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Adaptive Sparse System ldentification Using
Wavelets

K. C. Ho, Senior Member, IEEEBnd Shannon D. BlunMember, IEEE

~ Abstract—This paper proposes the use of wavelets for the identi- significant nonzero values. While computationally simple, this
fication of an unknown sparse system whose impulse response (IR)method may suffer a little in convergence speed due to the se-
is rich is spectral content. The superior time localization property quential adaptation of coefficients. Ettgral.[4]-[8] developed

of wavelets allows for the identification and subsequent adaptation lgorithm by which I th filt laced d
of only the nonzero IR regions, resulting in lower complexity and an aigorithim Dy which smail length niiers are piaced aroun

faster convergence speed. An added advantage of using wavelets i§l€lay regions that are estimated to contain significant nonzero
their ability to partially decorrelate the input, thereby further in-  coefficients. This algorithm, though faster, may be limited by
creasing convergence speed. Good time localization of nonzero IRthe increase in complexity caused by adaptive determination of
regions requires high temporal resolution while good decorrelation o delay regions in addition to filter coefficients. More recently
of the input requires high spectral resolution. To this end we also . . !
propose the use of biorthogonal wavelets which fulfill both of these Homer_et _al. (91, [10]_ has fprmulated an algorithm that is based_
two requirements to provide additional gain in performance_ on Stat|st|ca| detect|0n criterion to deteCt nonzero IR tap Coeffl-
The paper begins with the development of the wavelet-basis cients in the time domain, where the detection threshold is pro-
(WB) algorithm for sparse system identification. The WB algo- portional to the power in the desired response. Duttweiler [11]
rithm uses the wavelet decomposition at a single scale to identify has also recently proposed a technigue called the proportionate

the nonzero IR regions and subsequently determines the wavelet . - - -
coefficients of the unknown sparse system at other scale levels thatnormallzed least mean square (PNLMS) algorithm in which the

require adaptation as well. A special implementation of the WB €ffective step size for a given tap is proportional to its mag-
algorithm, the successive-selection wavelet-basis (SSWB), is themitude to speed up convergence. While this approach exhibits

introduced to further improve performance when certain a priori  faster convergence than NLMS when the IR is sparse, its per-
knowledge of the sparse IR is available. The superior performance ¢, mance degrades for nonsparse IR. Different from most sparse
of the proposed methods is corroborated through simulations. algorithms, PNLMS updates all the filter coefficients at each it-
Index Terms—Adaptive algorithm, sparse impulse response eration and, therefore, has complexity the same as NLMS. In
(IR), system identification, wavelets. [12], Benesty and Gay propose a modification to PNLMS that
alleviates its susceptibility to nonsparse IR.
l. INTRODUCTION This paper proposes sparse system identification in the
wavelet domain. Wavelets have very good time localization
|Jéro erty [13] and, hence, can locate the nonzero portions of

! parse IR accurately for adaptation. This is accomplished

“”'“?OW.” or its charagterl_stlcs are time-varying (1], [2]. Somg exploiting the hierarchical structure of wavelets such that,
applications of adaptive filters, such as network echo cancgl determining the wavelets at one level of scale whose time

Iat|ort1), ha;/e an 'm?f‘ﬂ'?‘e tres1E>r?ns;]e (IIsz tth"#] cgnta||ns a Iatr main spans overlap the nonzero IR regions, we can ascertain
number ot zero coetiicients. This has 1ed to the development@ly \4yelets at all other levels of scale whose time domain
sparse adapiive algorithms that attempt to minimize the num %rans will overlap these nonzero regions as well. As a result,

of adapting coefficients in order to increase the CONVErgentiiy the unknown system coefficients corresponding to those
speed, decrease the excess mean-square error (EMSE) lets are needed for adaptation. Wavelets also have the

re(:/Lllce the cqmputatlonal clometlr(]axny. loved a time d additional benefit of good spectral localization that provides
any previous sparse aigorithms employed a imeé domaii .o tain amount of decorrelation for colored input. The

approach FO exploit the sparse nature of a syste_m. Kawa”_‘ Bibination of these leads to a dramatic convergence speed
and Hatori [3] developed a method of sequentially adapti

diff t sets of fficients t tain which ri'@lgxovement while maintaining a computational complexity
erent Sets o coemcients 1o ascertain which Ones POSS§Rq.,y that of LMS for sparse system identification.

The idea of using wavelets in adaptive system identification is
not new. Much of the previous work, however, considered non-
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For sparse system applications the utilization of this property Il. SPARSEALGORITHMS USING WAVELETS

can lead to a substantial performance gain. ) o
The proposed wavelet-basis (WB) algorithm is an extensionVavelets possess the attractive pr_operty_ of localization in

of a previously investigated technique called the Haar-Bad}8th the temporal and spectral domains. It is well known that

(HB) algorithm [16] that has been shown to provide a dramatife spectral localization property allows greater decorrelation

convergence speed improvement over the LMS and the H&4colored input and, therefore, enables faster convergence for
transform domain LMS. The HB algorithm utilizes the Haafdaptive algorithms. However, the potential benefits afforded
transform for the identification of nonzero IR regions foPY the time localization property have not previously been
adaptation. The HB algorithm can be considered a speciploited. o _
case of the WB algorithm in which the Haar wavelet is used. e shall introduce in this paper the use of the time local-
The Haar wavelet has very fine time localization ability bugation property of wavelets for sparse system identification.
poor spectral localization. The WB algorithm developed hefd'e wavelet decomposition at a certain seaten identify the
allows the use of any wavelet, including biorthogonal, so thAPnZero regions of a sparse IR at a temporal resolution roughly
we can gain greater spectral localization and, therefore, gretgk@l to the duration of the wavelet at scaldn addition, the
decorrelation of colored input to speed up convergence. THRgular hierarchical structure of the wavelet decomposition per-
price paid for greater decorrelation is a slight increase in tiaits easy identification of the wavelets at all other levels of scale
number of adapting coefficients because of the decreasei0oSe temporal spans overlap the nonzeroregions as well. Inal-
temporal resolution. However, it will be shown later that thigCrithmic form we can interpret this as, adapting the complete
tradeoff leads to faster convergence for highly correlated inp8€t Of filter coefficients corresponding to the wavelet decom-

This paper also introduces a new implementation stemmiRgSition of the sparse system at a certain sealéetermining
from the structure of the WB algorithm. We shall call it the suc¥hich of these filter coefficients significantly differ from zero
cessive-selection WB (SSWB) algorithm and it will converg@”d then activating for adaptation the filter coefficients at all
even faster than the WB algorithm when the nonzero regions@fer levels of scale whose corresponding wavelet spans fallinto
the sparse IR are impulse-like and widely separated. This kiHtf Same IR regions as the detected nonzero coefficients at scale
of IR occurs quite often in many applications, such as those #- The filter coefficients associated with wavelets at seatee
volving multipath and delay channels. The increase in conv&a”?d the “control” coefficients. The coefficients corresponding
gence speed arises from a process of selecting nonzero Cogﬁplgher“and lower levels of scale are denoted as “parent” and
cients at successively finer levels of temporal resolution. Thighildren” coefficients, respectively. _
allows some of the zero coefficients that would have been se-'” order to properly f0rrr_1ulate the sparse algorithms to be
lected for adaptation by the WB algorithm to be ignored an#fltroduced in the next section, we now present some pertinent
therefore, reduces the total number of adapting coefficients ti@ails of wavelets for the proposed algorithms.
leads to faster convergence.

One limitation of the proposed algorithms is that they ar&. Wavelets
designed for a sparse IR that is r_|ch in frequency content, "e'The wavelet decomposition of a signal or system into dyadic
nearly flat frequency response. Rich in frequency content here

. . Scales is accomplished with the use of a low-pass filter and a
generally speaking, refers to an impulse response where oyer

a frequency range from/8 to 77 /8, the correlation coeffi- bandpass filter, denoted gsandh, respectively [13]. By re-

. . : ; rpeating a process of convolution and down-sampling of the filter
cient of its magnitude response with a constant (flat magni- : .
output, we can decompose a signal into many frequency bands

tude spectrum) is bigger than 0.8. This is because, a necessiifrerent levels of temporal/spectral resolution. An important

and not sufficient condition for the proposed method to identi . N .
. S . ctor governing the localization ability of temporal/spectral de-
nonzero impulse response region is that, a certain amount of the

IR spectral enerav must be present in the passband definechmpOSition is the length of the two filters. Longer wavelet fil-
P 9y P! . Pass : 5 will produce greater spectral resolution and lower temporal
the wavelets. This class of IR is quite common in practice, suc

resolution. More specifically, a longer wavelet filter results in

as in network echo cancellation application. Annex D of IT
. T tter frequency band sharpness but less knowledge about the
recommendation G.168: Digital Network Echo Cancelers [1 : .

act location of the nonzero IR regions.

contains several typical echo-path IRs and they are rich in spec- . o ; .
tral content yp P y P In practice, filtering and down-sampling will generate the

T paper is oranized as folows Secton I develog e ecomposion g he ess amount of comatons
the WB algorithm for sparse system identification. Differen '

kinds of wavelets, including orthogonal and biorthogonal an SC”Pt'On and analysis purposes we shall use the mairix repre-
s%ntanon of the wavelet decomposition [13]. It should be noted,

their relative advantages for sparse system identification ar ) . . )
discussed. Section Il presents the SSWB algorithm and a?tu] wever, that the proposed algorithms would, in practice, be im-

lyzes its performance. It also summarizes alternative wave
decompositions that may yield better performance. Section IV

provides simulation results to support the theoretical results and
illustrate the performance advantages of the proposed methods.
Finally, Section V is the conclusion. g(k) = wl (k)x(k) 1)

p mented using the filtering approach.
e begin with an examination of the system output estimate
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DC | I | =0 wavelets in each row of the wavelet matrix are viewed as having
s | O—— | - CenT a “center” region and two “extension” regions. The center re-
R — Region gions ata cer.ta}in scatedo not overlap. Thg e>§tension regions
e I 2 are th(_a remaining length of t.he wavelet d|§tr|bgted equally on
e both sides of the center region as shown in Fig. 1. When ar-
— . T rz_;mging the_wavelets in this way, the parent and children coe_ffi-
I "Extension” cient selection process can be performed in an elegant, straight-
e | , Region forward manner.
a=2  — =3 Finally, we introduce some notation regarding wavelets that
we will use in the algorithm formulation. In order to simplify
| ’___ much of the analysis, we associate with each dyadic level of
scalea a scale index such than = 2(M—i+1) for 1 <4 < M,
Fig. 1. Wavelet matrix with “centered” wavelets, = 8 andM = 3. where2™ = N is the total filter length. The dc, or coarsest,

level in the wavelet transform is associated with scale index

wherew (k) is the vector of adaptive coefficients anfk) isthe ¢ = 0. Thisis also illustrated in Fig. 1 for three levels of scale.
vector of input samples, both of which have lengthWithout

altering the outputy(k), we can rewrite (1) as B. WB Algorithm
We assign theV = 2™ wavelet decomposed filter coeffi-
g(k) = wl (k) QTRx(k) (2) cients ofb() the coefficient index numbers from 0 ¢ —1),

with each coefficient corresponding to a single waveleQin
whereQ andR are wavelet matrices. Each row of these marhe filter coefficients are grouped into sets according to the level
trices, except the first row that represents the dc, contains asf&cale of their corresponding wavelets. Each scale ingdiex
wavelet at a particular scale and translation. These matricesre< ; < M, has the filter coefficientindice@{~" : 2/ —1]. The
sultin identity when they are multiplied together@$ R. Then filter coefficient index for scale index = 0 is zero. We shall
(2) becomes denote the scale index for the control coefficients) aghere

2 < 6 < M. The scale indices < 6 are, therefore, associated

g(k) = T (k)z(k) (3)  with parent coefficients while scale indices- § are associated

with children coefficients. The set of control filter coefficient
whereb(k) = Qw(k) is interpreted as the vector of waveleindices is represented hy. The index set of all parent coef-
decomposed filter coefficients andc) = Rx (k) is interpreted ficients activated for adaptation (active parent coefficients) is

as the vector of decomposed input samples. represented by’. Similarly, the index set of the active children
For orthogonal wavelets, we ha@ = R and the lowpass coefficients is represented lgy.

and bandpass filters used to generate the wavelet matrix followrhe WB algorithm operates as follows:

an explicit set of rules such that is the “highpass version”

of g [13]. The convergence speed improvement is governed b

the tradeoff between decorrelation ability and the number 5¥PEAT o

adapting coefficients, both of which are a function of the lengths A9aPt control coefficients N

of the wavelet filters. Adapt active paren.t an.d children coefficients
Apart from orthogonal wavelets, we can also use biorthog-'F (6nd of adaptation interval reached)

onal wavelets in which there is no requirement of equality ~ Compare control coefficients with a

between the wavelet matricdd and R and the strict rela- Threshold , _
tionship betweery and h has been relaxed [13]. This allows ?C_t"’":‘te appropriate parent & children coef-
Icients

more degrees of freedom to choose the lowpass and bandpass
wavelets and, therefore, can lead to greater performance gain
in the algorithm. By proper selection of the biorthogonal
wavelets we can generate a wavelet ma@xin which the  The structure of the proposed algorithm is depicted in Fig. 2.
lengths of the wavelets at each level of scale are minimized $he vectorx(k) = [z(k) #(k — 1)...2(k — N + 1)]T is a

that the number of adapting coefficients is minimized. At theollection of input samplesza (k), zc (k) andzp(k) are the
same time, we can generate a wavelet maiiin which the wavelet decomposed input sample vectors for the control co-
lengths of the wavelets at each level of scale are maximizedgfficient vectorba (k), the active children coefficient vector
order to improve input decorrelation. Given certain constrainks, (k) and the active parent coefficient vectop (k), respec-

the biorthogonal wavelets must satisfy [13], we now havet#ely. (k) is the estimated system outpytk) is the actual
greater ability to decorrelate the input while maintaining as fegystem response ardk) is the error. We shall describe below
adapting coefficients as possible. the individual components of the algorithm.

The activation of parent and children coefficients for adap- 1) Coefficient Adaptation:The system output estimate, as
tation can be greatly simplified when arranging the wavelets gmown in Fig. 2, can be expressed as

Q andR properly. To this end, the wavelets are ordered from
largest scales to smallest as shown in Fig. 1. Furthermore, thej(k) = b’ (k)za (k) + bL(k)zc (k) + bh(k)zp(k).  (4)
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Gaussian ancm?(k)/j\g(k)) is the estimate of the adaptive co-
efficient variance [1]. The indices of detected nonzero control
coefficients are placed in the coefficient index Qet

Fast The probability of detection is dependent on how large the
x®_ T\:Zi:f;f; mean of the control coefficients are in comparison with their

standard deviations. The standard deviations are proportional to
the step size. Decreasing the step size can, therefore, increase
the probability of detection, at the cost of a longer convergence
time.

3) Parent and Children Coefficient Selectio@nce the
nonzero control coefficients have been determined, the appro-
Fig. 2. Block diagram of WB sparse algorithm. priate parent and children coefficients can be activated. Each
detected nonzero control coefficient with index numbeg (2

Note thatC and P consist of On'y those children and parenWi” aCtiVate the Children CoefﬁCientS W|th indices in the range

[R]

coefficient indices that have been activated for adaptation. L [oG=8), . . o(i—8)
The update of the control coefficients is Coi = [2 w2 (W+1) - 1} ©)
ba(k+1) = ba(k) + 2;le(k)5\52zA(k~) (5) for (6 + 1) < i < M. This selection process activates children

coefficients where the center regions of the corresponding
wheref\g2 is the inverse of the input power estimate for scalavelets temporally overlap with the center regions of the
indexsé, it = po/ N, uoisa preset constant adis the current Wavelets identified by the detected nonzero control coefficients.
total number of adapting coefficients. Note that all the contrdVfe consider only the overlap of center regions in order to elim-
coefficients are always adapted. This is to take into account pé#ate unnecessary children activation. This is because all the
sible changes in the IR so that re-selection of active parent ¢ghter regions of the wavelets at a single level of scale together

children coefficients can take place. cover the entire time domain impulse response duration. In this
For the children and parent coefficients, the update equatiohgnner, we can keep the algorithm simple and also minimize
are the number of adapting coefficients. The children coefficients
R activated by all the detected nonzero control coefficients are, as
bo(k+ 1) =be (k) + 2iie(k) A’z (k) (6) a complete group, designatedias(k).
bp(k + 1) =bp(k) + 2fie(k) A5z p (k) @) To find the parent coefficients that need to be activated, we

. R must take the extension regions into account. We first deter-
whereA;” andA” are diagonal matrices whose diagonal elmine those parent coefficients whose corresponding wavelets
ements are the inverse of the input power estimates at differgaé so |ong that they cover most, if not all, of the entire dura-
levels of scale corresponding to the active children and parg, of the IR and, therefore, would always be activated. These
coefficients, respectively. parent coefficients have scale indices= 0,1,...,r where

2) Detection of Active Control Coefficientsthe coeffi- ;. — [1g, (max( Lg,L1))] and L, and L, are the lengths of
cients selected for adaptation must be given a suitable peripd |owpass and bandpass wavelet filters [13]. The total number
of time to adapt, which we denote as the adaptation interiparent coefficients in these scales isahd these coefficients
T'ar. Tar can be chosen proportional to the convergenggay be adapted from the start along with the control coeffi-
time constant [1]. At the end of each adaptation intervaljents.
the algorithm enters into a subroutine that determines whichpetermination of the remaining parent coefficients that must

control coefficients are significantly different from zero. Eache activated requires two quantities. The first is the duration of
control coefficient is modeled as a Gaussian random varialig wavelets at scale indéx

[18] with mean equal to the true value and variance governed ) ) )

by the gradient noise. Since the true coefficient value is not: = (27" — 1) Ly + (2(M_'L)> Ly — (2(M_’+1) - 2)
known, we use the Neyman-Pearson criteria [19] for detection.; -, (10)
For a given probability of false alarm, the detection of nonzero

control coefficients is achieved by Comparing its magnitud@herQQM = N is the total |ength of the filter. The second is the
against a threshold. The threshaldis formed at the end of temporal translation between two successive wavelets at scale

each adaptation interval as [16] index:
N _ o(M—i+1)
5 € (k) @® ki=2 . (12)
A3 (k) Then, for eachv € €, the remaining parent coefficients that

2 s . . need to be activated are those that have index numbers
whereé(k) is the present mean square error estimaék) is

the current signal power estimate for scale indexd they can P, :{j Npwi — 1] < G < [pwi + 1l
be obtained by exponential averagingedk) and the first el- ’ - /
ement ofza (k). By, is related to the user defined probability
of false alarm,Py,, according to the standard unit variance

i:(r—i—l),...,(é—l)} (12)
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cost ndex_, : | fae Neontrol = 2(0=1 is the number of control coefficients and it is

‘ a constant since all of them are always adapted to take care of
the possible changes in the unknown IR to be identified. Due to
the dyadic structure of the wavelet decompoaosition, from (9) the
number of children coefficients activated by a single nonzero
control coefficient isZ§.:[1_5) 27 = 2(2M=8) _ 1), where§ <

M. If the number of true nonzero control coefficient®ig, then

the expected number of adapting children coefficients at steady

state is

E [Nc}lildren,SS:| =2 [Z(M_é) B 1] Ve

+2 [2“”*6) - 1} (2@*1) - \Izg) Pa. (14)

The first term is the number of children coefficients activated
by the true? s nonzero control coefficients and the second term
o (6—i) Ty _ I ‘ .. isthe expected number of children coefficients activated due to
wherep,,; = |w/2 J andn; = [(6i = ki)/(2k:)]. poi is false detection of the remaining(¢—1) — ¥'5) zero control coef-

the parent coefficient index at scale indexhere the centerre- .~ : o
. : ... ficients to be nonzero. Note that parent and children coefficients
gion of the corresponding wavelet overlaps temporally with the

o o tivated by the false detection of zero control coefficients to be
nonzero region identified by the detected nonzero control cogt= ; . .
. s . .~ honzero will stop adaptation and be reset to zero if the false
ficient with indexw. The valuey; is the number of successive

. S . . “alarm is cleared at the end of the next adaptation interval.
center regions at scale indéxhat overlap with the extension .
. . : A general formula for the expected number of adapting parent
region in one side of a wavelet at scale indekhe parent coef-

S . .. coefficients at steady state is very cumbersome due to its depen-
ficients activated by all the detected nonzero control coefficients Y .
. ence on the temporal distribution of the nonzero IR regions and
are, as a complete group, designatethask). ) .
7 . . on the choice of wavelet. However, the number of active parent
As an example, Fig. 3 illustrates the case of a single nonzero .. : :
. - . coefficients is relatively small compared to the number of con-
control coefficient and the necessary coefficients to activate in . : . N
. . trol.and active children coefficients. For simplicity, we approx-
the nearest (in scale) sets of parents and children. The number Of . . .
. . . . imate the number of active parent coefficients as a function of
coefficients isN = 1024 and the control set scale indeXis-

8. Note that the numbers along the left side of the figure reftehre ”“T”ber O.f true nonzero control coefficients. Ignpr.mg th.e
. . T - extension regions, a single true nonzero control coefficient will
to the filter coefficient indices. For the control coefficient=

158 detected as nonzero, we activate the children coeﬁicieﬁ%lvate one p:_;lrent coefficient at each scale up _to scale level
with indicesC., 541 = [2(158) : 2(159) — 1] = [316,317] r and, hence, in total2[ + (6 — r)] parent coefficients. Ex-

. %nding this to multiple true nonzero control coefficients leads
according to (9). Furthermore, for orthogonal wavelets of leng 1, {2(5_1) 27 4 (6 — r)Ws]) where26-D is the max-
Ly = Ly = 4, pys-1) = [158/2] = 79 andns_1y = ’ s

[(22—8)/((2)(8))] = 1 and the parent coefficients with indicesimum number of parent coefficients. Finally, upon including the

] . . effects of activation by falsely detected nonzero control coeffi-

[78:80] will be activated. cients, the approximate expected number of parent coefficients

Finally, note that at scale indeéxthe parent coefficientindices . '
areintherange’~Y : 2/ — 1]. Therefore, any activated parentI
coefficientindices(p. i — i), - - -, (po.i +m:)] atscaleindex p [Npamms SS}
which exceed the highest coefficientindex numiér(1), must ’
be decreased Bf*~1). Conversely, any coefficient indices lessx min {2(5*”7 [2’“ +(6—7) (\115 + (2(5*” - \115) Pfa)] }
than the lowest coefficientindex numt#t—1), at scale index,
mustbeincreased By —1). This occurs because, in matrix form After combining like terms, we have according to (13)
the wavelets shift cyclically and some of them cover both ends of R
the temporal domain. This is illustrated in Fig. 1 for the firstand £ [Nss} ~20=1) 42 [Q(M_‘S) - 1}

last wavelets at scale indéx= 3.
: (\116 ¥ (2“—1) - \1/6) Pfa)

Fig. 3. Parent and children activation for a single control coefficient.

C. Expected Number of Adapting Coefficients at Steady State s_1
+ min{Z( -, [2’" +(6—-1)
The excess mean square error (mse) of the proposed algo-

rithm is governed by the number of adapting coefficients at (5-1)

steady statéVgs. Nss is a random variable because it is deter- ) (\Ij‘S + (2 - ‘115) Pfa)] }

mined by the number of detected nonzero control coefficients (15)
which are themselves random variables. We, therefore, evaluate

the expected value o¥ss and it is equal to In (15) we have ignored the term from the probability of miss.

) . . This is because the nonzero control coefficients that are missed
E[Nss] = Neontrot + E [Nchudmn,ss] +E [NParollts,SS . will have small magnitudes and in most cases will contribute a
13) negligible residual excess error compared to the noise floor.
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For a typical sparse IR occuring in practidg}Nss] will be =M-3 =M3 _scale level
considerably less thaN. For instance, ifV = 1024 (M = 10), M-2 M-2
6=7,r=2(Ly =L =4), Vs =6 andPy = 0.01, then M-1 M-1
E[Nss] ~ 193 which is five times less thal.

Note that the WB algorithm operates under the assumption M M
that the unknown sparse IR is rich in spectral content. Viewing [mpulse

each level of scale as a filter bank, this ensures that there ex- ‘/\ .
ists significant IR energy in the portion of the spectrum defined —I— —I—_ tme ..
by the control set wavelets. Furthermore, while negligible in WB algorithm SSWB algorithm

. . . . . . . - . (14 active Children) (6 active Children)
practice, it may be possible to contrive situations in which rich
spectral content exists yet the IR is orthogonal to the contral. 4. children activation for WB and SSWB algorithms.
set wavelets. In such a case this may be alleviated by cycling

through a group of different control sets while maintaining adap- . .
tation of the selected parent and children coefficients. shown at the bottom of Fig. 4. The control set has scale index

6 = M — 3. We can see that while the WB algorithm would re-
quire 14 active children coefficients, the SSWB algorithm only
requires six active children coefficients. We can also see that if
The WB algorithm is a general technique for sparse systdhis example is expanded to a more practical situation with a
identification using wavelets. However, there are some spediang filter length where multiple impulses may occur, the total
implementations of the WB algorithm that, under certain comumber of filter coefficients for the SSWB algorithm can be sig-
ditions, yield even greater performance improvement. We @gxificantly less than the WB algorithm.
amine one such special implementation here. This is achieved here is one limitation on the SSWB algorithm which relates
by altering the method of children selection to take advantatfethe nature of the sparse IR itself. Because the SSWB algo-
of high temporal resolution. We denote this as the SSWB algidthm successively detects the filter coefficients at finer time res-
rithm in which the children activation process is performed se!utions, each nonzero region in the IR must have significant en-
guentially. The detected nonzero control coefficients only acggy in the frequency bands corresponding to the scale indices
vate children coefficients in the next children scale index(). ¢ < i < (M — 1). This is because each nonzero filter coeffi-
The detected nonzero children coefficients at this scale index &rent in scale index must have enough energy to be detectable
then used to activate the appropriate children coefficients in thefore it can activate the appropriate children coefficients at the
next children scale index (4 2) and so on. This allows many nextscale indexi¢-1). Itis, therefore, easy to see that the SSWB
of the zero children coefficients to be excluded from adaptatiodlgorithm performs best when the IR is impulse-like over short
For an IR containing many nonzero regions that are impulse-lidigne periods such as in multipath and delay channels.
and widely distributed over the entire temporal domain, a sig-1) Children Selection for the SSWB Algorithriihe selec-
nificant reduction in the number of adapting coefficients can ti@n of children coefficients for the SSWB algorithm is an ex-

I1l. SPECIAL REALIZATIONS OF THE WB ALGORITHM

realized, resulting in a faster convergence speed. tension of the method used for the WB algorithm. Each control
coefficient and each active child coefficient is compared with a
A. SSWB Algorithm threshold. This threshold is determined at the end of each adap-

The SSWB algorithm is a special realization of the WB alg(}gtion interval bgfore th.e detection process .takes placg. A sep-
. . o arate threshold is required at each scale inddgr § < 7 <
rithm. The adaptation process and the activation of parent cog 7— 1) and is chosen as
ficients remains the same. The difference is in how the children
coefficients are activated. In the WB algorithm, the children co- -
efficients make up alarge portion of the total number of adapting ®; = fra £(k)
coefficients due to the fact that the number of coefficients dou- 2(k)
bles as the children scale index increases by one. Therefore, un-
less the nonzero region of an IR matches up perfectly with tlmherej\z?(k) is the current signal power estimate at scale index
duration of a given control set wavelet, there are unnecessand the remaining variables are the same as those previously dis-
children coefficients being activated when the nonzero IR reussed for the WB algorithm. It is also possible to increase the
gions are impulse-like and widely distributed. probability of false alarm and, therefore, decredgeat higher
The SSWB algorithm seeks to remedy this by utilizing thecale indices to make detection easier with little detriment to the
detected nonzero filter coefficients at scale indewhere§é < number of adapting coefficients. Each detected nonzero child
i < (M — 1), to select the appropriate children coefficients focoefficient with coefficient index will activate the children co-
adaptation at the next scale indéx () only. As children coeffi- efficients with coefficient indices 2and2;j + 1 only.
cients in successively higher scale indices(i.e., higher temporaR) Expected Number of Adapting Coefficients at Steady
resolution) are activated, a more accurate picture of the ex&tate: This subsection determines the expected number of
location of the nonzero IR regions becomes apparent. adapting coefficients at steady state for the SSWB algorithm.
An example is illustrated in Fig. 4 for comparison of the WBNe need only to examine the children coefficients since the
and SSWB algorithms where sections of the children coefficientimber of control coefficients and method of parent coefficient
selection are shown. The time domain IR is a single impulsetivation remains the same as the WB algorithm.

=

(16)

>
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_ We ;haIIAdenote the number of adapting coefficien_ts_ at scale + min{2(6—1)7 |:27‘ F(6—1)

index ¢ as N; and the number of true nonzero coefficients at

scale index as¥;. Each true nonzero control coefficient will (5-1)

activate two children coefficients at scale index= (§ + 1). ’ (‘Ij‘S + (2 - \115) Pfa)] }
Also, due to the finite probability of false detection there may be (22)

coefficients whose true value is zero but are falsely detected as

nonzero. Combining these two quantities and taking expectationy numerical analysis of (22) reveals a tendencyﬂm(fss]

over time gives, at steady state, the expected number of adapiigignificantly decrease as the control set scale intlebe-
coefficients at scale index (+ 1) as E[N(s+1),ss] = 2¥s +  creases (increasing level of scale). It should be noted, however,
2P (E[Ns] — ¥s), which after rearranging becomes that while the theoretical number of adapting coefficients can
get very small ag$ decreases, there is a practical limit ©at
which the algorithm will no longer converge. This is because
the spectral bandwidth decreases by a factor of two as the scale
e ) index decreases by 1. This will typically resultin less IR energy
are always adapted. Similarly, at scale indext(2) we have 54 e scale index decreases which translates into smaller filter
E[N(s12),s5] = (2= 2Pta) Y (541) + 2P B[N (511),s5]. SUbsti- - ¢ qefficient values. Smaller coefficients are difficult to detect and
tuting E[N(s41),ss] in (17) yields will hinder convergence.

E[Nss1ys5) = (2 — 2P;)¥ + 2P, E[Ng] 17)

where E[Ns] = N5 = 2= since all control coefficients

E [Z\Af(ﬂz),ss} = (2 =2P) Y(sqr) + (2 = 2P) (2Pr) Vs B. Alternative Implementations of the WB Algorithm

n (2Pfa)2 B [Né} . (18) The WB_ f_;lnd SSWB algorithms emplo_y th_e dyadic wavelet
decomposition to achieve temporal localization of nonzero IR
regions as well as a certain amount of input decorrelation. It may
be possible to achieve even greater performance improvement
R i—5-1 by using a wavelet packet approach to tailor the form of the
E |:Ni7sgi| = (2—-2Pn) (2Pfa)£ Uizt wavelet decomposition to best fit the application of interest. For
£=0 instance, when the nonzero coefficients of a sparse IR are highly
+ (2Pfa)(i_5) E [N5} . (19) localized in the time domain, high temporal resolution is not
necessary. In this case, decomposing the IR so as to improve the
Combining the result fo§ + 1) < i < M leads to the speptral reso_lqtion can result in_improved input decorrelation
total expected number of children coefficients at steady stafé)ile maintaining temporal localization.

Generalizing the result to children scale indegields

E[Nchildren,SS]v as O_n_e such_ app_roa_ch_is to employ an equal-res_olution decom-
position which is similar to a short-term Fourier transform
Mo M i—6-1 except for the temporal localization ability provided by

E Z Ni,SS‘| = (2—2Py,) Z (2Pg)" Wi ¢-1) wavelets. In this way, all the sets of wavelets have the same
i=6+1 i=54+1 £=0 level of scale and better spectral resolution is achieved at the
) M , high end of the spectrum. However, care must be taken because

+E [Ns} (2P;)" "%, (20) the finite wavelet span may cause significant out-of-band
i=6+1 sidelobes to occur in the magnitude spectrum of some wavelet

. Lo at certain scales. This can hinder decorrelation resulting in
This can be greatly simplified if we make a change of vari- . : . . -
till-small eigenvalues in the transformed input correlation

ables for the summation indices and apply the valid assumptl%n

that Py, is small and, therefore, the higher order term&gfare mritrg(r.ti;r:ael trg?r?eeziotin(iloaellcsle[ﬁ (I:—|oenr\1/§ergterr11ecree ggiléngzr:ﬁ)l 3’\/
negligible. As a result prop 9 ' '

convergence in the mean-square difference [1]
E [Nchildmn,ss} ~ 2°Pra + (2 = 2Pa) Y(ar—1)

_ Ry I
. MSD = E [(b b (b — b )] (23)
+(2+2P) Zé v (2 whereb is the vector of adapting coefficients abd is its true
j=

value. However, some performance improvement is still pos-
which is a more tractable solution. Combining this with thaible for the EMSE [1]

number of control coefficients and the approximate number of

parent coefficients from Section II-C gives the total expected EMSE=FE [(b -b*)"R. (b - b*)} (24)
number of adapting coefficients for the SSWB algorithm

whereR. is the input correlation matrix in the wavelet do-

E [Nss] A (1+2P) 2070 4+ (2= 2Pn) Uy main. This is because the large coefficient errors from the slower
M—2 modes of convergence are weighted by their respective eigen-
+ (24 2Pg) Z W, values that are themselves very small. Since the eigenvalues are

=6 inherent to the autocorrelation matrix, the normalization factors
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Fig. 5. Echo path IRV, (k).

are effectively canceled out so that a larger step size may be erhadapting coefficients and, is a preset constant step size.
ployed, enabling faster convergence. In other words, this maniate thatV varies from one adaptation interval to another and
of decomposition may work well when the interest is the errds constant within. Also, we will usé& = M — 3 for the control
signal such as in echo cancellation application instead of systset, which corresponds to level of scale- 16 and there are 32
identification where the coefficient values are of interest. control coefficients always being adapted. The performance in-
Another approach recently proposed is a symmetric-resolilices are the sum of squared coefficient error (MSD) shown in
tion approach [20] in which the signal component at the lowe&3) and the mse. In each set of simulations, the preset step size
level of scale ¢ = 2) is further decomposed such as to be syntonstaniu, for each of the algorithms is adjusted to provide the
metric in spectral resolution with the other higher levels of scaleame level of steady state MSD or EMSE for all, depending on
This manner of decomposition has demonstrated convergemdgch is being examined.
speed improvement when the input signal has correlation peaks
in the upper half of the spectrum (i.e., angular frequency frofs Behavior of the WB Algorithm
7/2 to 7). The optimal decomposition through wavelet packets The performance of the WB algorithm is presented to reveal
for a given input correlation and IR type is a subject of furthehe benefit in using orthogonal and biorthogonal wavelets for
study. sparse system identification. The WB algorithm is a general
sparse adaptive algorithm and does not make any assumption
IV. SIMULATION RESULTS about the characteristics of an IR other than it being sparse. We

use echo cancellation application as an example to evaluate the

This section presents simulations to evaluate the performanggformance of the WB algorithm. The input is the lowpass cor-
of the proposed sparse adaptive algorithms. We examine fafyted sequence

use of different wavelets with the WB algorithm to illustrate

the benefit of using orthogonal and biorthogonal wavelets fog,;(n) =1.8 008(0,18757r)x(k_1)_(0,9)2$(k_2)+5(k-) (25)
sparse system identification as compared to LMS. We also use

a biorthogonal Haar wavelet in the SSWB algorithm to demomheres(k) is a white Gaussian noise sequence and the noise
strate the possible performance gain relative to WB and LMSiower iso2 = 1073,

Thefilter length isNV = 512 (i.e.,M = 9) and the probability = Three different wavelets are examined for the WB algo-
of false alarm is set t@%, = 0.01. The length of the adaptationrithm: the Haar wavelet (such that the WB reduces to the
interval is set to two adaptation time constants [1]. The time coRB algorithm) withL, = L; = 2 denoted as Haar(2,2), the
stant for the LMS-based updates (5)—(7) is abbf{tl:) and, Daubechies’ wavelet witlh, = L;, = 4 denoted as Daub(4,4)
henceTar = 2(1/(4/2)) = N/(2u0), whereN is the number and the biorthogonal Haar type wavelet with, = 2 and
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Fig. 6. Echo path IRV/; (k) in the wavelet domains.
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using Haar(2,2) requires onIE[Nss] 2 101 coefficients on
average at steady state and converges much faster than LMS,
which reaches steady stateat 15 x 10* iterations. Using
Daub(4,4) gives better decorrelation of the input and, therefore,
converges faster than Haar(2,2) although the average number of
adapting coefficients at steady state increasé%[ffbss] =~ 140.
BiHaar(2,6) converges significantly faster than Daub(4,4).
Bihaar(2,6) applies longer wavelets to the input to give better
decorrelation and shorter wavelets to the filter coefficients to
minimize the average number of active coefficients at steady
state and it gives onIE[Nss] = 126 adapting coefficients in
this simuIationE[Nss] for each of these choices of wavelets is
dramatically less than the 512 required by the LMS algorithm.
The approximate expected number of adapting coefficients for
Haar(2,2), Daub(4,4) and biHaar(2,6) computed from (15) are
115, 149, and 130, respectively. The estimates are close to the
values from simulation. The differences are due to the fact that
this IR is very localized and, therefore, the approximate number

L, = 6 denoted as biHaar(2,6) [13]. The echo-path IR isf parent coefficients will tend to be slightly overestimated.

M, (k) from [17] and has 64 nonzero samples with some initial The results for the mse are illustrated in Fig. 8. We find that
flat delay as illustrated in Fig. 5. The echo-path IR is scaled hiye WB using Haar(2,2) again significantly outperforms LMS
a constant to produce an echo return loss (ERL), the ratiowhich requires~ 13 x 10* iterations to reach steady state. Fur-
the power between(k) andy(k), of 6 dB. In the respective thermore, the WB with Daub(4,4) is faster than Haar(2,2) and
wavelet domains, this echo path is represented as in Fig. 6. biHaar(2,6) is faster still.

The results of the WB algorithm for each of the three Finally, we provide a simple example to illustrate the

wavelets and the LMS algorithm are illustrated in Fig. fracking ability of the WB algorithm for time-varying systems.
for the MSD case. The inital slow convergence of the WHBo do this we use the biHaar(2,6) wavelet, the correlated input
algorithm is due to the need to activate the appropriate parémm (25) and thelM; (k) IR. Midway through the simulation
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VS coefficients at steady state which is less thanikeg = 179

2) WB-Haar(2,2) | 1 required for the WB and much less than the 512 required for

3 wg:b"iﬂg&% | LMS. The expected number of adapting coefficients for SSWB

1]

with biHaar(2,6) calculated from (22) is 113 and for WB with
biHaar(2,6) from (15) is 179. Both of these match up well with
their actual values from simulations because the IR in this in-
stance will cause the maximum number of parent coefficients
to be activated so there is no overestimation. The impulse like
IR will make the WB algorithm activate many unnecessary zero
children coefficients and, therefore, have slower convergence.
SSWB is able to provide much better performance in this case.
The mse convergence curves are illustrated in Fig. 12 for
SSWB and WB using biHaar(2,6) and LMS. We notice that the
SSWB algorithm converges dramatically faster than WB, which
Y : 35 5 25 3 is itself much faster than LMS taking 40 x 10* iterations to
Heration x 10° reach steady state.

Fig. 8. MSE convergence for WB and LMS. . .
9 9 C. Computational Complexity

5 ' ‘ ' ‘ ' ‘ ‘ For the WB and SSWB algorithms there will be a slight com-
—— IR putational “bottle neck” at the end of each adaptation interval

] due to the parent and children selection process. Since the adap-
tation interval is typically long, though, the increase in the av-
erage computational load due to the selection process is neg-
ligible. Also, this computational increase in most cases can be
handled through different implementations in a DSP chip. For
example, it can be alleviated by not updating coefficients during
the iteration where the selection process takes place.

When neglecting the selection process, we can derive an ex-
pression for the complexity during a “typical” iteration. The
power estimation through exponential averaging for the update
(5), (6), and (7) and the fast wavelet decomposition will require
3log, N and (L, + Ly)log, N operations [13], respectively,

35, : : : : : : : whereL, and L;, are the lengths of the lowpass and bandpass

ieration x10° wavelet filters. Adding to this the computations required for
power normalization and the update of tNecoefficients, we
find that the WB algorithm requires about

Fig. 9. MSE convergence for WB and LMS under time-varying system.

at 40x 10° iteration, we change the IR by moving the nonzero
portion to a completely different temporal location that does
not overlap with its previous location. In this way completely

different control coefficients must be detected in order to ) . L . .
“locate” the nonzero region. Fig. 9 depicts the performance gkeach iteration, where one operation is defined as one multipli-

the WB and LMS algorithms in this situation and it is obviou§2tion and one addition. For a typical sparse IR, the WB algo-

that the WB algorithm is able to quickly “relocate” the nonzer§thm has a lower complexity than LMS. The complexity of the
IR region and then reconverge much faster than LMS. SSWB algorithm is also given by (26). However, due to smaller
N, SSWB will have a lower complexity than WB for any widely

B. Behavior of the SSWB Algorithm distributed, impulse-like IR.
As a simple example, if we use biHaar(2,6) andSet 512

The SSWB algorithm uses the same correlated input as g?ﬂ/{ _ 9)ands — M— 3 and assume that one division requires

erated from (25) and the noise power is set to the same IeXB operations, the WB algorithm will have complexity less than

2 _ -3 H . . I
of o, = 107 '_I'he IR IS chosen_as showr_1 in Fig. 10 wher MS as long asV < 413. This is often fulfilled for a sparse
the nonzero regions are impulse-like and widely separated. The

SSWB algorithm works best for this type of IR. The biHaar(Z,(ﬁyStem'
wavelet is chosen for the SSWB. Fig. 11 shows the perfor-
mance for the MSD case of the SSWB algorithm relative to

LMS and the WB algorithm using biHaar(2,6). The SSWB al- We have proposed an adaptive algorithm for sparse system
gorithm converges considerably faster than WB and much fasigentification using wavelets for use in systems that are rich in
than LMS which requires- 80 x 10* iterations to converge. spectral content. The algorithm exploits both the spectral and
On average, the SSWB algorithm requires oﬁlggWB >~ 113 temporal localization properties of wavelets in order to realize

2N + (4+ Ly + Ly)logy N operations
log, N divisions (26)

V. CONCLUSION
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Fig. 10. Dispersed IR with impulse-like nonzero coefficients.
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Fig. 11. MSD performance for SSWB, WB, and LMS for impulse like sparskEig. 12. MSE performance for SSWB, WB, and LMS for impulse like sparse
IR. IR.

dramatic performance gains for sparse system identificati@ven greater performance improvement. We have also proposed
The spectral localization property provides partial decorrelati@special realization of the WB algorithm, the SSWB, that takes
of the input to increase the convergence speed, while the teavantage of the properties of a certain type of sparse system.
poral localization property identifies the nonzero IR regions fbhe SSWB algorithm produces even more pronounced results
reduce the number of adapting coefficients and, therefore, than the WB algorithm for sparse systems that have many im-
duce complexity and further speed up convergence. This is dgndse-like nonzero regions located far apart. The convergence
by using coefficients corresponding to a single level of scale $peed improvement for the proposed algorithms is quite dra-
identify all remaining coefficients that require adaptation. Fumatic compared to LMS, while at the same time having lower
thermore, the proposed WB algorithm supports the use of @emputational complexity than LMS for most practical sparse
thogonal as well as biorthogonal wavelets, which can lead sgstems.
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