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Analyzing the Responses of a Thermally Modulated
Gas Sensor Using a Linear System Identification
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Abstract—A novel approach to the problem of diagnostic data
extraction from the responses of a thermally modulated resistive
gas sensor (RGS) is presented. The RGS affected by a target gas
(TG) is considered a black box dynamic system. The input to the
system is the time-varying voltage applied to the heating element
of the RGS, and the transient response of the RGS is the output.
The structure of the defined system varies with the nature and
concentration of the prevailing TG, and the parametric system
identification techniques employed reveal system parameters
differentiated only by the existing dissimilarities between the TGs.
The discriminative information content of these parameters is,
then, extracted by standard mathematical tools and utilized for
TG recognition. Air contaminated with four different combustible
vapors, methanol, ethanol, 2-propanol, and 1-butanol, each at
13 different contamination levels, was used to define 52 different
systems. In each case, the transient response of the system to a
staircase voltage waveform input was recorded. Computer mod-
eling, based on autoregressive moving average with exogenous input
(ARMAX) model, rendered different sets of system parameters
which afforded feature extraction and TG classification by stan-
dard mapping tools. The method was verified by the successful
classification of unknown TGs at undetermined contamination
levels.

Index Terms—ARMAX model, artificial olfaction, feature ex-
traction, linear system identification, resistive gas sensor, thermal
modulation.

I. INTRODUCTION

R ESISTIVE GAS SENSORS (RGS) [1]–[6] are cost effec-
tive, small, easy to use, and durable, and their applications

range from the simplest household CO and fire detectors [1]–[4],
[7] to sensor arrays utilized in sophisticated industrial electronic
noses [8]–[11]. The response of these devices to any polluting,
combustible, or poisonous target gas (TG) occurs as a shift in
the electrical resistance of the sensor [2]–[5] and, therefore, no
selective detection or gas diagnosis is expected from a single
RGS. RGSs are made of polycrystalline oxide semiconductors.
In a detection process, reducing TG species interact with the
oxygen atoms present at the effective surface of the oxide solid
and cause a temporal change of conductivity which is trans-
formed into a measurable electrical quantity and recorded as
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the response of the sensor. The complicated gas-solid interac-
tion taking place at the surface of the oxide semiconductor is
strongly temperature dependent; and the nature of this depen-
dence varies from one TG to the next. Although this gas-solid
interaction process has been the subject of numerous research
works [12]–[15], the complexity of the reaction and the scarcity
of the quantitative data hinder quantitative predictions on such
reactions.

Different techniques have been used to overcome the lack
of selectivity in these sensors [8], [16]–[21], among which is
the analysis of the dynamic responses of a thermally modu-
lated RGS [21]–[28]. RGSs operate at elevated temperatures,
and their temporal response to a TG is strongly dependent on
the operating temperature. A preprogramed variation of the op-
erating temperature results in a complex temporal response that
contains information on the nature and concentration of the TG
[22]. It has been shown that the extraction of this information
from the temporal response patterns corresponding to an un-
known TG may afford gas diagnosis [23]–[27].

Different types of power waveforms have been applied to the
heating element of the RGS to provide a variety of time varying
operating temperatures [23]–[28]. An example of this kind is
a staircase voltage applied to the sensor heater [25]. Due to
the small thermal capacity of the sensor and its heating device,
each step of the staircase can quickly provide the corresponding
temperature plateau and allow enough time for the sensor re-
sponse to approach its respective steady-state level. This tem-
perature modulation created different temporal response pat-
terns containing discriminatory information. The recorded re-
sponse patterns have been processed, either in time [25] or fre-
quency [26] domains, for the extraction of their diagnostic in-
formation content.

System identification techniques have been utilized to model
the response of RGS to a known TG [29]. In a chemical sensor,
the analyte is labeled as the input to the system, and the steady-
state response of the sensor as the output [30]–[32]. In this way,
the sensing system is mathematically identified based on the
experimentally obtained dynamic data. The analysis has been
carried out by the utilization of either parametric [30] or non-
parametric [31], [32] methods. Although the process of chem-
ical detection is nonlinear, researchers have attempted identifi-
cation of the defined systems based on linear models [31]–[35].
Autoregressive with exogenous input (ARX) model has success-
fully been employed for the modeling of a fire detector [33]. In
this case, the loss of mass of the burning material was defined
as the input of the system, and the sensor response was con-
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sidered the output. In diagnostic chemical sensors, however, an
unknown input (the analyte) further complicates the analysis of
the sensing system. This problem has been dealt with by “in-
verse modeling” [36]. The method was employed for the linear
black-box modeling of gas sensor arrays [30]–[32], [34].

Pardo et al. analyzed the responses of a four-component
sensor array using both linear and nonlinear models [30]. For
gas diagnosis, however, they utilized two different nonlinear
inverse models which could determine the composition of a
toluene-octane gas mixture [31], [32]. Searle et al. treated the
transient responses of the elements of a six-component sensor
array as the inputs to the defined inverse system, while the
unknown odor was considered the output [34]. They utilized
linear modeling, and successfully used the system for bacteria
classification [34]. Kunt et al. used a nonlinear system analysis
technique for the extraction of the discriminative information
from the responses of a RGS temperature modulated by an
optimized voltage pulse train, and showed that the amount
of the extractable discriminative information varies with the
configuration of the temperature modulating waveform [27].
The emphasis of the above referenced investigations, as well
as the present work, is on TG classification rather than the
determination of its concentration. The TG concentration can
be determined based on the steady-state response of a general
sensor and the related calibration data, subsequent to a suc-
cessful classification [34].

This work introduces a novel approach to the problem of dis-
criminative feature extraction from the responses of a temper-
ature modulated RGS by defining the TG affected sensor as a
single-input–single-output (SISO) dynamic system. By this def-
inition, the contaminated atmosphere surrounding the sensor be-
comes a part of the black box, and the defined system varies
structurally when encountered with different TGs. The staircase
voltage applied to the microheater of the sensor is considered the
input to the system, and the temporal response of the sensor is
the output. This approach allows the utilization of appropriate
linear black-box modeling tools for the numerical description
of these features which are, subsequently, classified by classic
classification techniques [37], [38]. The procedure was applied
to the experimental data related to four different TGs each at
13 different concentrations. Although the TGs examined were
of obvious chemical similarities, the method afforded their dis-
crimination in the verification experiments.

II. THEORY

The system analyzed is schematically depicted in Fig. 1. It
comprises a RGS heated with a low thermal capacity resistive
heating element, a few well defined circuit components, and the
gaseous atmosphere of the box. The latter component of the
system consists of air polluted with a known concentration of a
TG. All of the physical and chemical parameters of this atmos-
phere are assumed to be time-invariant; i.e., the volume of the
box is assumed to be large enough to accommodate the minor
compositional alterations occurring due to the gas-solid interac-
tions at the effective surface of the RGS.

As depicted in Fig. 1, the time varying voltage applied to
the microheater is the input to the system. The output of

Fig. 1. The schematic diagram of the system analyzed. The atmosphere within
the box is a significant component of the system.

the system is a time-dependent numerical function pro-
portional to the varying conductance of the RGS. The defined
system is of the SISO type. Although the structure of the system
appears simple, it is complicated due to the cumbersome time-
and temperature-dependent electronic interactions between the
gaseous species and the effective surface of the RGS. These
interactions alter the electronic properties of the sensor element
with time, and hence, the defined system is dynamic. The
input voltage changes the temperature at the surface of the
RGS which, in turn, alters both the nature and the intensity of
these interactions. The output of the system is, according to
Fig. 1, determined by the electrical conductance of the RGS
which is strongly affected by both the surface temperature and
the interactions with the gaseous species present. The present
knowledge on the nature and kinetics of these gas-solid interac-
tions is qualitative and cannot facilitate quantitative predictions
regarding the output. The lack of quantitative information on
the intricate time and temperature dependent processes taking
place inside the system makes the defined system a black box.

The gas-solid interactions occurring within the system are
nonlinear [13]–[15], [31] but here, linear models are examined
for the first approximate analysis of the black box defined. This
analysis results in a parametric categorization of the system’s
responses by way of “system simulation” rather than “response
prediction” [40]. The justification of the linear approximation
assumed is presented in Section IV, where the close fitting
of the computer modeling results to the experimental data is
demonstrated.

A linear dynamic SISO system, in general, is described by
the following model [40], [41]:

(1)

in which is a white noise of zero-mean value, is the
“input delay,” and and are as de-
fined below

(2)

where is the backward shift operator, i.e.,
and and are the un-

known parameters of the system, and and are
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their respective orders. (In simple terms, , for instance,
is a parametric sum of the values at time and before; and
determines the length of the ’s history considered.) The param-
eter vector is defined as

(3)

The determination of the parameter vector components facil-
itates a mathematical relationship between the input and the
output of the system.

Simplified special cases of this general model, such as
Box–Jenkins [42] and autoregressive moving average with
exogenous input (ARMAX) [43] models, have successfully
been utilized for the modeling of engineering, industrial, and
economical systems of different natures [44]. After a number of
trials on the different versions of the general model, ARMAX,
obtained for , was utilized for the modeling of
the sensory system studied. This structure, along with its orders
is presented as . The criteria in the
model selection were the simplicity of the model and its ability
to closely simulate the experimentally recorded system outputs.
In this model, the input and the output of the system are related
through the following relationship:

(4)

where the operators , and are defined according to (2) by
the following parameter vector:

(5)

The method used for the estimation of was “prediction error-
based” [41], and the calculations of the components were carried
out based on the comparisons between the simulated outputs and
the experimentally recorded data. The main steps of the process
are briefly given in the Appendix.

In simple words, the components of the vector and the or-
ders were determined based on the selection of the combina-
tions which could result in simulated system outputs best fitting
to the experimental data. The estimated , for each system (each
different atmospheric composition in the test chamber) was as-
sumed as the high-dimensional feature vector of the prevailing
atmosphere. The classification of the TGs (see Section IV) was,
then, achieved by mapping of these vectors to a space of lower
dimensions.

III. EXPERIMENTAL

The experimental layout is schematically presented in Fig. 2.
A 20-liter soda-lime glass container was used as the controlled
atmosphere chamber. The target gases used were methanol,
ethanol, 2-propanol, and 1-butanol vapors. Predetermined
volumes of the liquid alcohols were injected onto a miniature
borosilicate glass dish inside the chamber and heated mildly
(to C) with a hermetically covered voltage controlled
electrical heater to assist alcohol evaporation. The total evap-
oration of the contaminant created different contamination

Fig. 2. Schematics of the experimental setup.

levels, in the range of 250–3000 w-ppm, in the closed chamber.
Prior to each experiment, the chamber atmosphere was mildly
agitated for homogenization by two small electric fans placed
inside the chamber. The contamination levels were contin-
uously monitored before and during the measurements by a
calibrated reference gas sensor placed inside the chamber. This
monitoring of the contamination level was to confirm the main-
tenance of a constant concentration of the contaminant during
the measurements. The chamber could maintain a constant TG
concentration for 5 h before dropping 5% below its original
level. The actual TG concentration level is naturally represented
in the shape of the transient response profile, and, therefore,
inevitably and significantly present in the entire mathematical
process of gas diagnosis. The nominal concentrations, obtained
by dividing the mass of the evaporated alcohol to the mass of
the chamber air, were used for the labeling of the training and
verification data recorded. The concentration data are provided
to facilitate the possibility of comparison with the prior and
future investigations. The ambient temperature and the relative
humidity in the laboratory were continuously monitored during
the experiments; the respective variations throughout the ex-
periments were 23 C–28 C and 30%–45%.

The RGS employed was a commercially available general gas
detector (SP3-AQ2, FIS Company, Japan). The device consists
of a tin oxide thick-film sensing element of mm active
area, and a microheater to provide the elevated working tem-
peratures required for its operation. Further information on this
sensor can be obtained from the website of the company [45].
The sensor utilized is of low cost ( USD), and its availability
in the international market facilitates the reproduction of sim-
ilar experimental database (see below) and the extension of the
work in different orientations by interested researchers.

The operating temperature of the RGS changes by altering
the voltage applied to the microheater. A constant voltage level
corresponds to a constant working temperature at the sensitive
surface of the RGS, while a varying voltage waveform results
in a time-varying operating temperature. The resistance of the
RGS depends on both the temperature maintained at the sensi-
tive surface of the device and the composition of the surrounding
atmosphere. The relationship between the conductance and the
surface temperature of the RGS used was determined by the
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Fig. 3. The temporal variations of: (a) the voltage applied to the microheater
of the sensor; (b) the surface temperature; and (c) the electrical conductance of
the sensor, both measured in clean air.

measurement of the device resistance at different operating tem-
peratures in clean air. The surface temperature was varied by
the variation of the applied microheater voltage, and was mea-
sured by placing a fine (diameter of 0.04 mm) platinum-based
thermocouple junction in the physical contact with the sensitive
surface of the sensor. For these measurements, the porous cap of
the sensor had to be removed. The relationship between the ap-
plied heater voltage, surface temperature of the tin oxide pallet,
and the conductance of the device measured in clean air is pre-
sented in Fig. 3.

The chamber has a gas impermeable lid which opens to allow
the insertion of the RGS probe, schematically depicted in Fig. 2,
into the chamber. The time-varying voltage applied to the mi-
croheater, to modulate the operating temperature of the RGS, is
a staircase voltage waveform. As shown in Fig. 3(a), this wave-
form consists of five different voltage steps, from 1 to 5 V, with
a 40 s wide plateau at each step. Prior to each experiment, the
device was preheated by applying a continuous 5 V (the nominal
heating voltage of the RGS employed) for a period of 10 min in
clean air. This preheating was to clean up the surface of the gas
sensitive oxide from the residues of the previous measurements,
bring it to a well established thermal equilibrium, and to stabi-
lize the sensor at its steady-state condition in clean air.

The probe was, then, inserted into the chamber containing air
contaminated with a predetermined concentration of a known
TG. The heating voltage was kept at 5.0 V for another 3 min.
During this period, the sensor remained at its steady-state re-
sponse level in the contaminated atmosphere of the chamber.
Starting at , the staircase waveform was applied to the
sensor heater. It started with a step fall from 5 to 1 V, and, then,
varied with time according to the steps depicted in Fig. 3(a),
which, finally, brought the heating voltage back to the 5 V level
at s. This was carried out automatically by utilization
of a computer programmable “multifunction card” (Advantech
Company, USA; model-PCI-1711L). The probe was then ex-
tracted from the chamber and preheated for the next run. The
output of the system was continuously recorded in – s
range. Results obtained for methanol, ethanol, 2-propanol, and
1-butanol, each at 13 different concentration levels are given in
Fig. 4(a)–(d), respectively.

IV. SYSTEM ANALYSIS

The recorded responses were digitized with a sampling rate
of 100 s , and noise reduction was achieved by utilization of
a moving average digital filter with a window length of 25 sam-
ples. The result is a database which contains 52 sets of data cor-
responding to the 52 temporal responses plotted in Fig. 4(a)–(d).
The task is, then, to analyze the system and determine the system
parameters respective to different conditions.

The recorded outputs in the broad time span of 0–200 s con-
tain huge amounts of information which makes the system anal-
ysis cumbersome. Moreover, the mathematical analysis of this
amount of information consumes so much of the computer time
that makes the online operation of the gas diagnosis system im-
practical. To simplify the task, and based on the visible discrim-
inative features of the recorded responses, the data were trun-
cated to cover a selected time span of 120–200 s.

The presentation of the responses related to a five-step voltage
staircase covering – s, as given in Fig. 4, and using
only the response data related to two particular steps of the
staircase may appear ambiguous. The following comments are
made for clarification: (a) The response of a metal oxide RGS to
any atmospheric condition depends on the history of the device
[2], i.e., none of the segments of the response traces presented
in Fig. 4 can be regenerated without repeating the background
thermal and chemical history. (b) Voltage staircases have been
used by other researchers [25] for diagnosis of other TGs by dif-
ferent mathematical approaches; the utilization of the staircase
waveform was intended to facilitate a comparison of the out-
comes from the different mathematical approaches. (c) Starting
from a single step, the diagnostic information extracted proved
insufficient for a successful classification of the four TGs exam-
ined. (d) For a two-step analysis, the apparent detailed features,
the high amplitudes, and hence, the low recording noise levels
involved made the combination of the steps IV and V attractive.
The results of this analysis are presented below, which indicate
the existence of discriminating information enough to classify
the four TGs investigated. (e) More sophisticated analysis based
on the information extraction from three or more steps is recom-
mended for future attention in Section VI.

In both step IV and step V time intervals,
was found to afford reasonable

prediction error levels in the simulation of the response data.
This model structure was selected for the modeling of the
system. For the determination of the orders (values of ), the
“fitness” levels (see the Appendix) of the models of different
orders, averaged within the whole respective step range and
over all the training runs related to each TG were compared.
The results related to steps IV and V are presented in Fig. 5(a)
and (b), respectively. Acceptable fitness throughout the data
sets examined, occurred for at step IV, and at step
V. The fitness values calculated for all of the experimental runs
are presented in Table I, which indicate a fine compatibility
between the experimentally recorded and simulated responses.
The simulation results are compared with the experimentally
recorded responses in Fig. 6(a)–(d). The close fitting of
the simulated and the actual responses validates the linear
approximation declared in Section II.

Based on the ARMAX(1, 1, 1, 1) and ARMAX(2, 2, 2, 1)
model structures, the simulated outputs and the corresponding
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Fig. 4. The transient responses of the thermally modulated resistive gas sensor to various concentration levels of: (a) methanol; (b) ethanol; (c) 2-propanol; and
(d) 1-butanol in air. The staircase heater voltage used for thermal modulation of the sensor is also presented in the diagrams.

Fig. 5. The average “fitness” of the �������� �� �� �� models to the training data related to (a) step IV and (b) step V.

vectors related to steps IV and V acquire the following general
forms, respectively:

(6)

(7)

in which the subscripts IV and V refer to steps IV and V of
the recorded responses, respectively. Hence, the total parameter
vector is resulted as

(8)

in which the first three components are related to and the
rest are those of .

The components of the and vectors corresponding
to different experiments were calculated as described in the
Appendix. The resulted parameter vectors are nine-dimen-
sional, which are taken as the feature vectors of the different
atmospheres present in the chamber. Considering the number
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TABLE I
THE VALUES OBTAINED FOR THE “FITNESS” OF THE ARMAX(1, 1, 1,1) AND ARMAX(2, 2, 2,1) MODELS

TO THE TRAINING DATA RELATED TO STEPS IV AND V, RESPECTIVELY

Fig. 6. The inputs and the outputs of the system at the presence of: (a) methanol; (b) ethanol; (c) 2-propanol; and (d) 1-butanol after filtering and data truncation
(solid lines); the black dotted lines are the simulation results based on the mathematical model introduced.

of the different atmospheres investigated, 52 such vectors were
generated. These vectors were employed for the construction
of the following feature matrix:

(9)

The superscripts and stand for methanol, ethanol,
2-propanol, and 1-butanol, respectively, while the subscripts

and , are to indicate the 13 different TG concen-

tration levels given in Table I. Replacing (8) in (9) results in the
final form of the feature matrix

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
... (10)
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Fig. 7. The results of applying the PCA mapping to the training (unfilled markers) and verification (filled markers) databases of different (a)–(c) 2-gas and (d) 3-gas
systems to a two-dimensional feature space for target gas classification.

Hence, each differently contaminated chamber atmosphere is
described by a combination of nine figures, say components of
a nine-dimensional feature vector, which form a column in the
above described feature matrix. The number of the columns in
this matrix is equal to the number of the responses recorded
which are related to four different classes of , and . In
Section V, the task is to use different mathematical tools for
classification of the recorded responses based on their respective
feature vectors. The combination of the mathematical transfor-
mations leading to a successful classification can then be applied
on the feature vector of an unknown contamination to determine
its class.

V. TARGET GAS CLASSIFICATION

System classification based on a high-dimensional vector
is difficult, and it is favorable to map the data from the -space
to a space of 1, 2, or 3 dimensions, which affords graphical
visualization. This mapping is to preserve and clarify as much
of the discriminating features of the vectors as possible.
Among the mapping techniques used for feature extraction
from high-dimensional feature matrices, Principal Component
Analysis (PCA) [37], [38] and Linear Discriminant Analysis
(LDA) [38], [39] are the most common; and both were exam-
ined as the mapping tools in the present classification problem.
The interested reader may obtain comprehensive information
on these classification techniques in the above given references.
The results follow.

Using PCA, the feature vectors were mapped onto a two-di-
mensional feature space. Ten feature vectors of each class, all
in the concentration range of 350–2000 ppm, were considered
for PCA training. The work failed to render a successful classi-
fication of the four classes. However, applied to feature matrices

constructed of the feature vectors related to two TGs, the method
demonstrated neat delineation of the classes. Subsequently, the
same mapping tool was applied to the verification data which
comprised a total of 20 output recordings (five of each TG). The
verification recordings were carried out, in conditions similar to
the acquisition of the training data 15 days after the completion
of the training work. The results are given in Fig. 7(a)–(c), which
indicate the successful classification of the verification data. In
Fig. 7(b), for instance, PCA has successfully differentiated both
the training (unfilled markers) and verification (solid markers)
vectors related to methanol and 2-propanol from each other with
zero failure rates. However, in a three-class categorization test,
while PCA successfully segregated the training data into three
separate classes, as shown in Fig. 7(d), it failed to segregate the
verification data related to and classes. This verification data
percolation is depicted in Fig. 7(d).

In a second attempt, LDA was applied to the feature matrix
given in (10) for the purpose of classification. Thirteen feature
vectors of each class, all in the concentration range of 250–3000
ppm, were considered for LDA training. Based on a number
of trial mappings, 2 out of these 52 parameter vectors, both
related to the class, were found to be of insufficient accu-
racy and were discarded from the training matrix. The result
of the LDA mapping of the 50 training parameter vectors of the
4-gas system to a three-dimensional feature space is presented in
Fig. 8(a) with unfilled markers. Fig. 8(a) depicts a distinct class
segregation of the training vectors, which is also observable
in the - and - two-dimensional projections shown in
Fig. 8(b) and (c). The same mapping operator was then applied
to all of the 20 verification parameter vectors introduced in the
previous paragraph. The results, given in Fig. 8(a)–(c) with pink
filled markers, indicate the allocation of all the 20 verification
tests into their appropriate class volumes.
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Fig. 8. The results of the LDA mapping of the training (unfilled markers), the
first verification (pink filled markers) and the second verification (green filled
markers) databases to an (a) three-dimensional and (b) and (c) two-dimensional
feature spaces for the classification of the target gases in a 4-gas system.

The effectiveness of the latter classification technique was ex-
amined once more by its application on a second set of verifi-
cation data recorded 45 days after the preliminary training data
recording. The intention was to observe the negative effects of
the sensor’s drift, due to aging, irreversible environmental poi-
soning, or change of experimental conditions such as humidity
and temperature in the laboratory, in the results of the gas clas-
sification procedure presented. The total number of the exper-
iments was 20, 5 of each TGs investigated, and the target gas
concentration levels were in 500–1700 ppm range. The results
are presented in Fig. 8(a)–(c) using green filled markers. Despite
the fact that the positions of these responses in the feature space
are significantly shifted with respect to the training feature vec-
tors, they have all been allocated to their correct classes.

VI. DISCUSSION

By selecting four TGs with obvious chemical similarities, the
intention was to examine the inherent diagnostic and discrimi-

native information content of the transient responses of an RGS
enriched by temperature modulation. The definition of the sen-
sory system as a black box of well defined and easy to mea-
sure input and output facilitated the application of the powerful
system analysis techniques to extract the diagnostic information
related to the analyte which is, by definition, a significant part
of the system. The system went through identical preheating pe-
riods prior to each recording to assure similar sensor histories
throughout the experiments. This proved to be a key technical
point in the proper clustering of the feature vectors in the fea-
ture space. The elimination of these preheating cycles caused
feature vectors of the same TG to scatter and hindered effective
classification.

The voltage waveform utilized as an input to the system cov-
ered approximately the full operating temperature range of the
tin oxide-based RGS, which is limited to C– C. The
limitations are due to low sensitivity and humidity caused errors
below 100 C and irreversible transitions and rapid aging above
350 C. However, there is still room to optimize this voltage
waveform as the duration and number of the voltage plateaus
can be adjusted for the fortification of the system output with the
diagnostic information. Moreover, in this work, only two out of
the five recorded response steps were analyzed and the rest of the
output left unattended. Although the selected steps apparently
contained the most detailed features, the extraction of the useful
information from other steps of the output would have advanced
the identification process and initiated further TG discriminating
power. With all these enhancement possibilities intact, the
method successfully categorized the four TGs introduced.

In a practical odor diagnosis, e.g., in the classic case of coffee
categorization [46], or in an odor-based detection of the mi-
croorganisms [34], the concentration of the analyte is not pre-
cisely controlled, but the TG can be restricted to remain in a
predetermined concentration range by the utilization of a refer-
ence RGS and dilution of the analyte with clean air if necessary.
In the present work, the broad analyte concentration range of
250–3000 ppm was investigated to form the training database,
but the verification tests were carried out in the 500–1700 ppm
concentration range which allows a droplet of the unknown pre-
cursor liquid to be introduced into the chamber for evaporation
using a medium accuracy sampler.

The sensor drift, whether caused by its natural aging or
occurred temporarily by the variation of the atmospheric
parameters, such as relative humidity, can interfere with the
gas identification process. Although the system was able to
classify the unknown TGs introduced 45 days after the training
process, the respective vectors produced in the feature space
(see Fig. 8) drifted substantially far from the training points.
Similar problems are common among the artificial olfaction
systems, and even elaborate electronic noses suffer from the
drift of their sensor arrays which require frequent recalibration
or replacement. The problem is less detrimental in the gas
diagnosis system described as it contains only one chemical
sensor; and the drift monitoring and calibration are much easier
in single sensors than arrays. Replacing one sensor with another
of the same type, however, required a repeat training process to
form a new database. This is understood based on the inevitable
structural differences between the electroceramic pallets and,
particularly, the microheaters of the sensors.
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VII. CONCLUSION

A systematic procedure for the extraction of the discrimina-
tive information from the responses of a thermally modulated
resistive gas sensor was introduced. The procedure consisted of
three independent blocks: Definition of the system with explicit
and easy to measure input and output and the accumulation
of an appropriate input/output database; the analysis of the
database for system identification; and the extraction of the
discriminating information from the system parameters uti-
lizing standard pattern recognition tools. By defining the RGS,
together with its contaminated surrounding, as a dynamic
system, the time-varying voltage applied to the microheater
of the sensor could be considered the input. As a result, the
complications involved with the analysis of a system with
unknown chemical input were removed, and a linear para-
metric system identification technique could be employed to
analyze the responses recorded. The procedure was enabled to
classify methanol, ethanol, 2-propanol, and 1-butanol vapors,
in a wide concentration range in air, by the utilization of the
ARMAX model structure for the linear black box modeling of
the systems containing different atmospheric compositions and
the LDA for the classification of their parameter vectors in a
three-dimenssional feature space.

The four contaminants examined bore considerable chemical
similarities, and their segregation in the feature space is a clear
indication of the vast inherent potentials of the thermally modu-
lated RGS in the field of gas diagnosis. It also demonstrates the
presence of an incredible amount of diagnostic information in
the transient responses of the gas sensors in general, and justifies
further efforts to enhance the art of enrichment and extraction
of this information.

APPENDIX

The general model, given in (1), can be rewritten as [40]

(1a)

in which

(2a)

The parameter vector, defined by (3), is estimated by the uti-
lization of “prediction error method” [41]. It has been shown
that the optimal predictor of the model given in (1a) has the fol-
lowing form [41]:

(3a)

in which the superscript is to distinguish the estimated results
from the actual values. For , the optimal predictor
will assume the following form:

(4a)

The -related parameters of the system [ , and , as
given in (3)] are calculated based on (4a) through the following
procedure.

For each combination of the parameters the “prediction error”
is calculated according to

(5a)

The parameters are, then, selected based on the minimization of
the following “loss function” [41]:

(6a)

in which is the number of the samples determining an exper-
imentally recorded . Different interactive numerical search
routines, such as Gauss–Newton and Levenberg–Marquardt
[47] can be utilized for the calculation of the local minima of
(6a). In this work the appropriate search routine was automati-
cally selected by the software employed.

For estimation of the H-related parameters of the system [
and , as given in (3)], is kept fixed at its previously
estimated values and the optimal predictor, given in (3a), is uti-
lized for a second time. In this case, (3a) assumes the following
configuration:

(7a)

Similar to the previous case, the estimation of the -related
parameters is afforded by searching for the local minima of
(6a) [48].

After the estimation of all the components of the -vector (
is replaced by in the main text), an assessment of the model is
afforded by the prediction of the output of the system; using the
following predictor:

(8a)

and the quantitative comparison of the result with the experi-
mentally recorded output, which is carried out based on the cal-
culation of an appropriate form of the loss function.

The parameters of the system could be calculated for
different values of the model’s order ( , in the case of the
ARMAX model structure introduced in Section IV),
but the final selection was based on the level of the “fitness”
[48] calculated through the following relation:

% (9a)
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in which is the mean value of . The criterion was to se-
lect the smallest order which could lead to acceptably high fit-
ness levels in the whole considered range of the experimentally
obtained data.
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