint optimization of the
hybrid cloud center and edge server network.

Qing Ling is supported in part by NSF China grant 61573331 and NSF
Anhui grant 1608085QF130.

Fig. 1. Illustrative infrastructure of a hybrid cloud center and edge
server network.

However, the optimization model proposed in [8] does not take
the granularity of network resources and service requests into ac-
count. Therein, a request can be divided into arbitrarily small pieces,
and assigned to different edge servers and the cloud center. This is
not favorable for two reasons. First, a resource in the network often
has been divided into blocks; hence, it is inefficient to handle those
artificially generated small pieces of requests since they still occupy
whole blocks. Second, an end user may also prefer that a certain
batch of data is processed or stored in one, not multiple places.

This fact motivates us to introduce integer constraints into the
collaborative network resource allocation model, where the assign-
ments of requests must be integers. The integer constraints, however,
bring challenges to design efficient distributed algorithms. Classi-
cal integer programming approaches, such as the branch and bound
method, is computationally costly and does not fit for distributed im-
plementation in a network environment [9].

This paper develops efficient heuristic algorithms to solve this
nonconvex program, both based on the alternating direction method
of multipliers (ADMM) and a distributed integral projection scheme.
ADMM is a powerful operator splitting algorithm, which has found
successful application in distributed optimization problems [8, 10,
11]. Though usually used to solve convex programs, it is also appli-
cable to nonconvex programs, such as those with integer constraints
[12]. The proposed distributed integral projection scheme projects
a real-valued network resource allocation strategy to an integral one
and guarantees its feasibility. Our contributions are as three-fold.

(i) We propose an integer-constrained network resource alloca-
tion model for the hybrid cloud center and edge server net-
work, where the granularity of service requests and assign-
ments is taken into consideration.

(ii) We develop two distributed network resource allocation algo-
rithms based on ADMM. The first algorithm ignores the inte-
ger constraints and solves the relaxed convex program, while
the second algorithm includes the integer constraints in the
optimization process.

(iii) We devise a distributed integral projection scheme, which
projects a real-valued network resource allocation strategy
onto the feasible set with integral constraints.

The remainder of the paper is organized as follows. Section 2
puts forward the collaborative resource allocation model with inte-
ger constraints. Section 3 proposes two distributed resource alloca-
tion algorithms. Numerical experiments are provided in Section 4,
demonstrating the effectiveness of the proposed algorithms.

2. NETWORK RESOURCE ALLOCATION MODEL

Consider the hybrid cloud edge server and cloud center network that
responses to the service requests from end users, as illustrated in Fig.
1. To simplify the discussion, we assume that there is only one kind
of service request (we consider computation in this paper) and the
amount of every service request can be quantified as an integer (for
example, an integral number of MB of data to process). The gran-
ularity of the service request is a system parameter, which is deter-
mined by the size of network resource blocks and the requirements
of end users.

Given a hybrid network with one cloud center and N edge
servers, we call the cloud center as node 0 and the edge servers are
labelled from node 1 to node N . The network is hence represented
as a bidirectionally connected communication graph. We use Ni

to denote the set of neighbors for edge server i. The cloud center
is connected to every edge server, but is not treated as a neighbor.
Denote lij as the latency of link (i, j). If two edge servers i and
j are neighbors (namely, i ∈ Nj and j ∈ Ni), the latency lij is
assumed to be small. The latency between the cloud center (namely,
node 0) and edge server i, denoted by l0i, is often large. The amount
of service requests collected by edge server i from the end users is
si ∈ Z+, where Z+ denotes the set of nonnegative integers. Edge
server i can assign these service requests to node j, j ∈ Ni ∪ i ∪ 0,
and the assignment is denoted by xij ∈ Z+. To satisfy the service
requests, for every edge server i it must hold si =

∑

j∈Ni∪i∪0
xij .

For a single edge server i, the goal is to minimize two parts
of cost: the first is the latency cost fi(·) when it assigns requests
to its neighboring edge servers and the cloud center; the second is
the computation cost gi(·) to handle the assignments received from
itself and its neighbors. For the cloud center, its computation cost
is defined by g0(·) for handling the assignments received from the
edge servers. Defining xi = [xi0; xi1; · · · ; xiN] ∈ ZN+1

+ as the
assignment vector of edge server i, a typical choice of fi(·) is

fi(xi) = qsi(
∑

j∈Ni∪0

xij lij
si

)2,

which is also used in [10]. Therein, q is a weight factor that
tunes the relative importance of the latency and computation costs;
∑

j∈Ni∪0
xij lij/si is the average latency for edge server i. The

computation costs gi(·) and g0(·) are properly chosen to be strictly
increasing functions, with gi(·) being much larger than g0(·) when
their arguments are the same.

Thus, the resource allocation problem is in the form of

min
N

∑

i=1

fi(xi) +
N

∑

i=1

gi(
∑

j∈Ni∪i

xji) + g0(
N

∑

j=1

xj0), (1)

s.t. si =
∑

j∈Ni∪i∪0

xij , i = 1, · · · , N,

xij ∈ Z+, i = 1, · · · , N, j ∈ Ni ∪ i ∪ 0.

3. ALGORITHM DEVELOPMENT

The main challenges of solving (1) are two-fold. First, the compu-
tation must be distributed to the nodes for the sake of being real-
time and robust. Second, the integer constraints make the prob-
lem nonconvex such that finding the global optimal solution be-
comes intractable. In this section, we propose two distributed algo-
rithms, both based on the alternating direction method of multipliers
(ADMM). The first algorithm applies the idea of convex relaxation
by dropping off the integer constraints during the optimization pro-
cess. We call this algorithm as ADMM-CR. The second algorithm,
termed as ADMM-NC, uses ADMM to directly solve the noncon-
vex program. In both algorithms, the solved real-valued network
resource allocation strategy is projected to an integral one using a
distributed integral projection scheme after termination.

3.1. Algorithm 1: ADMM-CR

Throwing away the integer constraints and introducing auxiliary
variables yji = xij , ∀i, ∀j, (1) is relaxed to

min
N

∑

i=1

fi(xi) +
N

∑

i=1

gi(
∑

j∈Ni∪i

yij) + g0(
N

∑

j=1

y0j), (2)

s.t. si =
∑

j∈Ni∪i∪0

xij , i = 1, · · · , N,

xij = yji, i = 1, · · · , N, j ∈ Ni ∪ i ∪ 0,

xij ≥ 0, i = 1, · · · , N, j ∈ Ni ∪ i ∪ 0.

Let ai and cij be the Lagrange multipliers of the equality con-
straints si =

∑

j∈Ni∪i∪0
xij and xji = yij , respectively. The aug-

mented Lagrangian function of (2) is

Lρ =

N
∑

i=1

fi(xi) +

N
∑

i=1

gi(
∑

j∈Ni∪i

yij) + g0(

N
∑

j=1

y0j) (3)

+
N

∑

i=1

ai(
∑

j∈Ni∪i∪0

xij − si) +
ρ

2

N
∑

i=1

(
∑

j∈Ni∪i∪0

xij − si)
2

+

N
∑

i=1

∑

j∈Ni∪i∪0

cji(xij − yji) +
ρ

2

N
∑

i=1

∑

j∈Ni∪i∪0

(xij − yji)
2,

subject to xij ≥ 0, i = 1, · · · , N, j ∈ Ni ∪ i ∪ 0. Here, ρ > 0 is a
positive penalty parameter.

At time k, ADMM first fixes the primal variables yij and the
dual variables ai and cij to minimize the augmented Lagrangian
function with respect to xij , then fixes the primal variables xij and
the dual variables ai and cij to minimize the augmented Lagrangian
function with respect to yij , and finally updates the dual variables
ai and cij with dual gradient ascent. Below we directly give the
updates; readers are referred to [8] for detailed derivation.

For edge server i, its updates of xij are given by

xk+1

ij := arg min
{xij≥0}

{

fi(xi) +
ρ

2
(

∑

j∈Ni∪i∪0

xij − si +
ak

i

ρ
)2

+
ρ

2

∑

j∈Ni∪i∪0

(xij − yk
ji +

ck
ji

ρ
)2

}

. (4)

The updates of yij are

yk+1

ij := arg min
{yij}

{

gi(
∑

j∈Ni∪i

yij)

+
ρ

2

∑

j∈Ni∪i

(xk+1

ji − yij +
ck
ij

ρ
)2

}

. (5)

The cloud center (namely, node 0) also needs to update y0j for all
j = 1, · · · , N , by

yk+1

0j := arg min
{y0j}

{

g0(

N
∑

j=1

y0j)

+
ρ

2

N
∑

j=1

(xk+1

j0 − y0j +
ck
0j

ρ
)2

}

. (6)

The updates of dual variables ai and cij are

ak+1

i := ak
i + ρ(

∑

j∈Ni∪i∪0

xk+1

ij − si), (7)

ck+1

ij := ck
ij + ρ(xk+1

ji − yk+1

ij). (8)

The above iterations are fully distributed to the edge servers and the
could center.

Table 1: ADMM-CR Run at Cloud Center
0. Initialize y0j , c0j = 0, j = 1, · · · , N
1. for k = 0, 1, · · · do
2. From all edge server j, collect xk+1

j0 , j = 1, · · · , N
3. Update y0j , j = 1, · · · , N by (6)
4. Update c0j , j = 1, · · · , N by (8)
5. end for

Table 2: ADMM-CR Run at Edge Server i
0. Initialize ai = 0, xij , yij , cij = 0, j ∈ Ni ∪ i ∪ 0
1. for k = 0, 1, · · · do
2. From every node j ∈ Ni ∪ 0, collect yk

ji and ck
ji

3. Update xk+1

ij , j ∈ Ni ∪ i ∪ 0 by (4)
4. From every neighboring edge server j ∈ Ni, collect xk+1

ji

5. Update yij , j ∈ Ni ∪ i by (5)
6. Update ai by (7)
7. Update cij , j ∈ Ni ∪ i ∪ 0 by (8)
8. end for
9. Calculate {rij} from {xij} by distributed integral projection

Distributed Integral Projection. After terminating the ADMM it-
erations, we have a real-valued resource allocation strategy {xij}, i =
1, · · · , N, j ∈ Ni ∪ i ∪ 0. Here we propose a distributed inte-
gral projection scheme to approximately project the real-valued
strategy onto the feasible set of (1) by considering the integer con-
straints. First, round {xij} down to their nearest integers to get
{rij}, i = 1, · · ·N, j ∈ Ni ∪ i∪ 0. Second, for every edge server i,
calculate the value of di = si −

∑

j∈Ni∪i∪0
rij . If di is zero, then

{rij} is feasible. Otherwise, calculate mi = mod(di, |Ni|+2), add
(di − mi)/(|Ni| + 2) to every neighboring edge server, the cloud
center and itself, and then add 1 to those rij with the largest mi val-
ues of |rij − xij |. Eventually we get an integral resource allocation
strategy (meanwhile, the request assignment strategy) {rij}, which
is a satisfactory solution to (1). This integral projection scheme is
also distributed to the edge servers.

The ADMM-CR algorithms run at the cloud center and every
edge server i are outlined in Table 1 and Table 2, respectively. The
cloud center is in charge of updating y0j and c0j for j = 1, · · · , N ,
while edge server i calculates ai, xij , yij and cij , j ∈ Ni ∪ i ∪ 0.
Information exchange occurs between the cloud center and the edge
servers, as well as between the neighboring edge servers.

3.2. Algorithm 2: ADMM-NC

The nonconvex ADMM approach works on (1) other than its convex
relaxation. Introducing auxiliary variables zji = yji = xij , ∀i, ∀j,
(1) is equivalent to

min
N

∑

i=1

fi(xi) +
N

∑

i=1

gi(
∑

j∈Ni∪i

yij) + g0(
N

∑

j=1

y0j), (9)

s.t. si =
∑

j∈Ni∪i∪0

xij , i = 1, · · · , N,

xij = yji, i = 1, · · · , N, j ∈ Ni ∪ i ∪ 0,

zji = yji, i = 1, · · · , N, j ∈ Ni ∪ i ∪ 0,

zji ∈ Z+, i = 1, · · · , N, j ∈ Ni ∪ i ∪ 0.

Let ai, cij and dji be the Lagrange multipliers of the equality con-
straints si =

∑

j∈Ni∪i∪0
xij , xji = yij and zji = yji, respectively.

The augmented Lagrangian function of (9) is

Lρ =

N
∑

i=1

fi(xi) +

N
∑

i=1

gi(
∑

j∈Ni∪i

yij) + g0(

N
∑

j=1

y0j) (10)

+
N

∑

i=1

ai(
∑

j∈Ni∪i∪0

xij − si) +
ρ

2

N
∑

i=1

(
∑

j∈Ni∪i∪0

xij − si)
2

+
N

∑

i=1

∑

j∈Ni∪i∪0

cji(xij − yji) +
ρ

2

N
∑

i=1

∑

j∈Ni∪i∪0

(xij − yji)
2,

+

N
∑

i=1

∑

j∈Ni∪i∪0

dji(zji − yji) +
ρ

2

N
∑

i=1

∑

j∈Ni∪i∪0

(zji − yji)
2,

subject to zji ∈ Z+, i = 1, · · · , N, j ∈ Ni ∪ i∪ 0. Again, ρ > 0 is
a positive penalty parameter.

ADMM-NC directly works on this augmented Lagrangian, first
minimizing with respect to xij and zij , then minimizing with respect
to yij , and finally updating ai, cij and dij (see [11] and [12] for
reference). For edge server i, its updates of xij are given by

xk+1

ij = arg min
{xij}

{

fi(xi) +
ρ

2

∑

j∈Ni∪i∪0

(xij − si +
ak

i

ρ
)2

+
ρ

2

∑

j∈Ni∪i∪0

(xij − yk
ji +

ck
ji

ρ
)2

}

, (11)

which is similar to (4) except that the nonnegativity constraints are
not necessary. The updates of zij are

zk+1

ij := PZ+
(yk

ij +
dk

ij

ρ
), (12)

where PZ+
(·) denotes projection onto the nonnegative integral set

Z+. Notice that this projection is different to the distributed integral
projection step introduced above. The latter projects a resource al-
location strategy {xij} onto the feasible set of (1), while the former
only projects individual zij onto the nonnegative integral set Z+.

The updates of yij are

yk+1

ij := arg min
{yij}

{

gi(
∑

j∈Ni∪i

yij) +
ρ

2

∑

j∈Ni∪i

(xk+1

ji − yij +
ck
ij

ρ
)2

+
ρ

2

∑

j∈Ni∪i

(yij − zk+1

ij +
dk

ij

ρ
)2

}

. (13)

The updates of y0j are

yk+1

0j := arg min
{y0j}

{

g0(
N

∑

j=1

y0j) +
ρ

2

N
∑

j=1

(xk+1

j0 − y0j +
ck
0j

ρ
)2

+
ρ

2

N
∑

j=1

(y0j − zk+1

0j +
dk
0j

ρ
)2

}

. (14)

The updates of dual variables ai, cij and dij are

ak+1

i := ak
i + ρ(

∑

j∈Ni∪i∪0

xk+1

ij − si), (15)

ck+1

ij := ck
ij + ρ(xk+1

ji − yk+1

ij), (16)

dk+1

ij := dk
ij + ρ(yk+1

ij − zk+1

ij). (17)

The ADMM-NC algorithms run at the cloud center and every
edge server i are outlined in Table 3 and Table 4, respectively. The
cloud center is in charge of updating y0j , z0j , c0j and d0j for j =
1, · · · , N , while edge server i calculates ai, xij , yij zij , cij and dij ,
j ∈ Ni ∪ i∪ 0. The final request assignment strategy of edge server
i is given by rij , for all j ∈ Ni ∪ i ∪ 0, from the distributed integral
projection step.

Table 3: ADMM-NC Run at Cloud Center
0. Initialize y0j , z0j , c0j , d0j = 0, j = 1, · · · , N
1. for k = 0, 1, · · · do
2. Update {z0j} by (12)
3. From all edge server j, collect xk+1

j0 , j = 1, · · · , N
4. Update y0j , j = 1, · · · , N by (14)
5. Update c0j , j = 1, · · · , N by (16)
6. Update d0j , j = 1, · · · , N by (17)
7. end for

Table 4: ADMM-NC Run at Edge Server i
0. Initialize ai = 0, xij , yij , zij , cij , dij = 0, j ∈ Ni ∪ i ∪ 0
1. for k = 0, 1, · · · do
2. From every node j ∈ Ni ∪ 0, collect yk

ji and ck
ji

3. Update xk+1

ij , j ∈ Ni ∪ i ∪ 0 by (11)
4. Update {zij} by (12)
5. From every neighboring edge server j ∈ Ni, collect xk+1

ji

6. Update yij , j ∈ Ni ∪ i by (13)
7. Update ai by (7)
8. Update cij , j ∈ Ni ∪ i ∪ 0 by (16)
9. Update dij , j ∈ Ni ∪ i ∪ 0 by (17)
10. end for
11. Calculate {rij} from {xij} by distributed integral projection

3.3. Discussions

The primal-dual updates in the two algorithms have economic ex-
planations. Given service request si, edge server i has to split it and
assign to j ∈ Ni ∪ i ∪ 0, denoted by xij . Node j allocates resource
yji to meet the assignment xij , and their difference represents the
scarcity of the resource. The Lagrange multiplier cji plays the role
of price, which autonomously adjusts the assignments xij and the
assignments yji. In ADMM-NC, there are additional variables zji,
which enforce the allocations yij to be integers. Their corresponding
Lagrange multipliers dji represent the prices of taking the integer
constraints into account. To implement the algorithm, edge server

0 50 100 150 200 250 300
300

350

400

450

500

550

600

650

number of iterations

ob
je

ct
iv

e
va

lu
e

ADMM−CR
ADMM−NC

Fig. 2. Comparison of the proposed algorithms.

i collects its neighbors’ assignments xji, allocations yji and prices
cji, which help it to make its own decisions xij and yij , as well as
estimate the prices cij . In ADMM-NC, the integer constraints are
handled locally. Therefore, the decisions zij and prices dij do not
need to be exchanged with its neighbors.

4. NUMERICAL EXPERIMENTS

In this section, we validate the two proposed algorithms through nu-
merical experiments.
Simulation Setup. We generate a hybrid network with one cloud
center and n = 40 edge servers. Out of 780 possible communication
links between the edge servers, 187 of them are uniformly randomly
chosen to be connected. The two edge servers i and j at the two
ends of communication link (i, j) are neighbors of each other, and
the communication latency is set to be lij = 1. The latency between
every edge server i and the cloud center is l0i = 5. In the cost
function fi(·) that corresponds to the communication cost, the value
of q is set to be 1. The cost function regarding the computation cost
is gi(x) = kix

2, where ki = 1, i = 1, · · · , N and k0 = 0.01. The
amounts of service requests at the edge servers are drawn from i.i.d.
uniform distribution within [0, 40], followed by rounding down to
their nearest integers.

In the two algorithms, we let the ADMM parameter ρ = 1 and
the total number of iterations be 300. For fair comparison of the two
algorithms, we let them run the distributed integral projection step at
the end of every iteration, to obtain the resource allocation strategy
{rij} from the intermediate values of {xij}. Therefore, the two
algorithms both yield feasible solutions and we are able to compare
their objective function values.
Simulation Results Fig. 2 demonstrates the evolution of the two al-
gorithms. Observe that for both algorithms, the objective value goes
down sharply from the initial ∼ 600 to ∼ 370 within 50 iterations,
showing the effectiveness of the proposed algorithms. The curves
have fluctuations, which are reasonable because of the nonconvex
nature of the integer constrained problem formulation. Comparing
with ADMM-CR, ADMM-NC has more frequent small fluctuations;
we conjecture that they are from the projections of zij in (12), which
make the iterations unstable. An immediate observation is that, if
we allow the cloud center to calculate the overall objective function,
then we can record the best result and hence obtain steady curves.
This approach, however, incurs higher communication cost and co-
operation burden among the cloud center and the edge servers.

5. REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Za-
haria, “A view of cloud computing,” Communications of the
ACM, vol. 53, no. 4, pp. 50–58, 2010

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog comput-
ing and its role in the Internet of things,” In: Proceedings of
MCC, 2012

[3] M. Chiang, “Fog networking: An overview on research op-
portunities,” Manuscript at https://arxiv.org/ftp/
arxiv/papers/1601/1601.00835.pdf

[4] R. Johari and J. Tsitsiklis, “Efficiency loss in a network re-
source allocation game,” Mathematics of Operations Research,
vol. 29, no. 3, pp. 407–435, 2004

[5] D. Palomar and M. Chiang, “A tutorial on decomposition meth-
ods for network utility maximization,” IEEE Journal on Se-
lected Areas in Communications, vol. 24, no. 8, pp. 1439–
1451, 2006

[6] A. Beck, A. Nedic, A. Ozdaglar, and M. Teboulle, “Optimal
distributed gradient methods for network resource allocation
problems,” IEEE Transactions on Control of Network Systems,
vol. 1, no. 1, pp. 64–74, 2014

[7] M. Hale, A. Nedic, and M. Egerstedt, “Cloud-based central-
ized/decentralized multi-agent optimization with communica-
tion delays,” In: Proceedings of CDC, 2015

[8] H. Huang, Q. Ling, W. Shi, and J. Wang, “Collaborative re-
source allocation over a hybrid cloud center and edge server
network”, Manuscript at http://home.ustc.edu.cn/
˜qingling/pdf/NRA_ADMM.pdf

[9] E. Lawler and D. Wood, “Branch-and-bound methods: A sur-
vey,” Operations Research, vol. 14, no. 4, pp. 699–719, 1966

[10] C. Feng, H. Xu, and B. Li, “An alternating direction method
approach to cloud traffic management,” Manuscript at http:
//arxiv.org/pdf/1407.8309v2.pdf

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends in
Machine Learning, vol. 3, no. 1, pp. 1–122, 2011

[12] S. Diamond , R. Takapoui, and S. Boyd, “A general sys-
tem for heuristic solution of convex problems over non-
convex sets,” Manuscript at http://arxiv.org/pdf/
1601.07277v1.pdf

