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Adaptive Sparse System Identification Using
Wavelets

K. C. Ho, Senior Member, IEEE,and Shannon D. Blunt, Member, IEEE

Abstract—This paper proposes the use of wavelets for the identi-
fication of an unknown sparse system whose impulse response (IR)
is rich is spectral content. The superior time localization property
of wavelets allows for the identification and subsequent adaptation
of only the nonzero IR regions, resulting in lower complexity and
faster convergence speed. An added advantage of using wavelets is
their ability to partially decorrelate the input, thereby further in-
creasing convergence speed. Good time localization of nonzero IR
regions requires high temporal resolution while good decorrelation
of the input requires high spectral resolution. To this end we also
propose the use of biorthogonal wavelets which fulfill both of these
two requirements to provide additional gain in performance.

The paper begins with the development of the wavelet-basis
(WB) algorithm for sparse system identification. The WB algo-
rithm uses the wavelet decomposition at a single scale to identify
the nonzero IR regions and subsequently determines the wavelet
coefficients of the unknown sparse system at other scale levels that
require adaptation as well. A special implementation of the WB
algorithm, the successive-selection wavelet-basis (SSWB), is then
introduced to further improve performance when certain a priori
knowledge of the sparse IR is available. The superior performance
of the proposed methods is corroborated through simulations.

Index Terms—Adaptive algorithm, sparse impulse response
(IR), system identification, wavelets.

I. INTRODUCTION

A DAPTIVE filtering algorithms are finding much wide-
spread use nowadays when the exact nature of a system is

unknown or its characteristics are time-varying [1], [2]. Some
applications of adaptive filters, such as network echo cancel-
lation, have an impulse response (IR) that contains a large
number of zero coefficients. This has led to the development of
sparse adaptive algorithms that attempt to minimize the number
of adapting coefficients in order to increase the convergence
speed, decrease the excess mean-square error (EMSE) and
reduce the computational complexity.

Many previous sparse algorithms employed a time domain
approach to exploit the sparse nature of a system. Kawamura
and Hatori [3] developed a method of sequentially adapting
different sets of coefficients to ascertain which ones possess
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significant nonzero values. While computationally simple, this
method may suffer a little in convergence speed due to the se-
quential adaptation of coefficients. Etteret al.[4]–[8] developed
an algorithm by which small length filters are placed around
delay regions that are estimated to contain significant nonzero
coefficients. This algorithm, though faster, may be limited by
the increase in complexity caused by adaptive determination of
the delay regions in addition to filter coefficients. More recently,
Homeret al. [9], [10] has formulated an algorithm that is based
on statistical detection criterion to detect nonzero IR tap coeffi-
cients in the time domain, where the detection threshold is pro-
portional to the power in the desired response. Duttweiler [11]
has also recently proposed a technique called the proportionate
normalized least mean square (PNLMS) algorithm in which the
effective step size for a given tap is proportional to its mag-
nitude to speed up convergence. While this approach exhibits
faster convergence than NLMS when the IR is sparse, its per-
formance degrades for nonsparse IR. Different from most sparse
algorithms, PNLMS updates all the filter coefficients at each it-
eration and, therefore, has complexity the same as NLMS. In
[12], Benesty and Gay propose a modification to PNLMS that
alleviates its susceptibility to nonsparse IR.

This paper proposes sparse system identification in the
wavelet domain. Wavelets have very good time localization
property [13] and, hence, can locate the nonzero portions of
a sparse IR accurately for adaptation. This is accomplished
by exploiting the hierarchical structure of wavelets such that,
by determining the wavelets at one level of scale whose time
domain spans overlap the nonzero IR regions, we can ascertain
the wavelets at all other levels of scale whose time domain
spans will overlap these nonzero regions as well. As a result,
only the unknown system coefficients corresponding to those
wavelets are needed for adaptation. Wavelets also have the
additional benefit of good spectral localization that provides
a certain amount of decorrelation for colored input. The
combination of these leads to a dramatic convergence speed
improvement while maintaining a computational complexity
below that of LMS for sparse system identification.

The idea of using wavelets in adaptive system identification is
not new. Much of the previous work, however, considered non-
sparse systems and focused on the frequency band decomposi-
tion property of wavelets to speed up convergence for correlated
input and the fast wavelet transform algorithm to reduce com-
plexity, for example [14]. Another previous approach employs
wavelets to reduce the number of coefficients needed to model
an IR [15]. This technique requiresa priori knowledge about
the location, shape and duration of the IR. None of this pre-
vious work explores the time localization property of wavelets.
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For sparse system applications the utilization of this property
can lead to a substantial performance gain.

The proposed wavelet-basis (WB) algorithm is an extension
of a previously investigated technique called the Haar-Basis
(HB) algorithm [16] that has been shown to provide a dramatic
convergence speed improvement over the LMS and the Haar
transform domain LMS. The HB algorithm utilizes the Haar
transform for the identification of nonzero IR regions for
adaptation. The HB algorithm can be considered a special
case of the WB algorithm in which the Haar wavelet is used.
The Haar wavelet has very fine time localization ability but
poor spectral localization. The WB algorithm developed here
allows the use of any wavelet, including biorthogonal, so that
we can gain greater spectral localization and, therefore, greater
decorrelation of colored input to speed up convergence. The
price paid for greater decorrelation is a slight increase in the
number of adapting coefficients because of the decrease in
temporal resolution. However, it will be shown later that this
tradeoff leads to faster convergence for highly correlated input.

This paper also introduces a new implementation stemming
from the structure of the WB algorithm. We shall call it the suc-
cessive-selection WB (SSWB) algorithm and it will converge
even faster than the WB algorithm when the nonzero regions of
the sparse IR are impulse-like and widely separated. This kind
of IR occurs quite often in many applications, such as those in-
volving multipath and delay channels. The increase in conver-
gence speed arises from a process of selecting nonzero coeffi-
cients at successively finer levels of temporal resolution. This
allows some of the zero coefficients that would have been se-
lected for adaptation by the WB algorithm to be ignored and,
therefore, reduces the total number of adapting coefficients that
leads to faster convergence.

One limitation of the proposed algorithms is that they are
designed for a sparse IR that is rich in frequency content, i.e.,
nearly flat frequency response. Rich in frequency content here,
generally speaking, refers to an impulse response where over
a frequency range from to , the correlation coeffi-
cient of its magnitude response with a constant (flat magni-
tude spectrum) is bigger than 0.8. This is because, a necessary
and not sufficient condition for the proposed method to identify
nonzero impulse response region is that, a certain amount of the
IR spectral energy must be present in the passband defined by
the wavelets. This class of IR is quite common in practice, such
as in network echo cancellation application. Annex D of ITU
recommendation G.168: Digital Network Echo Cancelers [17]
contains several typical echo-path IRs and they are rich in spec-
tral content.

This paper is organized as follows. Section II develops
the WB algorithm for sparse system identification. Different
kinds of wavelets, including orthogonal and biorthogonal and
their relative advantages for sparse system identification are
discussed. Section III presents the SSWB algorithm and ana-
lyzes its performance. It also summarizes alternative wavelet
decompositions that may yield better performance. Section IV
provides simulation results to support the theoretical results and
illustrate the performance advantages of the proposed methods.
Finally, Section V is the conclusion.

II. SPARSEALGORITHMS USING WAVELETS

Wavelets possess the attractive property of localization in
both the temporal and spectral domains. It is well known that
the spectral localization property allows greater decorrelation
of colored input and, therefore, enables faster convergence for
adaptive algorithms. However, the potential benefits afforded
by the time localization property have not previously been
exploited.

We shall introduce in this paper the use of the time local-
ization property of wavelets for sparse system identification.
The wavelet decomposition at a certain scalecan identify the
nonzero regions of a sparse IR at a temporal resolution roughly
equal to the duration of the wavelet at scale. In addition, the
regular hierarchical structure of the wavelet decomposition per-
mits easy identification of the wavelets at all other levels of scale
whose temporal spans overlap the nonzero regions as well. In al-
gorithmic form we can interpret this as, adapting the complete
set of filter coefficients corresponding to the wavelet decom-
position of the sparse system at a certain scale, determining
which of these filter coefficients significantly differ from zero
and then activating for adaptation the filter coefficients at all
other levels of scale whose corresponding wavelet spans fall into
the same IR regions as the detected nonzero coefficients at scale
. The filter coefficients associated with wavelets at scaleare

called the “control” coefficients. The coefficients corresponding
to higher and lower levels of scale are denoted as “parent” and
“children” coefficients, respectively.

In order to properly formulate the sparse algorithms to be
introduced in the next section, we now present some pertinent
details of wavelets for the proposed algorithms.

A. Wavelets

The wavelet decomposition of a signal or system into dyadic
scales is accomplished with the use of a low-pass filter and a
bandpass filter, denoted asand , respectively [13]. By re-
peating a process of convolution and down-sampling of the filter
output, we can decompose a signal into many frequency bands
at different levels of temporal/spectral resolution. An important
factor governing the localization ability of temporal/spectral de-
composition is the length of the two filters. Longer wavelet fil-
ters will produce greater spectral resolution and lower temporal
resolution. More specifically, a longer wavelet filter results in
better frequency band sharpness but less knowledge about the
exact location of the nonzero IR regions.

In practice, filtering and down-sampling will generate the
wavelet decomposition using the least amount of computations
and this is often called the fast wavelet transform. For ease of
description and analysis purposes we shall use the matrix repre-
sentation of the wavelet decomposition [13]. It should be noted,
however, that the proposed algorithms would, in practice, be im-
plemented using the filtering approach.

We begin with an examination of the system output estimate

(1)
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Fig. 1. Wavelet matrix with “centered” wavelets,N = 8 andM = 3.

where is the vector of adaptive coefficients and is the
vector of input samples, both of which have length. Without
altering the output, , we can rewrite (1) as

(2)

where and are wavelet matrices. Each row of these ma-
trices, except the first row that represents the dc, contains one
wavelet at a particular scale and translation. These matrices re-
sult in identity when they are multiplied together as . Then
(2) becomes

(3)

where is interpreted as the vector of wavelet
decomposed filter coefficients and is interpreted
as the vector of decomposed input samples.

For orthogonal wavelets, we have and the lowpass
and bandpass filters used to generate the wavelet matrix follow
an explicit set of rules such that is the “highpass version”
of [13]. The convergence speed improvement is governed by
the tradeoff between decorrelation ability and the number of
adapting coefficients, both of which are a function of the lengths
of the wavelet filters.

Apart from orthogonal wavelets, we can also use biorthog-
onal wavelets in which there is no requirement of equality
between the wavelet matrices and and the strict rela-
tionship between and has been relaxed [13]. This allows
more degrees of freedom to choose the lowpass and bandpass
wavelets and, therefore, can lead to greater performance gains
in the algorithm. By proper selection of the biorthogonal
wavelets we can generate a wavelet matrixin which the
lengths of the wavelets at each level of scale are minimized so
that the number of adapting coefficients is minimized. At the
same time, we can generate a wavelet matrixin which the
lengths of the wavelets at each level of scale are maximized in
order to improve input decorrelation. Given certain constraints
the biorthogonal wavelets must satisfy [13], we now have a
greater ability to decorrelate the input while maintaining as few
adapting coefficients as possible.

The activation of parent and children coefficients for adap-
tation can be greatly simplified when arranging the wavelets in

and properly. To this end, the wavelets are ordered from
largest scales to smallest as shown in Fig. 1. Furthermore, the

wavelets in each row of the wavelet matrix are viewed as having
a “center” region and two “extension” regions. The center re-
gions at a certain scaledo not overlap. The extension regions
are the remaining length of the wavelet distributed equally on
both sides of the center region as shown in Fig. 1. When ar-
ranging the wavelets in this way, the parent and children coeffi-
cient selection process can be performed in an elegant, straight-
forward manner.

Finally, we introduce some notation regarding wavelets that
we will use in the algorithm formulation. In order to simplify
much of the analysis, we associate with each dyadic level of
scale a scale index such that for ,
where is the total filter length. The dc, or coarsest,
level in the wavelet transform is associated with scale index

0. This is also illustrated in Fig. 1 for three levels of scale.

B. WB Algorithm

We assign the wavelet decomposed filter coeffi-
cients of the coefficient index numbers from 0 to ( ),
with each coefficient corresponding to a single wavelet in.
The filter coefficients are grouped into sets according to the level
of scale of their corresponding wavelets. Each scale index, for

, has the filter coefficient indices [ ]. The
filter coefficient index for scale index is zero. We shall
denote the scale index for the control coefficients as, where

. The scale indices are, therefore, associated
with parent coefficients while scale indices are associated
with children coefficients. The set of control filter coefficient
indices is represented by. The index set of all parent coef-
ficients activated for adaptation (active parent coefficients) is
represented by . Similarly, the index set of the active children
coefficients is represented by.

The WB algorithm operates as follows:

REPEAT

Adapt control coefficients

Adapt active parent and children coefficients

IF (end of adaptation interval reached)

Compare control coefficients with a

Threshold

Activate appropriate parent & children coef-

ficients

END IF

The structure of the proposed algorithm is depicted in Fig. 2.
The vector is a
collection of input samples. , and are the
wavelet decomposed input sample vectors for the control co-
efficient vector , the active children coefficient vector

and the active parent coefficient vector , respec-
tively. is the estimated system output, is the actual
system response and is the error. We shall describe below
the individual components of the algorithm.

1) Coefficient Adaptation:The system output estimate, as
shown in Fig. 2, can be expressed as

(4)
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Fig. 2. Block diagram of WB sparse algorithm.

Note that and consist of only those children and parent
coefficient indices that have been activated for adaptation.

The update of the control coefficients is

(5)

where is the inverse of the input power estimate for scale
index , , is a preset constant and is the current
total number of adapting coefficients. Note that all the control
coefficients are always adapted. This is to take into account pos-
sible changes in the IR so that re-selection of active parent and
children coefficients can take place.

For the children and parent coefficients, the update equations
are

(6)

(7)

where and are diagonal matrices whose diagonal el-
ements are the inverse of the input power estimates at different
levels of scale corresponding to the active children and parent
coefficients, respectively.

2) Detection of Active Control Coefficients:The coeffi-
cients selected for adaptation must be given a suitable period
of time to adapt, which we denote as the adaptation interval

. can be chosen proportional to the convergence
time constant [1]. At the end of each adaptation interval,
the algorithm enters into a subroutine that determines which
control coefficients are significantly different from zero. Each
control coefficient is modeled as a Gaussian random variable
[18] with mean equal to the true value and variance governed
by the gradient noise. Since the true coefficient value is not
known, we use the Neyman-Pearson criteria [19] for detection.
For a given probability of false alarm, the detection of nonzero
control coefficients is achieved by comparing its magnitude
against a threshold. The thresholdis formed at the end of
each adaptation interval as [16]

(8)

where is the present mean square error estimate, is
the current signal power estimate for scale indexand they can
be obtained by exponential averaging of and the first el-
ement of . is related to the user defined probability
of false alarm, , according to the standard unit variance

Gaussian and ( ) is the estimate of the adaptive co-
efficient variance [1]. The indices of detected nonzero control
coefficients are placed in the coefficient index set.

The probability of detection is dependent on how large the
mean of the control coefficients are in comparison with their
standard deviations. The standard deviations are proportional to
the step size. Decreasing the step size can, therefore, increase
the probability of detection, at the cost of a longer convergence
time.

3) Parent and Children Coefficient Selection:Once the
nonzero control coefficients have been determined, the appro-
priate parent and children coefficients can be activated. Each
detected nonzero control coefficient with index number
will activate the children coefficients with indices in the range

(9)

for . This selection process activates children
coefficients where the center regions of the corresponding
wavelets temporally overlap with the center regions of the
wavelets identified by the detected nonzero control coefficients.
We consider only the overlap of center regions in order to elim-
inate unnecessary children activation. This is because all the
center regions of the wavelets at a single level of scale together
cover the entire time domain impulse response duration. In this
manner, we can keep the algorithm simple and also minimize
the number of adapting coefficients. The children coefficients
activated by all the detected nonzero control coefficients are, as
a complete group, designated as .

To find the parent coefficients that need to be activated, we
must take the extension regions into account. We first deter-
mine those parent coefficients whose corresponding wavelets
are so long that they cover most, if not all, of the entire dura-
tion of the IR and, therefore, would always be activated. These
parent coefficients have scale indices where

and and are the lengths of
the lowpass and bandpass wavelet filters [13]. The total number
of parent coefficients in these scales is 2and these coefficients
may be adapted from the start along with the control coeffi-
cients.

Determination of the remaining parent coefficients that must
be activated requires two quantities. The first is the duration of
the wavelets at scale index

(10)

where is the total length of the filter. The second is the
temporal translation between two successive wavelets at scale
index

(11)

Then, for each , the remaining parent coefficients that
need to be activated are those that have index numbers

(12)



660 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 49, NO. 10, OCTOBER 2002

Fig. 3. Parent and children activation for a single control coefficient.

where and . is
the parent coefficient index at scale indexwhere the center re-
gion of the corresponding wavelet overlaps temporally with the
nonzero region identified by the detected nonzero control coef-
ficient with index . The value is the number of successive
center regions at scale indexthat overlap with the extension
region in one side of a wavelet at scale index. The parent coef-
ficients activated by all the detected nonzero control coefficients
are, as a complete group, designated as .

As an example, Fig. 3 illustrates the case of a single nonzero
control coefficient and the necessary coefficients to activate in
the nearest (in scale) sets of parents and children. The number of
coefficients is 1024 and the control set scale index is
8. Note that the numbers along the left side of the figure refer
to the filter coefficient indices. For the control coefficient
158 detected as nonzero, we activate the children coefficients
with indices
according to (9). Furthermore, for orthogonal wavelets of length

, and
and the parent coefficients with indices

[78:80] will be activated.
Finally, note that at scale index, the parent coefficient indices

are in the range [ ]. Therefore, any activated parent
coefficient indices [ ] at scale index
which exceed the highest coefficient index number ( ), must
be decreased by . Conversely, any coefficient indices less
than the lowest coefficient index number , at scale index,
must be increased by . Thisoccursbecause, inmatrix form,
the wavelets shift cyclically and some of them cover both ends of
the temporal domain. This is illustrated in Fig. 1 for the first and
last wavelets at scale index 3.

C. Expected Number of Adapting Coefficients at Steady State

The excess mean square error (mse) of the proposed algo-
rithm is governed by the number of adapting coefficients at
steady state . is a random variable because it is deter-
mined by the number of detected nonzero control coefficients
which are themselves random variables. We, therefore, evaluate
the expected value of and it is equal to

(13)

is the number of control coefficients and it is
a constant since all of them are always adapted to take care of
the possible changes in the unknown IR to be identified. Due to
the dyadic structure of the wavelet decomposition, from (9) the
number of children coefficients activated by a single nonzero
control coefficient is , where

. If the number of true nonzero control coefficients is, then
the expected number of adapting children coefficients at steady
state is

(14)

The first term is the number of children coefficients activated
by the true nonzero control coefficients and the second term
is the expected number of children coefficients activated due to
false detection of the remaining ( ) zero control coef-
ficients to be nonzero. Note that parent and children coefficients
activated by the false detection of zero control coefficients to be
nonzero will stop adaptation and be reset to zero if the false
alarm is cleared at the end of the next adaptation interval.

A general formula for the expected number of adapting parent
coefficients at steady state is very cumbersome due to its depen-
dence on the temporal distribution of the nonzero IR regions and
on the choice of wavelet. However, the number of active parent
coefficients is relatively small compared to the number of con-
trol and active children coefficients. For simplicity, we approx-
imate the number of active parent coefficients as a function of
the number of true nonzero control coefficients. Ignoring the
extension regions, a single true nonzero control coefficient will
activate one parent coefficient at each scale up to scale level

and, hence, in total [ ] parent coefficients. Ex-
tending this to multiple true nonzero control coefficients leads
to , where is the max-
imum number of parent coefficients. Finally, upon including the
effects of activation by falsely detected nonzero control coeffi-
cients, the approximate expected number of parent coefficients
is

After combining like terms, we have according to (13)

(15)

In (15) we have ignored the term from the probability of miss.
This is because the nonzero control coefficients that are missed
will have small magnitudes and in most cases will contribute a
negligible residual excess error compared to the noise floor.
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For a typical sparse IR occuring in practice, will be
considerably less than . For instance, if 1024 ( 10),

7, 2 ( 4), 6 and 0.01, then
193 which is five times less than .

Note that the WB algorithm operates under the assumption
that the unknown sparse IR is rich in spectral content. Viewing
each level of scale as a filter bank, this ensures that there ex-
ists significant IR energy in the portion of the spectrum defined
by the control set wavelets. Furthermore, while negligible in
practice, it may be possible to contrive situations in which rich
spectral content exists yet the IR is orthogonal to the control
set wavelets. In such a case this may be alleviated by cycling
through a group of different control sets while maintaining adap-
tation of the selected parent and children coefficients.

III. SPECIAL REALIZATIONS OF THE WB ALGORITHM

The WB algorithm is a general technique for sparse system
identification using wavelets. However, there are some special
implementations of the WB algorithm that, under certain con-
ditions, yield even greater performance improvement. We ex-
amine one such special implementation here. This is achieved
by altering the method of children selection to take advantage
of high temporal resolution. We denote this as the SSWB algo-
rithm in which the children activation process is performed se-
quentially. The detected nonzero control coefficients only acti-
vate children coefficients in the next children scale index ().
The detected nonzero children coefficients at this scale index are
then used to activate the appropriate children coefficients in the
next children scale index ( ) and so on. This allows many
of the zero children coefficients to be excluded from adaptation.
For an IR containing many nonzero regions that are impulse-like
and widely distributed over the entire temporal domain, a sig-
nificant reduction in the number of adapting coefficients can be
realized, resulting in a faster convergence speed.

A. SSWB Algorithm

The SSWB algorithm is a special realization of the WB algo-
rithm. The adaptation process and the activation of parent coef-
ficients remains the same. The difference is in how the children
coefficients are activated. In the WB algorithm, the children co-
efficients make up a large portion of the total number of adapting
coefficients due to the fact that the number of coefficients dou-
bles as the children scale index increases by one. Therefore, un-
less the nonzero region of an IR matches up perfectly with the
duration of a given control set wavelet, there are unnecessary
children coefficients being activated when the nonzero IR re-
gions are impulse-like and widely distributed.

The SSWB algorithm seeks to remedy this by utilizing the
detected nonzero filter coefficients at scale index, where

, to select the appropriate children coefficients for
adaptation at the next scale index ( ) only. As children coeffi-
cients in successively higher scale indices( i.e., higher temporal
resolution) are activated, a more accurate picture of the exact
location of the nonzero IR regions becomes apparent.

An example is illustrated in Fig. 4 for comparison of the WB
and SSWB algorithms where sections of the children coefficient
selection are shown. The time domain IR is a single impulse

Fig. 4. Children activation for WB and SSWB algorithms.

shown at the bottom of Fig. 4. The control set has scale index
. We can see that while the WB algorithm would re-

quire 14 active children coefficients, the SSWB algorithm only
requires six active children coefficients. We can also see that if
this example is expanded to a more practical situation with a
long filter length where multiple impulses may occur, the total
number of filter coefficients for the SSWB algorithm can be sig-
nificantly less than the WB algorithm.

There is one limitation on the SSWB algorithm which relates
to the nature of the sparse IR itself. Because the SSWB algo-
rithm successively detects the filter coefficients at finer time res-
olutions, each nonzero region in the IR must have significant en-
ergy in the frequency bands corresponding to the scale indices

. This is because each nonzero filter coeffi-
cient in scale index must have enough energy to be detectable
before it can activate the appropriate children coefficients at the
next scale index ( ). It is, therefore, easy to see that the SSWB
algorithm performs best when the IR is impulse-like over short
time periods such as in multipath and delay channels.

1) Children Selection for the SSWB Algorithm:The selec-
tion of children coefficients for the SSWB algorithm is an ex-
tension of the method used for the WB algorithm. Each control
coefficient and each active child coefficient is compared with a
threshold. This threshold is determined at the end of each adap-
tation interval before the detection process takes place. A sep-
arate threshold is required at each scale index, for

and is chosen as

(16)

where is the current signal power estimate at scale index
and the remaining variables are the same as those previously dis-
cussed for the WB algorithm. It is also possible to increase the
probability of false alarm and, therefore, decrease, at higher
scale indices to make detection easier with little detriment to the
number of adapting coefficients. Each detected nonzero child
coefficient with coefficient index will activate the children co-
efficients with coefficient indices 2and only.

2) Expected Number of Adapting Coefficients at Steady
State: This subsection determines the expected number of
adapting coefficients at steady state for the SSWB algorithm.
We need only to examine the children coefficients since the
number of control coefficients and method of parent coefficient
activation remains the same as the WB algorithm.
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We shall denote the number of adapting coefficients at scale
index as and the number of true nonzero coefficients at
scale index as . Each true nonzero control coefficient will
activate two children coefficients at scale index .
Also, due to the finite probability of false detection there may be
coefficients whose true value is zero but are falsely detected as
nonzero. Combining these two quantities and taking expectation
over time gives, at steady state, the expected number of adapting
coefficients at scale index ( ) as

, which after rearranging becomes

(17)

where since all control coefficients
are always adapted. Similarly, at scale index ( ) we have

. Substi-
tuting in (17) yields

(18)

Generalizing the result to children scale indexyields

(19)

Combining the result for leads to the
total expected number of children coefficients at steady state,

, as

(20)

This can be greatly simplified if we make a change of vari-
ables for the summation indices and apply the valid assumption
that is small and, therefore, the higher order terms ofare
negligible. As a result

(21)

which is a more tractable solution. Combining this with the
number of control coefficients and the approximate number of
parent coefficients from Section II-C gives the total expected
number of adapting coefficients for the SSWB algorithm

(22)

A numerical analysis of (22) reveals a tendency for
to significantly decrease as the control set scale indexde-
creases (increasing level of scale). It should be noted, however,
that while the theoretical number of adapting coefficients can
get very small as decreases, there is a practical limit onat
which the algorithm will no longer converge. This is because
the spectral bandwidth decreases by a factor of two as the scale
index decreases by 1. This will typically result in less IR energy
as the scale index decreases which translates into smaller filter
coefficient values. Smaller coefficients are difficult to detect and
will hinder convergence.

B. Alternative Implementations of the WB Algorithm

The WB and SSWB algorithms employ the dyadic wavelet
decomposition to achieve temporal localization of nonzero IR
regions as well as a certain amount of input decorrelation. It may
be possible to achieve even greater performance improvement
by using a wavelet packet approach to tailor the form of the
wavelet decomposition to best fit the application of interest. For
instance, when the nonzero coefficients of a sparse IR are highly
localized in the time domain, high temporal resolution is not
necessary. In this case, decomposing the IR so as to improve the
spectral resolution can result in improved input decorrelation
while maintaining temporal localization.

One such approach is to employ an equal-resolution decom-
position which is similar to a short-term Fourier transform
except for the temporal localization ability provided by
wavelets. In this way, all the sets of wavelets have the same
level of scale and better spectral resolution is achieved at the
high end of the spectrum. However, care must be taken because
the finite wavelet span may cause significant out-of-band
sidelobes to occur in the magnitude spectrum of some wavelet
at certain scales. This can hinder decorrelation resulting in
still-small eigenvalues in the transformed input correlation
matrix. The modes of coefficient convergence are inversely
proportional to the eigenvalues [1]. Hence, there could be slow
convergence in the mean-square difference [1]

MSD (23)

where is the vector of adapting coefficients and is its true
value. However, some performance improvement is still pos-
sible for the EMSE [1]

EMSE (24)

where is the input correlation matrix in the wavelet do-
main. This is because the large coefficient errors from the slower
modes of convergence are weighted by their respective eigen-
values that are themselves very small. Since the eigenvalues are
inherent to the autocorrelation matrix, the normalization factors
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Fig. 5. Echo path IRM (k).

are effectively canceled out so that a larger step size may be em-
ployed, enabling faster convergence. In other words, this manner
of decomposition may work well when the interest is the error
signal such as in echo cancellation application instead of system
identification where the coefficient values are of interest.

Another approach recently proposed is a symmetric-resolu-
tion approach [20] in which the signal component at the lowest
level of scale ( 2) is further decomposed such as to be sym-
metric in spectral resolution with the other higher levels of scale.
This manner of decomposition has demonstrated convergence
speed improvement when the input signal has correlation peaks
in the upper half of the spectrum (i.e., angular frequency from

to ). The optimal decomposition through wavelet packets
for a given input correlation and IR type is a subject of further
study.

IV. SIMULATION RESULTS

This section presents simulations to evaluate the performance
of the proposed sparse adaptive algorithms. We examine the
use of different wavelets with the WB algorithm to illustrate
the benefit of using orthogonal and biorthogonal wavelets for
sparse system identification as compared to LMS. We also use
a biorthogonal Haar wavelet in the SSWB algorithm to demon-
strate the possible performance gain relative to WB and LMS.

The filter length is 512 (i.e., 9) and the probability
of false alarm is set to 0.01. The length of the adaptation
interval is set to two adaptation time constants [1]. The time con-
stant for the LMS-based updates (5)–(7) is about and,
hence, , where is the number

of adapting coefficients and is a preset constant step size.
Note that varies from one adaptation interval to another and
is constant within. Also, we will use for the control
set, which corresponds to level of scale 16 and there are 32
control coefficients always being adapted. The performance in-
dices are the sum of squared coefficient error (MSD) shown in
(23) and the mse. In each set of simulations, the preset step size
constant for each of the algorithms is adjusted to provide the
same level of steady state MSD or EMSE for all, depending on
which is being examined.

A. Behavior of the WB Algorithm

The performance of the WB algorithm is presented to reveal
the benefit in using orthogonal and biorthogonal wavelets for
sparse system identification. The WB algorithm is a general
sparse adaptive algorithm and does not make any assumption
about the characteristics of an IR other than it being sparse. We
use echo cancellation application as an example to evaluate the
performance of the WB algorithm. The input is the lowpass cor-
related sequence

(25)

where is a white Gaussian noise sequence and the noise
power is .

Three different wavelets are examined for the WB algo-
rithm: the Haar wavelet (such that the WB reduces to the
HB algorithm) with denoted as Haar(2,2), the
Daubechies’ wavelet with denoted as Daub(4,4)
and the biorthogonal Haar type wavelet with and
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Fig. 6. Echo path IRM (k) in the wavelet domains.

Fig. 7. MSD convergence for WB and LMS.

denoted as biHaar(2,6) [13]. The echo-path IR is
from [17] and has 64 nonzero samples with some initial

flat delay as illustrated in Fig. 5. The echo-path IR is scaled by
a constant to produce an echo return loss (ERL), the ratio of
the power between and , of 6 dB. In the respective
wavelet domains, this echo path is represented as in Fig. 6.

The results of the WB algorithm for each of the three
wavelets and the LMS algorithm are illustrated in Fig. 7
for the MSD case. The inital slow convergence of the WB
algorithm is due to the need to activate the appropriate parent

and children coefficients for adaptation. The WB algorithm
using Haar(2,2) requires only coefficients on
average at steady state and converges much faster than LMS,
which reaches steady state at iterations. Using
Daub(4,4) gives better decorrelation of the input and, therefore,
converges faster than Haar(2,2) although the average number of
adapting coefficients at steady state increases to .
BiHaar(2,6) converges significantly faster than Daub(4,4).
Bihaar(2,6) applies longer wavelets to the input to give better
decorrelation and shorter wavelets to the filter coefficients to
minimize the average number of active coefficients at steady
state and it gives only 126 adapting coefficients in
this simulation. for each of these choices of wavelets is
dramatically less than the 512 required by the LMS algorithm.
The approximate expected number of adapting coefficients for
Haar(2,2), Daub(4,4) and biHaar(2,6) computed from (15) are
115, 149, and 130, respectively. The estimates are close to the
values from simulation. The differences are due to the fact that
this IR is very localized and, therefore, the approximate number
of parent coefficients will tend to be slightly overestimated.

The results for the mse are illustrated in Fig. 8. We find that
the WB using Haar(2,2) again significantly outperforms LMS
which requires iterations to reach steady state. Fur-
thermore, the WB with Daub(4,4) is faster than Haar(2,2) and
biHaar(2,6) is faster still.

Finally, we provide a simple example to illustrate the
tracking ability of the WB algorithm for time-varying systems.
To do this we use the biHaar(2,6) wavelet, the correlated input
from (25) and the IR. Midway through the simulation
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Fig. 8. MSE convergence for WB and LMS.

Fig. 9. MSE convergence for WB and LMS under time-varying system.

at 40 10 iteration, we change the IR by moving the nonzero
portion to a completely different temporal location that does
not overlap with its previous location. In this way completely
different control coefficients must be detected in order to
“locate” the nonzero region. Fig. 9 depicts the performance of
the WB and LMS algorithms in this situation and it is obvious
that the WB algorithm is able to quickly “relocate” the nonzero
IR region and then reconverge much faster than LMS.

B. Behavior of the SSWB Algorithm

The SSWB algorithm uses the same correlated input as gen-
erated from (25) and the noise power is set to the same level
of . The IR is chosen as shown in Fig. 10 where
the nonzero regions are impulse-like and widely separated. The
SSWB algorithm works best for this type of IR. The biHaar(2,6)
wavelet is chosen for the SSWB. Fig. 11 shows the perfor-
mance for the MSD case of the SSWB algorithm relative to
LMS and the WB algorithm using biHaar(2,6). The SSWB al-
gorithm converges considerably faster than WB and much faster
than LMS which requires iterations to converge.
On average, the SSWB algorithm requires only

coefficients at steady state which is less than the
required for the WB and much less than the 512 required for
LMS. The expected number of adapting coefficients for SSWB
with biHaar(2,6) calculated from (22) is 113 and for WB with
biHaar(2,6) from (15) is 179. Both of these match up well with
their actual values from simulations because the IR in this in-
stance will cause the maximum number of parent coefficients
to be activated so there is no overestimation. The impulse like
IR will make the WB algorithm activate many unnecessary zero
children coefficients and, therefore, have slower convergence.
SSWB is able to provide much better performance in this case.

The mse convergence curves are illustrated in Fig. 12 for
SSWB and WB using biHaar(2,6) and LMS. We notice that the
SSWB algorithm converges dramatically faster than WB, which
is itself much faster than LMS taking iterations to
reach steady state.

C. Computational Complexity

For the WB and SSWB algorithms there will be a slight com-
putational “bottle neck” at the end of each adaptation interval
due to the parent and children selection process. Since the adap-
tation interval is typically long, though, the increase in the av-
erage computational load due to the selection process is neg-
ligible. Also, this computational increase in most cases can be
handled through different implementations in a DSP chip. For
example, it can be alleviated by not updating coefficients during
the iteration where the selection process takes place.

When neglecting the selection process, we can derive an ex-
pression for the complexity during a “typical” iteration. The
power estimation through exponential averaging for the update
(5), (6), and (7) and the fast wavelet decomposition will require

and operations [13], respectively,
where and are the lengths of the lowpass and bandpass
wavelet filters. Adding to this the computations required for
power normalization and the update of thecoefficients, we
find that the WB algorithm requires about

operations

divisions (26)

at each iteration, where one operation is defined as one multipli-
cation and one addition. For a typical sparse IR, the WB algo-
rithm has a lower complexity than LMS. The complexity of the
SSWB algorithm is also given by (26). However, due to smaller

, SSWB will have a lower complexity than WB for any widely
distributed, impulse-like IR.

As a simple example, if we use biHaar(2,6) and set 512
( 9) and 3 and assume that one division requires
10 operations, the WB algorithm will have complexity less than
LMS as long as 413. This is often fulfilled for a sparse
system.

V. CONCLUSION

We have proposed an adaptive algorithm for sparse system
identification using wavelets for use in systems that are rich in
spectral content. The algorithm exploits both the spectral and
temporal localization properties of wavelets in order to realize
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Fig. 10. Dispersed IR with impulse-like nonzero coefficients.

Fig. 11. MSD performance for SSWB, WB, and LMS for impulse like sparse
IR.

dramatic performance gains for sparse system identification.
The spectral localization property provides partial decorrelation
of the input to increase the convergence speed, while the tem-
poral localization property identifies the nonzero IR regions to
reduce the number of adapting coefficients and, therefore, re-
duce complexity and further speed up convergence. This is done
by using coefficients corresponding to a single level of scale to
identify all remaining coefficients that require adaptation. Fur-
thermore, the proposed WB algorithm supports the use of or-
thogonal as well as biorthogonal wavelets, which can lead to

Fig. 12. MSE performance for SSWB, WB, and LMS for impulse like sparse
IR.

even greater performance improvement. We have also proposed
a special realization of the WB algorithm, the SSWB, that takes
advantage of the properties of a certain type of sparse system.
The SSWB algorithm produces even more pronounced results
than the WB algorithm for sparse systems that have many im-
pulse-like nonzero regions located far apart. The convergence
speed improvement for the proposed algorithms is quite dra-
matic compared to LMS, while at the same time having lower
computational complexity than LMS for most practical sparse
systems.
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