
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 8, NO. 6, DECEMBER 2014 1039

Power System Nonlinear State Estimation Using
Distributed Semidefinite Programming

Hao Zhu, Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE

Abstract—State estimation (SE) is an important task allowing
power networks to monitor accurately the underlying system
state, which is useful for security-constrained dispatch and power
system control. For nonlinear AC power systems, SE amounts
to minimizing a weighted least-squares cost that is inherently
nonconvex, thus giving rise to many local optima. As a result,
estimators used extensively in practice rely on iterative opti-
mization methods, which are destined to return only locally
optimal solutions, or even fail to converge. A semidefinite pro-
gramming (SDP) formulation for SE has been advocated, which
relies on the convex semidefinite relaxation (SDR) of the original
problem and thereby renders it efficiently solvable. Theoretical
analysis under simplified conditions is provided to shed light on
the near-optimal performance of the SDR-based SE solution at
polynomial complexity. The new approach is further pursued
toward complementing traditional nonlinear measurements with
linear synchrophasor measurements and reducing computational
complexity through distributed implementations. Numerical tests
on the standard IEEE 30- and 118-bus systems corroborate that
the SE algorithms outperform existing alternatives, and approach
near-optimal performance.

Index Terms—Distributed state estimation, phasor measure-
ment units, power system state estimation, semidefinite relaxation.

I. INTRODUCTION

T HE electric power grid is a complex system consisting
of multiple subsystems, each with a transmission infra-

structure spanning over a huge geographical area, transporting
energy from generations to distribution networks. Monitoring
the operational conditions of grid transmission networks is of
paramount importance to facilitate system control and optimiza-
tion tasks, including security analysis and economic dispatch
under security constraints; see e.g., [1, Ch. 1] and [10], [25]. For
this purpose, various system variables are measured at selected
nodes and then transmitted to the control center for estimating
the system state variables, namely complex bus voltages at all
buses in the grid.
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Because meter measurements are nonlinearly related with
state variables, the power system state estimation (SE) task
is inherently nonconvex giving rise to many local optima.
Specifically, SE amounts to solving the associated nonlinear
(weighted) least-squares (LS) problem using the Gauss-Newton
iterations as the algorithmic foundation; see e.g., [1, Ch. 2], [25].
Since this iterative procedure is in fact related to gradient de-
scent solvers for nonconvex problems, it inevitably faces
convergence issues and sensitivity to initialization [4, Sec. 1.5].
Without guaranteed convergence to the global optimum, ex-
isting variants have asserted numerical stability or robustness to
outliers [1, Chs. 3–6], but they can only improve the linearized
error cost per iteration.
At least as important, availability of suitable initializations

becomes increasingly difficult with the penetration of renew-
able energy sources (RES). The reason is two-fold. First, the
intermittency of RES leads to growing dynamics of the system
state, which challenge usage of temporal information for
initializing the SE. Secondly, emerging distributed energy re-
sources (DERs) advocate the importance of SE for distribution
networks, in which increased resistance-to-inductance ratios
render voltage magnitudes nonflat [9, Ch. 6]. (This is different
from standard settings where flat voltage initializations are
common for the linear DC flow approximation.)
The latest trend for SE is to incorporate linear state mea-

surements offered by synchronized phasor measurement units
(PMUs) to develop the so-termed hybrid SE; see e.g., [13], [34]
and references therein. However, limited PMU deployment
currently confines SE to mostly rely on the nonlinear legacy
meter measurements, and its companion Gauss-Newton iter-
ative methods. Furthermore, distributed SE among multiple
control areas are strongly motivated by the deregulation of
energy markets, where large amounts of power are transferred
among areas over the tie-lines at increasing rates [12]. This
is part of the system-level institutional changes aiming at an
interconnected network with improved reliability. Since each
control area can be strongly affected by events and decisions
elsewhere, regional operators can no longer operate in a truly
independent fashion. At the same time, central processing of
the current energy-related tasks faces several limitations: i)
vulnerability to unreliable telemetry; ii) high computational
complexity at a single control center; and iii) data security and
privacy concerns of regional operators. However, most works
on multi-area SE relies on linearized models or iteratively
approximating to linear ones; see e.g., [17], [32] and references
therein. Hence, with nonlinear (possibly along with linear) mea-
surements the grand challenge remains to develop (distributed)
solvers approaching the global optimum at polynomial-time
complexity.
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The goal of this paper is to introduce such polynomial-time
SE algorithms for AC power systems, having the poten-
tial to attain a near-optimal state estimate. Challenged by
the nonconvexity in SE, the proposed approaches leverage
a well-appreciated optimization technique called semidefi-
nite relaxation (SDR) that surrogates nonconvex problems
by semidefinite programming (SDP) ones. SDR has been
applied successfully to various areas [11], including signal
processing and communications; see e.g., [24]. Recently, SDR
has been proposed for solving the optimal power flow (OPF)
problem [2]; see also [21], [22] for potential guarantee on the
global optimality. Compared to our conference precursors [35],
[37] where (distributed) SDR was first leveraged for SE, the
analysis of the present paper also offers insights on near-opti-
mality of SDR-based SE, as well as useful extensions to include
synchrophasor data, and extensive test on larger benchmark
systems. Recent works on using SDR for (distributed) SE have
been carried out independently [29], [30], which appeared after
our works [35], [37]. While [29] only deals with the centralized
SDR-based SE as in [35] with no performance analysis or
synchrophasor measurements, the iterative SE scheme in [30]
requires solving an outer problem of dimension equal to the
centralized SDP problem, and thus it is not fully distributed.
The rest of the paper is organized as follows. The SE problem

is introduced in Section II. The relaxed SDP formulation is the
subject of Section III, which enables computationally efficient
solvers regardless of initialization, along with an ideal scenario
for achieving the global optimum. Section IV generalizes
the SDR-based SE formulation to include linear PMU mea-
surements, while Section V develops a multi-area SDR-SE
method using an effective distribute optimization technique.
Several numerical tests presented in Section VI corroborate the
near-optimal performance of the proposed SDR approaches
relative to the Gauss-Newton method. The paper is wrapped up
in Section VII.
Notation: Upper (lower) boldface letters will be used for ma-

trices (column vectors); denotes transposition; com-
plex-conjugate transposition; the real part; the imagi-
nary part; the matrix trace; the matrix rank; the
all-zero matrix; the matrix Frobenius norm; the
vector —norm for ; and the magnitude of a complex
number.

II. MODELING AND PROBLEM FORMULATION

Consider a power network with buses denoted by the set
, and all lines represented by .

To estimate the complex voltage per bus (in rectan-
gular as opposed to polar coordinate in most SE literature [1],
[25]), a subset of following system variables1 are measured:
• : the real (reactive) power injection at bus (neg-
ative if bus is connected to a load);

• : the real (reactive) power flow from bus to
bus ; and

• : the voltage magnitude at bus .
Compliant with the well-known AC power flow model [31,

Ch. 4], these measurements are nonlinearly related with the

1For distribution system SE, line current magnitude measurements may also
be available, as detailed in Remark 2; see also [1, Sec 2.6].

system state, namely the vector .
To specify this, collect the injected currents of all buses in

, and let represent the
so-termed bus admittance matrix. Kirchoff’s law in vector-ma-
trix form dictates , see e.g., [3, Sec. 9.1], where the

-th entry of is

if
if
otherwise

(1)

with denoting the line admittance between buses and
, bus ’s shunt admittance to the ground, and the
set of all buses linked to via transmission lines. Letting
stand for the shunt admittance at bus associated with the
line , the current flowing from bus to is

. The AC power flow model further
asserts that the complex power injection into bus is given by

, while the complex power flow from bus
to bus by . Finally, expressing the

squared bus voltage magnitude as , it is clear
that all measurable quantities listed earlier are nonlinearly (in
fact quadratically) related to the state .
Collect these (possibly noisy) measurements in the

vector , , ,

, , where the check mark dif-
ferentiates measured values from the error-free variables2. The
-th entry of can be written as , where
denotes the quadratic dependence of on , and accounts
for the additive measurement error assumed independent across
meters. Without loss of generality (Wlog), is pre-whitened
so that all error terms have uniform variance. Hence, the max-
imum-likelihood (ML) criterion for estimating boils down to
the nonconvex least-squares (LS) one, as given by

(2)

The Gauss-Newton iterative solver for nonlinear LS
problems [4, Sec. 1.5] has been widely used for SE; see
e.g., [1, Ch. 2] and [31, Ch. 12]. Using Taylor’s expansion
around a given starting point, the pure form of Gauss-Newton
methods approximates the cost in (2) with a linear LS one, and
relies on its minimizer to initialize the subsequent iteration.
This iterative procedure is closely related to gradient descent
algorithms for solving nonconvex problems, see e.g., [4, Ch. 1],
which are known to encounter two issues: i) sensitivity to the
initial guess; and ii) convergence concerns.
Typical Gauss-Newton iterations for SE start with a flat

voltage profile, where all bus voltages are initialized with
the same real number. Unfortunately, this fails to guarantee
convergence to the global optimum, as pointed out in Section I.
Existing variants have asserted improved numerical stability
and robustness to outliers [1, Chs. 3–6], but they are all limited
to improving the approximate error cost per iteration. Recently,

2For consistency with measurements in Section III, is consid-
ered henceforth. This is possible using , where is
zero-mean Gaussian with small variance , to obtain the approximate model

, where has variance .
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with the advent of PMU technology, SE has benefited greatly
by including synchrophasor data, which adhere to linear
measurement models with respect to (wrt) the unknown .
Unfortunately, cost and limited penetration of PMUs require
linear measurements to be combined with nonlinear ones to
ensure observability.
In a nutshell, the grand challenge so far has been to develop a

solver attaining or approximating the global optimum at polyno-
mial-time complexity. The next section addresses this challenge
by appropriately reformulating SE to apply the semidefinite re-
laxation (SDR) technique.

III. SOLVING SE USING SDR

Consider first expressing each quadratic measurement in
linearly in terms of the outer-product matrix . To this
end, let denote the canonical basis of , and define
the following admittance-related matrices

(3a)

(3b)

along with their related Hermitian counterparts

(4a)

(4b)

(4c)

Using these definitions, the quadratic measurement model easily
gives rise to a linear relation wrt , as

(5a)

(5b)

(5c)

Thus, each noisy meter measurement can be written as

(6)

where is the Hermitian matrix specified as per (4a)–(4c).
Rewriting (2) with as the optimization variable yields

(7a)

(7b)

where the positive semi-definite (PSD) and the rank-1 con-
straints jointly ensure that for any admissible to (7b), there
always exists a such that .
Although and are linearly related as in (7), nonconvexity

is still present in two aspects: i) the cost in (7a) has degree 4
wrt the entries of ; and ii) the rank constraint in (7b) is non-
convex. Aiming for an SDP formulation of (7), Schur’s comple-
ment lemma, see e.g., [6, Appx. 5.5], can be leveraged to convert
the summands in (7a) to a linear cost over an auxiliary vector

. Specifically, with and likewise
for , consider a second SE reformulation as

(8a)

(8b)

(8c)

The equivalence among all three SE problems (2), (7), and (8)
has been shown in [35], where their optimal solutions satisfy

(9)

The only nonconvexity in the equivalent SE problem (8) lies
in the rank-1 constraint. Fortunately, (8) is amenable to the SDR
technique, which amounts to dropping the rank constraint and
has well-appreciated merits as an optimization tool to handel
nonconvex problems; see e.g., the seminal work of [11]. Thanks
to its performance guarantees and implementation advantages
SDR has recently provided new perspectives for a number of
nonconvex problems in various applications, including signal
processing and communications [24]. For our SE problem, it can
be shown later on that the relaxed problem is able to achieve the
global optimum under some simplified conditions. The contri-
bution here consists in permeating the benefits of this powerful
optimization tool to estimate the state of AC power systems. In
the spirit of SDR, relaxing the rank constraint in (8b) leads to
the following SDP

(10a)

(10b)

(10c)

To support the near-optimality of the SDR approach, a few
assumptions are needed to show its global optimality under a
special scenario:
(as1) The graph has a tree topology.
(as2) Every bus is equipped with a voltage magnitude meter.
(as3) All the measurements in are noise-free; i.e., ,

;
Proposition 1: Under (as1)-(as3), the relaxed problem (10)

can attain the global optimum of the SE problem (8); i.e.,
.

Proof: The proof sketched here leverages the results on
characterizing the geometry of the power flow regions in [22].
The noise-free model in (as3) yields the minimum estimation
error cost of (10) to be 0, and thus the inequality constraints in
(10c) can be replaced by the strict equality ones

(11)

Together with (as2), (11) leads to a fixed voltage magnitude at
every bus. As shown in [22], the SDR approach equivalently
relaxes the power flow region to its convex hull, where for tree
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networks with fixed bus voltage magnitude the power flow re-
gion in fact consists of the boundary points of its convex hull.
The full observability of the measurement model ensures that
the solution to (11) falls uniquely on the boundary point of the
feasible set. Thus, the optimum of (10) yields a valid power flow
solution such that .
Although (as1)-(as3) do not hold for most power networks,

they may offer a ‘close’ approximation of the realistic SE sce-
nario. First, it is well known that all power networks are ex-
tremely sparse with average node degree around 2 [28], while al-
most all distribution networks today have tree topology. There-
fore, (as1) could closely capture the sparse connectivity of most
power networks. Second, bus voltage magnitude meters are de-
ployed in most substations to monitor the voltage rating for
ensuing dynamic stability. Otherwise, since the transmission
system has to operate at the voltage level within a fixed range,
pseudo-measurements are often used to complement metering
if no direct measurements are available for some bus voltage
magnitudes, and thus fulfill (as2). The ideal metering condi-
tion (as3) can be reasonable since most deployed meters are
of high accuracy. Even though bad data or outliers could be
present in some meters as pointed out later in Remark 3, high
measurement redundancy ensured by control centers makes it
possible to rely on the highly accurate meters only. Admittedly,
(as1)-(as3) are unlikely to be satisfied in realistic SE settings.
Hence, Proposition 1 has limitations in assessing the SDR-based
SE performance in practice. Nonetheless, it offers insights on
the near-optimal performance of the SDR-based SE approach,
since a promising SE scheme should at least ensure identifia-
bility in the noiseless or asymptotically high-SNR cases. It fur-
ther supports analytically the simulation-based evidence that
the proposed SDR-based SE attains a solution very close to the
global optimum of (8). Near-optimality of the relaxed problem
(10) will be more convincingly supported by extensive numer-
ical tests in Section VI.
The solution to the relaxed (10), is very likely to have

rank greater than 1. Hence, it is necessary to recover a fea-
sible estimate from . This is possible by eigen-decomposing

, where ,
denote the positive ordered eigenvalues, and
are the corresponding eigenvectors. Since the best (in the min-
imum-norm sense) rank-one approximation of is ,
the state estimate can be chosen equal to . Be-
sides this eigenvector approach, randomization offers another
way to extract from , with quantifiable approximation ac-
curacy; see e.g., [24]. The basic idea is to generate multiple
Gaussian distributed random vectors , and pick
the one with the minimum WLS cost. Although any vector
is feasible for (2), it is still possible to decrease the minimum
achievable cost by rescaling to obtain , where the
optimal weight can be chosen as the solution to the following
convex problem as

(12)

SDR endows SE with a convex SDP formulation for which
efficient schemes are available to obtain the global optimum
using, e.g., the interior-point solver SeDuMi [27]. The computa-
tional complexity for eigen-decomposition is in the order of ma-
trix multiplication, and thus negligible compared to solving the
SDP; see e.g., [24] and references therein. However, the poly-
nomial complexity order of solving the SDP could be a burden
for real-time power system monitoring, which motivates us to
consider a distributed implementation in Section V.
Remark 1: (Reference bus). The reference bus conven-

tion adopted in power systems sets the corresponding bus
voltage angle set to 0; see e.g., [31, pg. 76]. Due to the
quadratic measurement model in (6), the outer-product

remains invariant to any phase
rotation . To account for this, once an estimate
is recovered, it can be rotated by multiplying with ,
where denotes the estimated reference-bus voltage.
Remark 2: (Additional measurements). For certain distribu-

tion-level settings, line current magnitude data are also
available; see e.g., [1, Sec. 2.6]. Furthermore, for buses with
no generations or loads, it is possible to include “pseudo-mea-
surements,” as equality constraints of zero power injections; see
e.g., [25]. It is worth stressing that all SDP-based SE reformu-
lations of the present paper can readily handle these types of
measurements. Since is linear in , it follows that is
quadratic in , and thus linear in as in (6). To include pseudo-
measurements [ or ], it suffices to add
extra equality constraints or
to (10). Hence, the reformulation equivalence and the en-

suing analysis apply even to these additional measurements.
As detailed soon in Section IV, it is also possible to include
linear synchrophasor measurements offered by the latest PMU
technology.
Remark 3: (Robust SE). In addition to being optimal under

nominal operation, SE approaches must be resilient to outliers
emerging not only due to data contamination, telemetry errors,
and asynchronous meter measurements [25] and [1, Chs. 5–6],
but also due to those coming from cyber attacks, where at-
tackers maybe able to manipulate remote meters without being
noticed [23]. Although robustness issues go beyond the scope of
the present work, it is worth mentioning that the proposed SDR-
based SE approach can be robustified by introducing an auxil-
iary outlier (or attack) variable per meter, and regularizing the
WLS cost with the number of those variables that are nonzero
[36].With or without regularization, resilience to “bad data” can
be also effected by replacing the WLS cost with robust alterna-
tives including the least-absolute error and Huber’s costs [25],
which are convex and can be accommodated too by the SDP
reformulations here. Lastly, prior information such as the prob-
ability distribution of state variables has also been used to de-
velop a Bayesian SE framework for more resilience to cyber-at-
tacks [19]. Such extension can be easily incorporated as well
by slightly modifying the optimization objective with additional
covariance-related terms.

IV. PMU-AIDED SDR-BASED SE

Recent deployment of PMUs suggests complementing with
PMU data, the measurements collected by legacy meters to per-
form SE. This motivates us to expand the SDR-based SE par-
adigm to include synchrophasor measurements. Compared to
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legacy measurements, PMUs provide synchronous data that are
linear functions of the state . If bus is equipped with a
PMU, then its voltage phasor and related current phasors

are available to the control center with high accu-
racy. Hence, with adequate number of PMUs and wisely chosen
placement buses, SE using only PMU data boils down to esti-
mating a linear regression coefficient vector for which a batch
WLS solution is available in closed form. However, installation
and networking costs involved allow only for limited penetra-
tion of PMUs in the near future. This means that SE must be
performed using jointly legacy meters and PMUmeasurements.
To this end, let collect the noisy PMU

data at bus , where is the measurement matrix, while
denotes measurement noise, assumed to be complex zero-mean
Gaussian with covariance , independent across buses and
from the legacy meter noise terms . Matrix is con-
structed in accordance to the bus index and the line admit-
tances. The voltage phasor measurement corresponds to an
all-zero row except for the -th entry which is unity, while the
row for the current phasor measurement has line admit-
tance value at the -th and -th entries; see e.g., [13], [18].
The SE task now amounts to estimating given both and

, where denotes the PMU-instrumented set
of buses. Hence, the ML-optimal WLS cost in (2) must be aug-
mented with the log-likelihood induced by PMU data, as

(13)
where . The augmented SE problem (13)
is still nonconvex due to the quadratic dependence of legacy
measurements in the wanted state . Existing SE methods that
account for PMU measurements can be categorized in two
groups. The first one includes the so-termed hybrid SE ap-
proaches which utilize both PMU and legacy measurements in a
WLS solver via iterative linearization; see e.g., [13]. Depending
on the number of PMUs, the state can be either expressed using
polar coordinates (similar to traditional WLS-based SE), or
by rectangular coordinates (as is expressed here). The polar
representation is preferred when legacy measurements are
abundant, because it requires minor adaptations of the existing
WLS-based SE. On the other hand, the polar representation
is less powerful when it comes to exploiting the linearity of
PMU measurements. With increasing penetration of PMUs, the
rectangular representation will grow in popularity, especially if
full observability can be ensured solely based on PMU data.
An alternative approach to including PMU data is through

sequential SE [34], which entails two steps. TheWLS-based SE
is performed first based only on legacy measurements. Together
with PMU data, these estimates serve as linear “pseudo-mea-
surements” for the subsequent step. The post-processing
involves linear models only, and is efficiently computable.
Clearly, this two-step scheme requires no modifications of
existing SE modules, but loses the optimality offered by joint
estimation. Even worse, as traditional SE based only on legacy
measurements cannot ensure convergence to a global optimum,
the post-processing including PMU data is unlikely to improve
estimation accuracy.

Since both means of including PMU data suffer from the non-
convexity inherent with legacy measurements, SDR is again
well motivated to convexify the augmented SE to

(14a)

(14b)

(14c)

Similar to (10), with an additional constraint the
PSD of can ensure . Substituting this into (14)
leads to the equivalence of rank-constrained (14) with the aug-
mented WLS in (13). The SDP here also offers the advantages
of (10), in terms of the near-optimality and distributed imple-
mentation as discussed later on. From the solution , either
eigenvector approximation or randomization can be employed
to generate vectors of length . Using the first entries of
any such vector, a feasible can be formed by proper rescaling.
With linear PMU measurements, the voltage angle ambiguity is
no longer present, and the rescaling factor can be found by
solving

(15)

This fourth-order polynomial minimization can be solved
numerically. As PMU data are typically more accurate than
legacy ones, the weights in (15) must satisfy .
Hence, it suffices to minimize only the dominant second
sum in (15), and efficiently approximate the solution

. This
approximation will be used next in the numerical tests. As
opposed to existing methods, the SDR-SE approach consti-
tutes as a convenient way to include additional synchrophasor
measurements.

V. DISTRIBUTED SDR-BASED SE

Although the SDR-SE approach enjoys the polynomial
complexity from the convex SDP formulation, its worst-case
complexity is still for a given solution
accuracy [24]. For typical power networks, is in
the order of , and thus the worst-case complexity becomes

. This complexity order could be a com-
putational burden for large-scale power networks with a
growing size, which motivates us to consider accelerating the
SDR-SE method using distributed parallel implementations.
A distributed SE solver is also advocated by the increased
interaction among different regional control centers for im-
proving reliability through system interconnection. Due to data
confidentiality concerns, it is necessary to develop a distributed
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Fig. 1. The IEEE 14-bus system partitioned into four areas [17], [26]. Dotted
lassos show the buses in that are related to all the measurements in .
Squares on the lines mark the power flow meter locations.

SE solver with minimal data exchange among the regional
operators while improving the estimation performance.
Suppose there exist interconnected control areas par-

titioning the set of all buses as , where
contains the subset of buses supervised by the -th control
center; see e.g., the four-area partitioning in Fig. 1. The same
partition also holds for the voltage vector and the measure-
ment vector of length . All the measurements in not
necessarily relate to bus voltage phasors only in . Taking
for example Area 2 in Fig. 1, the line flow meter placed on the
tie-line (4,5) depends on in Area 1; similarly for the flow
meter on the tie-line (7,9). Hence, augment to to
include all the buses that would affect the measurements con-
tained in . The augmented set may include buses from
neighboring areas that are interconnected through tie lines; e.g.,

for the example in Fig. 1. (All the sets
are indicated by the dotted lassos in Fig. 1.) Based on the

overlaps among , define the set of neighboring areas for
the -th one as . Area
2 in Fig. 1 has neighbors in . Let also the vector

collect the state variables in . Hence, it is possible to
re-write the measurement model (6) as

(16)

where denotes a submatrix of formed by
extracting rows and columns corresponding to buses in ;
and similarly for . Due to the overlaps among the subsets

, the outer-product of the -th area overlaps also
with , for each of its neighboring areas .
By reducing the measurement functions at the -th area to the

submatrix , it is further possible to define the LS error cost
per area as

(17)

which only involves the local matrix . Hence, the central-
ized SE problem in (10) becomes equivalent to

(18)

This equivalent formulation effectively expresses the overall
LS cost as the superposition of local costs in (17). Nonethe-
less, even with such a decomposition of the cost, the main chal-
lenge to implement (18) in a distributed manner actually lies in
the PSD constraint that couples local matrices which
overlap partially. If all submatrices were non-overlap-
ping, the cost would be decomposable as in (18), and the PSD
of would boil down to a PSD constraint per area , as given
by

(19)

As detailed soon, the formulation in (19) is amendable to being
decomposed into sub-problems, thanks to the separable PSD
constraints. It is not always equivalent to the centralized (18)
though, because PSD property of all submatrices not necessarily
lead to a PSD overall matrix. Nonetheless, the decomposable
problem (19) is still a valid SDR-SE reformulation, since with
additional constraints per area it is actually
equivalent to (8). While it is totally legitimate to use (19) as the
relaxed SDP formulation for (8), the two relaxed problems are
actually equivalent under very mild conditions.
The idea here is to explore valid network topologies to fa-

cilitate such PSD constraint decomposition. To this end, it will
be instrumental to leverage results on completing partial Her-
mitian matrices to obtain PSD ones [16]. Upon obtaining the
underlying graph formed by the specified entries in the partial
Hermitian matrices, these results rely on the so-termed graph
“chordal” property to establish the equivalence between the pos-
itive semidefiniteness of the overall matrix and that of all sub-
matrices corresponding to the graph’s maximal cliques. Interest-
ingly, this technique has been used recently for developing dis-
tributed SDP-based optimal power flow (OPF) solvers in [8],
[15], [20]. To leverage this, construct first a graph over ,
with all its edges corresponding to the entries in . The
graph amounts to having all buses within each subset to
form a clique. Furthermore, the following is assumed:
(as4) The graph with all the control areas as nodes and their

edges defined by the neighborhood subset
forms a tree.

(as5) Each control area has at least one bus that does not
overlap with any neighboring area.

Condition (as4) is quite reasonable for the control areas in
most transmission networks, which in general are loosely con-
nected over large geographical areas by a small number of tie
lines. In addition, under the current meter deployment, the tie
lines are not monitored everywhere, and thus it is more likely to
have tree-connected control areas when requiring neighboring
areas to share a tie-line with meter measurements. In Fig. 1 for
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instance, Areas 1 and 4 are physically interconnected by the tie
line (5,6). However, there is no measurement on that line, hence
the two areas are not neighbors and the total four areas eventu-
ally form a line array. Moreover, condition (as5) easily holds
since in practice most of the buses are not connected to any tie
line.
Proposition 2: Under (as4) and (as5), the two relaxed prob-

lems (18) and (19) are equivalent.
Proposition 2 can be proved by following the arguments in

[37], which show that the full PSD matrix can be “com-
pletable” from all PSD submatrices . The premise here is
that in most practical systems, the relaxed problem (19) has the
promise to achieve the same accuracy as the centralized one,
where the PSD constraint decomposition of the former is key
for developing distributed solvers. To this end, each control area
solves for its own local , denoted by the complex matrix
of size . For every pair of neighboring areas,

say and , identify the intersection of their buses as . Let
also denote the submatrix extracted from with both
rows and columns corresponding to ; and likewise for the
submatrix from . To formulate (19) as one involving
all local matrices , it suffices to have additional equality
constraints on the overlapping entries, namely

(20)

The equality constraints in (20) enforce neighboring areas to
consent on their shared entries, rendering the equivalence be-
tween (20) and (19) established as , . Interest-
ingly, this allows for powerful distributed implementation mod-
ules to realize multi-area SDR-based SE.

A. Alternating Direction Method-Of-Multipliers

As mentioned earlier, the PSD constraint decomposition re-
cently has been used for also developing distributed SDP-based
optimal power flow (OPF) solvers, where [20] utilizes either
primal or dual iterations to minimize a linear cost function. To
extend this to a quadratic cost, the distributed OPF method in
[20] has to further require a more complicated outer iteration. As
opposed to this approach, it is possible to leverage on the alter-
nating directionmethod-of-multipliers (ADMM) [4, Sec. 3.4.4],
to handle any general error cost , so long as it is convex.
The ADMM approach has shown successful in a variety of dis-
tributed computation tasks; see e.g., the review in [5] and its
application for SDP-based OPF in [8].
To this end, two auxiliary matrices denoted by and

are introduced per pair of neighboring areas , to handle
the coupling equality constraints in (20). For notational brevity,
the symbols and are used interchangeably to denote a

same matrix; and similarly for and . With these, (20) can
be alternatively expressed as

(21)

The goal is to solve the penalized dual problem of (21) in a
distributed fashion the ADMM solver. Let and denote
the Lagrange multipliers associated with the pair of constraints
in (21). With denoting a penalty coefficient, consider the
augmented Lagrangian function of (21) as

(22)

The positive coefficient is introduced to penalize the mis-
match associated with the equality constraints in (21). Letting
denote the iteration index in the superscript, the ADMM op-
erates by cyclically minimizing the augmented Lagrangian in
(22) wrt one set of variables while fixing the rest. Given all the
iterates at the -th iteration, the ADMM steps proceed to the en-
suing iteration as follows.

[S1] Update the primal variables:

[S2] Update the auxiliary variables:

[S3] Update the multipliers:

All the variables can be easily initialized to . Clearly, the op-
timization problem in [S1] is decomposable over all control
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areas. Moreover, exploiting the specific problem structure can
simplify the three steps as follows.

[S1] Update per area :

(23)

[S2] Update the pair of auxiliary variables per area :

(24)

(25)

[S3] Update the pair of multipliers per area :

(26)

(27)

Since the LS error is quadratic, the cost in (23) is convex
in , and can be formulated as an SDP using Schur’s com-
plement lemma as in (10). Hence, [S1] amounts to solving local
problems that scale with the number of buses controlled by each
regional center, greatly reducing the computational burden as
compared to the global SDP problem. In addition, both [S2]
and [S3] are simplify very efficient linear iterations. This com-
pletes the iterative procedure for updating the SE submatrices in
a distributed fashion among multiple areas. Upon convergence,
each control center obtains the iterate as the estimate of
its local matrix of the centralized SDR-based SE problem
(19). Eigen-decomposition or randomization method can be ap-
plied to recover a rank-1 solution from similarly.
Remark 4: (Generalized estimation error costs) Compared

to the distributed OPF methods with linear or at most quadratic
costs, the proposed distributed SE framework can accommo-
date more general error cost functions for various estimation
purposes pointed out by Remark 3. This includes the aforemen-
tioned -norm of estimation error vector, the combination of
the norm, as well as log-prior terms. Furthermore, it
is possible to develop distributed hybrid-SE as well by incor-
porating linear PMU data. Thanks to the convexity of the error
criterion for all cases, it only requires to slightly modify (23) in
[S1] to a different local convex SDP problem.
Remark 5: (Data exchange overhead and privacy) At first

glance, one may think that in steps [S1]-[S3] neighboring con-
trol centers need to exchange the submatrices related
to the common buses per iteration , as well as the associated
multipliers and . A closer look however, reveals
that exchanging common submatrices suffices as the multi-
pliers can be readily updated locally with coordination among
neighboring areas, e.g., by initializing all to zero. This suggests
considerable reduction in the communication overhead for the

ADMM iterations. Furthermore, the proposed scheme neither
requires exchanging local measurements nor local network
topology. It suffices to only share a small portion of local
state matrices. From the data privacy perspective, individual
operators enjoy this benefit as a natural bonus of this multi-area
SE method.

VI. NUMERICAL TESTS

The SDR-based SE algorithms are first tested in a cen-
tralized setting using the IEEE 30-bus system with 41 lines
from [26], and compared to existing WLS methods that based
on Gauss-Newton iterations. Different legacy meter or PMU
placements and variable levels of voltage angles are consid-
ered. MATPOWER [33] is used to generate the pertinent power
flow and meter measurements. In addition, its SE function

is adapted to realize the WLS Gauss-Newton iterations.
The iterations terminate either upon convergence, or, once the
condition number of the approximate linearization exceeds ,
which flags divergence of the iterates. To solve the (augmented)
SDR-based SE problems, the MATLAB-based optimization
modeling package [14] is used, together with the inte-
rior-point solver SeDuMi [27]. Additional tests of PMU-aided
SE and distributed implementations are also available at the
end of this section.
1) Test Case 1: The real and reactive power flows along all

41 lines are measured, together with voltage magnitudes at 30
buses. Independent Gaussian noise corrupts all measurements,
with equal to 0.02 at power meters, and 0.01 at voltage me-
ters. The empirical estimation errors are averaged over
500 Monte-Carlo realizations for the SDR approach and the
WLS one using various initializations listed in Table I. In each
realization, except for the reference bus phasor , each
bus has its actual voltage magnitude Gaussian distributed with
mean 1 and variance 0.01, and its actual voltage angle uniformly
distributed over . Three choices of are tested, namely

, and . The percentage of realizations that
the iterative WLS method converges is also given in paren-
theses. The SDR estimator is recovered from the SDR-based SE
solution , by picking the minimum-cost vector over the eigen-
vector solution and 50 randomization samples. The first WLS
estimator, termed WLS/FVP, corresponds to the WLS solution
initialized by the flat-voltage profile (FVP) point; that is, the
one using the all-one vector as initial guess. For a better starting
point, the second WLS/DC one is obtained by initializing the
voltage angles using the DC model SE [1, Sec. 2.8], and the
magnitudes using the corresponding meter measurements. To
gauge the SDR approach’s near-optimal performance wrt the
global solution, the SDR estimator is further used to initialize
the WLS iterations, and the abbreviation used for this estimator
is WLS/SDR.
Table I clearly shows that the DC model based SE provides a

much better initialization compared to the FVP one, in terms of
smaller estimation error and higher probability of convergence.
When the actual voltage angles are small , the WLS
linear approximation is quite accurate with either the FVP or
the DC model based initialization, and thus convergence to the
global optimum can be guaranteed. Especially for the WLS/DC
with , the empirical error 0.042 can be considered as
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TABLE I
ESTIMATION ERROR WITH OF CONVERGENCE FOR TEST CASE 1

Fig. 2. Comparing estimation errors in voltage magnitudes and angles between
SDR and WLS solvers at different buses for Test Case 1 with (a) ; and
(b) .

the benchmark estimation error achieved for such meter place-
ments and noise levels. As increases however, the nonlinearity
in the measurement model is responsible for the performance
degradation exhibited by the WLS/FVP and WLS/DC estima-
tors. Interestingly, estimation accuracy of the SDR estimator is
still competitive to the benchmark and comes close to the global
optimum, verifying the analytical insights provided by Proposi-
tion 1. With any choice of , the WLS/SDR estimator is always
convergent and attains the benchmark accuracy 0.042within nu-
merical accuracy. This suggests that the SDR-based estimator
comes with numerically verifiable approximation bounds rela-
tive to the global optimum. Further evidence to this effect is
provided by the empirical voltage angle and magnitude errors
per bus, which are plotted in Fig. 2. With , Fig. 2(a)
demonstrates that the SDR estimator exhibits error variation
similar to bothWLS/DC andWLS/SDR, which is roughly twice
that of these two optimal schemes. However, as increases to

, Fig. 2(b) illustrates that the WLS/DC estimator blows up
due to possible divergence especially in the angle estimates,

Fig. 3. Comparing estimation errors in voltage magnitudes and angles between
SDR and WLS solvers at different buses for Test Case 2 with (a) ; and
(b) .

TABLE II
ESTIMATION ERROR WITH OF CONVERGENCE FOR TEST CASE 2

while both the SDR and WLS/SDR show comparable accuracy
as well as analogous performance. This test case numerically
supports the analytical insights on the near-optimal performance
of the proposed SDR-based SE algorithm.
2) Test Case 2: Here 19 line flowmeters and 15 bus injection

meters are placed according to the setting in Fig. 4 of [7], to-
gether with 30 voltage magnitude meters. Although full observ-
ability is ensured, a certain number of lines is not directly ob-
served. Thus, quadratic coupling of measurements affects SE in
those indirectly observed lines and leads to performance degra-
dation, as confirmed by Table II. The relative performance and
convergence probability among different estimators for various
choices of follow the trends of Test Case 1, but the placement
here yields a larger benchmark estimation error around 0.11. As
a result, the impact of initialization is more pronounced here, as
for the WLS/DC iterations diverge in nearly 10% of
realizations. A close look at the error plots in Fig. 3(b) reveals
that the estimation errors at buses 1 through 8 approach the op-
timal ones, especially for the angle errors. Hence, divergence of
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Fig. 4. Comparing estimation errors between SDR andWLS solvers versus the
number of PMUs in Test Case 3 for (left) angle estimates; and (b) magnitude
estimates.

TABLE III
AVERAGE RUNNING TIMES IN SECONDS

the WLS/DC estimator due to insufficient direct flow measure-
ments affects the estimates at buses 9 through 30. Nonetheless,
the SDR-based SE still offers near-optimal performance relative
to the benchmark WLS/SDR one for any .
The IEEE 57- and 118-bus systems from [26] have also been

extensively tested under scenarios similar to those for the 30-bus
system. The empirical estimation error performance for larger
systems has been observed to be similar to that of the 30-bus
system, which again confirms the near-optimality of the pro-
posed SDR-based SE approach. The details are omitted here
due to page limitations, but the run time comparison is given
using the MATLAB® R2011a software on a typical Windows
XP computer with a 2.8GHz CPU. Table III shows that the
SDR-based method takes more time (around 20 seconds for
the 118-bus system), while the WLS iterations incur increasing
computational time mainly due to the higher divergence rate in
larger systems.
3) Test Case 3: To handle the insufficient direct measure-

ments in Test Case 2, PMUs are deployed to enhance the SE
performance offered by legacy measurements with .
The PMU meter noise level is set to at all buses.
The convex relaxation approach using the A-optimal placement
of PMUs [17] selects the four buses from to
be equipped with PMUs sequentially. Since the WLS iterations
with only legacy measurements are not guaranteed to converge,
as verified by Table II, the sequential approach of including
PMU data in [34] does not lead to improved convergence.
Hence, the joint WLS-based SE approach using polar repre-
sentation of the state is adopted for comparison. The WLS
initialization combines the linear estimates at those observ-
able buses based on the PMU measurements, with the DC
model angle estimates mentioned earlier. The SDR estimator
is obtained from the solution in (14) with the approximate

TABLE IV
ESTIMATION ERROR WITH OF CONVERGENCE FOR TEST CASE 3

Fig. 5. (a) Per area state matrix error and (b) state vector estimation error,
versus ADMM iterations.

rescaling factor based only on PMU measurements, which
also serves as initial guess to obtain the WLS/SDR estimator.
The empirical estimation errors for 0 to 4 PMUs are listed
in Table IV, where the PMU absent results are repeated from
Table II. As the number of PMUs increases, the estimation
accuracy as well as the probability of convergence improve for
the WLS estimator. Still, there is a considerable gap relative
to the other two estimators based on the SDR solution. It is
also worth noticing that using more PMUs the SDR estimator
approximates better the optimal WLS/SDR one, with the
approximation gap coming very close to 1. This is illustrated
in Fig. 4, where empirical angle and magnitude errors in the
logarithmic scale are averaged over all 30 buses and plotted
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versus the number of PMUs deployed. The difference between
the SDR and WLS/SDR estimators strictly diminishes as the
number of PMUs increases, which suggests that the approxi-
mation accuracy of the SDR approach relative to the globally
optimum one can be markedly aided by the use of PMU data.
4) Test Case 4: To verify the proposed distributed SE

method, the IEEE 118-bus system is tested using the three-area
partition in [17]. All three areas measure their local bus voltage
magnitudes, as well as real and reactive power flow levels at all
lines. The overlaps among the areas form a tree communication
graph to construct the equality constraints enforced in (21).
To illustrate convergence of the ADMM iterations to the cen-

tralized SE solution , the local matrix error is
plotted versus the iteration index in Fig. 5(a) for every control
area . Clearly, all the local iterates converge to (approximately
with a linear rate) their counterparts in the centralized solution.
In addition, as the estimation task is of interest here, the local es-
timation error is also plotted in Fig. 5(b), where
is the estimate of bus voltages at obtained from the iterate

using the eigen-decomposition method. Interestingly, the
estimation error costs converge within the estimation accuracy
of around after about 20 iterations (less than 10 iterations
for Area 1), even though the local matrix has not yet converged.
In addition, these error costs decrease much more fast in the
first couple of iterations. This demonstrates that even with only
a limited number of iterations the estimation accuracy can be
greatly boosted in practise, which in turn makes inter-area com-
munication overhead more affordable.

VII. CONCLUSIONS AND CURRENT RESEARCH

New SDR-based SE schemes were developed in this paper
for power system monitoring, by tactfully reformulating the
nonlinear relationship between legacy meter measurements
and complex bus voltages. The nonconvex SE problem was
relaxed to a convex SDP one to render it efficiently solvable
via existing interior-point methods. In addition, simplified con-
ditions for the SDP-SE approach to attain the global optimum
were provided to support the near-optimal performance in
practical systems. To account for recent developments in PMU
technology, linear state measurements were also incorporated
to enhance the proposed SDR-based SE framework. A dis-
tributed SDR-SE method has been further developed to reduce
the computational burden and facilitate real-time wide-area
monitoring, thanks to the interactions among multiple control
areas. Extensive numerical tests demonstrated the near-optimal
performance of the proposed approaches. Further enhance-
ments to the SDR-based SE framework are currently pursued
under the cyber-security context and toward further complexity
reduction in terms computations and communications.
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