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Abstract—Using the �-norm to regularize the least-squares
criterion, the batch least-absolute shrinkage and selection oper-
ator (Lasso) has well-documented merits for estimating sparse
signals of interest emerging in various applications where ob-
servations adhere to parsimonious linear regression models. To
cope with high complexity, increasing memory requirements,
and lack of tracking capability that batch Lasso estimators face
when processing observations sequentially, the present paper
develops a novel time-weighted Lasso (TWL) approach. Perfor-
mance analysis reveals that TWL cannot estimate consistently the
desired signal support without compromising rate of convergence.
This motivates the development of a time- and norm-weighted
Lasso (TNWL) scheme with �-norm weights obtained from
the recursive least-squares (RLS) algorithm. The resultant algo-
rithm consistently estimates the support of sparse signals without
reducing the convergence rate. To cope with sparsity-aware re-
cursive real-time processing, novel adaptive algorithms are also
developed to enable online coordinate descent solvers of TWL
and TNWL that provably converge to the true sparse signal in
the time-invariant case. Simulated tests compare competing alter-
natives and corroborate the performance of the novel algorithms
in estimating time-invariant signals, and tracking time-varying
signals under sparsity constraints.

Index Terms—Adaptive algorithms, compressive sampling, co-
ordinate descent, RLS, sparse linear regression.

I. INTRODUCTION

S PARSITY is an attribute present in a plethora of natural as
well as man-made signals and systems. This is reasonable

not only because nature itself is parsimonious but also because
processing and simple models with minimal degrees of freedom
are attractive from an implementation perspective. Exploitation
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of sparsity is critical in applications as diverse as variable selec-
tion in linear regression models for diabetes [24], image com-
pression [5], distributed spectrum sensing for cognitive radios
[3], estimation of wireless multipath channels [9], [23], and
signal decomposition using overcomplete bases [8].

The notion of variable selection (VS) associated with sparse
linear regression [24] is the cornerstone of the emerging area of
compressive sampling (CS) [4], [5], [8]. VS is a combinatori-
ally complex task closely related (but not identical) to the well-
known model order selection problem tackled through Akaike’s
information [1], Bayesian information [20], and risk inflation
[11] criteria. A typically convex function of the model fitting
error is penalized with the -norm of the unknown vector which
equals the number of nonzero entries, and thus accounts for
model complexity (degrees of freedom). To bypass the non-
convexity of the -norm, VS and CS approaches replace it with
convex penalty terms (e.g., the -norm) that capture sparsity
but also lead to computationally efficient solvers.

Research on CS and VS has concentrated on batch pro-
cessing, and various algorithms for sparse linear regression are
available. Those include the basis pursuit and Lasso [8], [24],
the Dantzig selector [6], and the -norm constrained -norm
minimizer [4]. CS and VS estimators are nonlinear functions
of the available observations which they process in a batch
form using iterative algorithms. However, many sparse signals
encountered in practice must be estimated based on noisy
observations that become available sequentially in time. For
such cases, batch signal estimators typically incur complexity
and memory requirements that grow as time progresses. In ad-
dition, the sparse signal may vary with time both in its nonzero
support, as well as in the values of its nonzero entries.

To cope with these challenges, the present paper develops
adaptive algorithms for recursive estimation and tracking of
(possibly time-varying) sparse signals based on noisy sequential
observations adhering to a linear regression model. Adaptive
estimation of sparse signals has received little consideration
so far. Sequential noise-free signal recovery was considered in
[18], and a sparsity-aware least mean-square (LMS) algorithm
was pursued in [14]. Sparsity-aware “RLS-like” algorithms are
reported in [2], while an effort to combine Kalman filtering and
compressed sensing can be found in [26].

After preliminaries, the problem is stated in Section II.
Section III deals with two pseudo-real time adaptive Lasso
algorithms: the time-weighted Lasso (TWL), and the time-
and norm-weighted Lasso (TNWL). The novel TWL replaces
the -norm regularizing term of the RLS algorithm with the

-norm that encourages sparsity. It turns out that if the sparse
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signal vector is time-invariant, the TWL cannot estimate the
signal support consistently while at the same time ensuring con-
vergence comparable to RLS. To overcome this shortcoming,
the TNWL introduces a weighted -norm regularization,
where the weights are obtained from the RLS algorithm.
TNWL estimates consistently the support of the sparse signal
vector at converge rate identical to that of RLS.

Since TWL and TNWL estimates are not available in closed
form, a sequence of convex programs has to be solved as
new data are acquired, which is not desirable for real-time
applications. Recent advances in sparse linear regression have
showed that the coordinate descent approach provides an
efficient means of solving Lasso-like problems since it is fast
and numerically stable [13], [27]. This motivates the present
paper’s novel, low-complexity online coordinate descent al-
gorithms developed in Section IV. Partial coordinate-wise
updates have been considered for adaptive but sparsity-agnostic
processing to lower the computational complexity of LMS and
RLS [12], [28]. On top of lowering the computational burden,
online coordinate descent is well motivated for sparsity-aware
adaptive processing because the scalar coordinate estimates
become available in closed form. Corroborating simulations are
presented in Section V both for time-invariant and time-varying
sparse signals. Conclusions are drawn in Section VI.

Notation. Column vectors (matrices) are denoted with lower-
case (upper-case) boldface letters and sets with calligraphic let-
ters; stands for transposition, and for the Moore–Pen-
rose pseudo-inverse. The th entry of vector is denoted as

, and the th entry of matrix as . The func-
tion stands for the Gaussian probability density func-
tion with mean and variance ; the - and -norms of

are denoted as and

, respectively.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a vector which is sparse, meaning that
only a few of its entries , are nonzero. Let

denote its support,
the number of non-zero entries, and . Sparsity
amounts to having . Suppose that such a sparse vector
is to be estimated sequentially in time from scalar observations
obeying the linear regression model

(1)

where is the regression vector at time , and the
additive noise is assumed uncorrelated with , white, with
mean zero, and variance . The goal of this paper is to develop
sequential and adaptive estimators of that is a priori known
to be sparse, and perhaps slowly varying with .

The least-squares (LS) criterion is the “workhorse” for linear
regression analysis [19, p. 658]. If and

, the LS estimator of at time solves
the minimization problem

(2)

If or is not full column rank, the problem in (2) does
not admit a unique solution. For such cases, minimizing also the

-norm of renders the LS solver unique, and expressible as
, where denotes matrix pseudo-inverse defined

as in e.g., [15, p. 275].
In the sequential context considered herein, LS faces three

challenges: i) increasing memory requirements for storing
and as grows large; ii) complexity of order per
time instant to perform the inversion in ; and iii) lack of
capability to track possible variations of with .

These challenges are met by the recursive least-squares (RLS)
estimator obtained as [19, Ch. 12]

(3)

where the so-called “forgetting factor” describes one of
the following data windowing choices:
(w1) Infinite window with . This choice is adopted

for time-invariant signals and, with proper initialization
renders RLS equivalent to LS at complexity per
datum.

(w2) Exponentially decaying window with ,
and . With this choice, RLS downweighs old
samples, and can track time-varying signals.

(w3) Finite window with if
and otherwise. Here, only the most recent

samples are utilized to form while the rest are
discarded.

The RLS estimator in (3) can be expressed recursively in terms
of . Supposing that are linearly independent, set-
ting , and initializing this recursion with the LS solu-
tion for , that is , the RLS coincides
with the LS for successive instants , provided that
remains invariant [19, p. 740].

For or when are linearly dependent, the
RLS estimator can be regularized by augmenting the LS cost
with a scaled -norm of [19, p. 739]. Specifically, the regu-
larized RLS is

(4)

where is a pre-selected decreasing function of that
depends on the selected window and its effect vanishes for large

. Clearly, for the regularized RLS in (4) reduces to the
ordinary one in (3), but both do not exploit the sparsity present
in .

Sparse linear regression is a topic of intense research in the
last decade and Lasso is one of the most widely applied sparsity-
aware estimators [5], [24]. The Lasso estimator is given by

(5)

Thanks to the scaled -norm, the cost encourages sparse solu-
tions [24]: the larger the chosen is, the more components are
shrunk to zero. Interestingly, the Lasso performs well in sparse
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problems also when , and the convex -norm regular-
ization which can afford efficient solvers when optimizing (5)
given batch data, performs similarly to its non-convex -norm
counterpart [4]. The question that arises is how the -norm
regularization can be effectively utilized in adaptive signal pro-
cessing.

Specifically, given , we wish to develop recur-
sive schemes to estimate the sparse signal of interest with:
i) minimal memory requirements; ii) tracking capability; and
iii) limited complexity.

III. ADAPTIVE PSEUDO-REAL TIME LASSO

Motivated by (3), a time-weighted Lasso (TWL) approach
emerges naturally to endow the batch Lasso in (5) with ability
to handle sequential processing. Specifically, the proposed TWL
estimator is

(6)

where .
In addition to windowing, note that is now allowed to vary
with .

Neglecting constant terms, the cost function in (6) can be
re-written as

(7)

where

(8)

Due to data windowing, and can be updated recursively
as [cf. (w1)–(w3)]

(w1): (9a)

(w2): (9b)

(w3):

(9c)

Relative to the batch Lasso in (5), any of the TWL updates in
(9) offers memory savings. Clearly, choices (w2) and (w3) allow
also the signal of interest to vary slowly with time. With respect
to RLS in (4), the TWL estimator inherits the properties brought
by the -norm, namely sparsity awareness and ability to deal
with under-determined systems . Summarizing, the
attractive features of TWL are as follows:

i) reduced memory requirements with respect to batch
Lasso;

ii) improved performance relative to RLS when is sparse
and time-invariant;

iii) enhanced tracking capability when is sparse and time-
varying, relative to batch Lasso and RLS for windows of
size less than the dimension of .

Despite these attractive features, the main limitation of TWL
is that a convex program has to be solved per time . While
the RLS cost is differentiable, and thus amenable to closed-form
minimization, is not. However, initializing the convex

program at time with the solution at time pro-
vides a “warm start-up,” which speeds up convergence to the op-
timum . For these reasons, TWL is a “pseudo-real time”
algorithm. Low-complexity real-time algorithms will be devel-
oped in Section IV. But for now, it is worth checking TWL for
consistency.

A. (In)Consistency of the TWL Estimator

Since the non-zero support of is unknown, and sparse
vector estimators are nonlinear functions of the data not express-
ible in closed form, performance analysis is distinct from and
far more challenging than that of LS estimators. Consider for
simplicity that is time-invariant for which (w1) is prudent to
adopt, and suppose that the regressors and noise satisfy these
regularity (ergodicity) conditions:

(r1) with probability
(w.p.) 1, with positive definite;

(r2) w.p. 1.
If the noise and the regressors are mixing, which is the
case for most stationary processes with vanishing memory in
practice, then (r1) and (r2) are readily met. Since in (1) is zero
mean and uncorrelated with , the cross-covariance in (r2)
vanishes. With , it follows readily from (1) that

w.p. 1. Upon dividing
both sides of (7) by and taking limits, (r1) and (r2) then imply
that

w.p. 1, if is chosen to grow slower than . In this
case, as it holds that

w.p. 1. This proves the fol-
lowing result.

Proposition 1. For the model in (1) with (r1), (r2), and (w1) in
effect, the TWL estimator is strongly consistent, provided that

is chosen to satisfy .

At this point it is instructive to recall that under the condi-
tions of Proposition 1, the LS estimator also
converges w.p. 1 to , and is thus strongly con-
sistent [16]. For this reason, to asses performance of TWL and
differentiate it from that of LS it is pertinent to consider suf-
ficiently large (but preferably finite) for which the standard
sparsity-agnostic LS is unable to accurately estimate the zero
entries of . It is thus of interest to check whether TWL can
estimate jointly the nonzero support and the nonzero entries of

consistently for sufficiently large . To this end, suppose that
the first entries of are non-zero; i.e., ;
and partition accordingly the matrix as

Following the definitions in [10], support consistency
amounts to having

(10)

and -estimation consistency requires convergence in distri-
bution , that is

(11)
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Fig. 1. Weight functions for TWL and TNWL estimators.

where denotes the vector obtained by extracting the
first components of . Properties (10) and (11) are referred
to as oracle properties because a sparsity-aware estimator pos-
sessing these properties is asymptotically as good as if the sup-
port was known in advance [10].

Under (w1), the TWL corresponds to a sequential version
of the batch Lasso estimator. Hence, asymptotic properties of
the latter derived in [16], [29] carry over to the TWL estimator
introduced here.

Lemma 1. (See also [29, Prop. 1]). For the model in (1) with
(r1), (r2), and (w1) in effect, if ,
then with
denoting an increasing function of .

In words, Lemma 1 asserts that if grows as , sup-
port consistency cannot be achieved. Since increases with

, the hope for the TWL to satisfy the oracle properties is left
for cases wherein grows faster than . Unfortunately, the
next result discourages this.

Lemma 2. (See also [29, Lemma 3]). For the model in (1) with
(r1), (r2), and (w1) in effect, if and

, then
, where is a non-random constant.

Lemma 2 states that if grows faster than but slower
than , the rate of convergence is , that is slower than

; hence, diverges. Combining Lemmas 1
and 2, the following negative result holds for batch Lasso and
thus for TWL.

Proposition 2. For the model in (1) with (r1), (r2), and (w1) in
effect, the TWL estimator can not achieve the oracle properties
for any choice of .

Before exploring alternatives to TWL that satisfy the oracle
properties, one remark is in order.
Remark 1. If instead of the convex -norm the LS cost is reg-
ularized with suitably chosen non-convex functions of , it is
possible to construct sparsity-aware estimators that asymptoti-
cally possess the oracle properties [10]. Of course, the price paid

is inefficient optimization due to non-convexity. These consid-
erations motivate searching for convex regularizing terms which
result in pseudo real-time Lasso estimators satisfying the oracle
properties. Such a class is developed next using the weighted

-norm regularization, introduced in [29], [30] for the batch
Lasso.

B. Time- and Norm-Weighted Lasso

Let denote the step function, a positive sequence
dependent on the sample size, and a constant tuning
parameter. Based on these, define the weight function

as

(12)

where . Using , the novel time- and
norm-weighted Lasso (TNWL) estimator weighs the -norm
with coefficients depending on the entries of ; that is,

(13)

Fig. 1 shows the weight function for and
. Notice that while in TWL weighs identically all

summands in the -norm, the TNWL estimator places
higher weight to small entries, and lower weight to entries with
large amplitudes. In fact, RLS estimates of size less than
are penalized as in TWL, while estimates between and
are penalized in a linearly decreasing manner. Finally, RLS es-
timates larger than are not penalized at all (cf. Fig. 1).

It is worth recalling at this point that albeit sparsity-agnostic,
the RLS estimator is -estimation consistent [16], that is

(14)

Based on (14), it is possible to establish the following result.

Proposition 3. (See also [30, Theorem 4]). For the model in (1),
with (r1), (r2), and (w1) in effect, if

and , the TNWL
estimator satisfies the oracle properties (10) and (11).

Weighted -norm regularization was introduced in [7], [29],
and [30] using different weight functions to effect sparsity and
satisfy the oracle properties of the batch weighted Lasso es-
timator. The weight function in (12) corresponds to the local
linear approximation of the smoothly clipped absolute devia-
tion regularizer introduced by [30]. The difference here is its
coupling with RLS to ensure consistency of the novel adaptive
TNWL estimator.

Next, the implications of Propositions 2 and 3 are demon-
strated through simulated tests.

C. Numerical Examples

Gaussian observations are generated according to (1) with a
time-invariant

and infinite windowing as in (w1).
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Fig. 2. MSE comparisons of pseudo real-time estimators (time-invariant � ).

The penalty scale is set to for the TWL
(see also [29]), and for TNWL with

and . The first three entries of are
chosen equal to unity, and all other entries are set to zero. Fig. 2
depicts the mean-square error (MSE), , across
time for the TWL, TNWL, and RLS along with what is termed
genie-aided (GA) RLS, which knows in advance the support and
performs standard RLS to estimate the non-zero components.
The convex optimization problem per time is solved using
the SeDuMi package [22] interfaced with Yalmip [17]. Observe
that while TWL outperforms RLS, it is outperformed by TNWL,
whose performance approaches that of the GA-RLS benchmark.
Indeed, the TNWL does achieve the oracle properties in the con-
sidered simulation setting.

Next, Gaussian observations are generated according to (1)
with a time-varying (henceforth denoted as ), and param-
eters , and

. A Gauss–Markov model is assumed for ;
that is, with

, and for . Without
loss of generality, (w2) is adopted with , and

for both TWL and TNWL and

. Clearly, in a time-varying setting
these estimators are not expected to achieve the consistency
properties established when remains time-invariant. Fig. 3
depicts the squared error (SE) for a realization of the RLS,
GA-RLS, TWL and TNWL. In the considered setting, TWL and
TNWL perform similarly and both outperform RLS while ap-
proaching the performance of the GA-RLS benchmark.

Next, Gaussian observations are generated according to (1)
with a time-varying , and parameters

, and . A Gauss–Markov
model is assumed for with , and (w3) windowing
is adopted. For brevity, only the regularized RLS in (4) with
constant is shown along with the TWL estimators. In Fig. 4,
two window sizes of length and are simulated.
Interestingly, while RLS with outperforms RLS with

, TWL with outperforms TWL with

Fig. 3. Squared error comparisons of pseudo real-time estimators
(time-varying � with exponentially decreasing window).

Fig. 4. Squared error comparisons of pseudo real-time estimators
(time-varying � with finite window).

, and achieves the overall best performance. In fact, TWL
performs well even for small window sizes, , when the
signal of interest is sparse. Thus, TWL exhibits better tracking
capability than RLS which requires longer window size, and
thus can track signals with slower variations.

IV. ADAPTIVE REAL-TIME LASSO

As mentioned earlier, TWL and TNWL estimators are not
suitable for real-time implementation. In this section, online al-
gorithms are developed and analyzed. The vector iterates devel-
oped in the next subsection provide online solvers of (6) and
(13), admit a closed-form solution per iteration, and are proved
convergent to when the unknown vector is time-invariant. For
notational brevity, the algorithms are developed for the TWL es-
timator but carry over to TNWL as well.

A. Online Coordinate Descent

One approach to finding the solution in (6) is to run
a cyclic coordinate descent (CCD) algorithm, which in its sim-
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plest form entails cyclic iterative minimization of in
(7) with respect to one coordinate per iteration cycle. Let
denote the solution at time and iteration . The th vari-
able at the th iteration is updated as

(15)

for . During the th cycle each coordinate (here the
th) is optimized, while the pre-cursor coordinates (those with

) are kept fixed to their values at the th cycle, and the
post-cursor coordinates (those with ) are kept fixed to
their values at the st cycle.

Albeit convex, the cost is non-differentiable.
Nonetheless, convergence of the CCD algorithm for Lasso-type
problems follows readily using the results of [25]. In addition
to affording effective initialization (with the all-zero vector),
another attractive feature of CCD Lasso solvers is that each
coordinate-wise minimizer is available in closed form. Recent
comparative studies show that CCD exhibits computational
complexity similar (if not lower) than state-of-the-art batch
Lasso solvers and is numerically stable [13], [27].

The online coordinate descent (OCD) algorithm introduced
next can be viewed as an adaptive counterpart of CCD Lasso,
where a new datum is incorporated at each iteration; that is, the
iteration index in CCD is replaced in OCD by the time index

. The challenge arises because the cost function changes with

. The crux of OCD is to update only one variable per datum
in the spirit of e.g., the partial least mean-squares (PLMS) algo-
rithm [12]. Notwithstanding, PLMS is a sparsity-agnostic first-
order algorithm, whereas OCD is sparsity-cognizant, it capital-
izes on second-order statistics similar to RLS, and it is also prov-
ably convergent.

For notational convenience, express the time index as
, where corresponds to the only entry

of to be updated at time , and indexes the
number of cycles; that is, how many times the th coordinate is
updated. Let denote the solution of the OCD algorithm at
time and for , which amounts
to setting all but the th coordinate at time equal to those at
time , and selecting the th one by minimizing ;
that is,

(16)

In the cyclic update (16), the pre-cursor coordinates
have been updated times, while

the post-cursor entries have been updated
times. After isolating from only terms which depend
on the th coordinate that is currently optimized, recursion (16)
can be rewritten as (cf. (6))

(17)

(18)

Algorithm 1: OCD-TWL

Initialize with

for do
for do

S1. Acquire datum , and regressor .

S2. Obtain and as in (8).

S3. Set for all .

S4. Compute via (18).

S5. Update as in (19).

end for
end for

Being a scalar optimization problem, it is well known that the
minimization problem in (17) accepts a closed-form solution,
namely [13]

(19)

Equation (19) amounts to a soft-thresholding operation that sets
to zero inactive entries, thus facilitating convergence to sparse
iterates. The OCD-TWL scheme is tabulated as Algorithm 1.

Convergence of OCD-TWL is established in Appendix A,
and the main result can be summarized as follows.

Proposition 4. For the model in (1) with (r1), (r2), and
(w1) in effect, if , it holds w.p. 1 that

.

In words, Proposition 4 asserts that the OCD-TWL estimator
is strongly consistent.

B. Online Selective Coordinate Descent

The OCD-TWL solver has low complexity but may exhibit
slow convergence since each variable is updated every obser-
vations. But since due to sparsity, most of the time
OCD-TWL resets to zero inactive entries of . On the other
hand, updating zero variables cannot be skipped a priori since
new nonzero entries may arise in time-varying scenarios. To ad-
dress this dilemma, it is prudent to select which coordinate to
update. A related selective approach has been pursued for batch
Lasso in [27], and is extended here to the novel OCD solver.

Let and denote the
forward and backward directional derivatives w.r.t. eval-
uated at , which denotes the online selective coordinate
descent (OSCD) estimate at time . Define also the vec-
tors whose th entries are
and , respectively. It is not difficult to verify
that (see also [27])

(20)

(21)

with if and
otherwise; while if , and
otherwise. After evaluating (20) and (21), the coordinate with

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2010 at 15:31:02 UTC from IEEE Xplore.  Restrictions apply. 



3442 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 7, JULY 2010

the most negative directional derivative, either forward or
backward, is updated. The OSCD-TWL scheme is summarized
as Algorithm 2.
Remark 2. A subgradient-based LMS-like is developed in
[2] for sparsity-aware online estimation. However, subgra-
dient methods are first-order algorithms that posses slow
convergence. For this reason, the OCD and OSCD alternatives
developed here should be preferred.

Algorithm 2: OSCD-TWL

Initialize .

for do
S1. Acquire datum , and regressor .

S2. Evaluate and as in (20) and (21).

S3. Select .

S4. Update for all .

S5. Compute via (18).

S6. Update as in (19).

end for

C. Complexity Issues

Recall that the RLS algorithm requires algebraic op-
erations per datum. On the other hand, the OCD-TWL Algo-
rithm 1 requires , whose computational burden is
given and . As far as OSCD is concerned, the selec-
tion step requires evaluation of and whose computa-
tion entails algebraic operations, where de-
notes the number of non-zero entries of . However, the
overall computational burden of the OCD-TWL algorithm is
dominated by the update of , which requires alge-
braic operations. In this general case, the OCD (OSCD) can
be implemented cyclically to update each coordinate per datum
without affecting the overall complexity in order to speed up
convergence. We summarize the online cyclic coordinate de-
scent (OCCD) TWL as in Algorithm 3.

Algorithm 3: OCCD-TWL

Initialize

for do

S1. Acquire datum , and regressor .

S2. Obtain and as in (8).

for do

S3. Evaluate

S4. Update via (19).

end for

end for

An important simplification which appears in problems such
as system identification and beamforming is that regressors are
sliding with time; that is

with . In this case, updates and the RLS
estimates incur complexity [19, p. 816], [28]. Likewise,

Fig. 5. MSE comparisons of online estimators (time-invariant � ).

OCD-TWL and OSCD-TWL in Algorithms 1 and 2 can be also
implemented with complexity .

Same conclusions can be drawn for online implementations
of the TNWL through OCD or OSCD. In a nutshell, the novel
online algorithms entail complexity analogous to RLS.

V. SIMULATED TESTS

The online algorithms developed in Section IV are simulated
here and compared with the TWL and TNWL algorithms of
Section III and also with the RLS in both time-invariant as well
as time-varying scenarios.

Gaussian observations are generated according to (1) with a
time-invariant

, and windowing as in (w1). The first
three entries of are chosen equal to unity, and all other en-
tries are set to zero. Fig. 5 depicts the MSE of the OCD-TWL,
OCCD-TWL, OSCD-TWL, and TWL versus time. The scale is
set to . As expected, the OCD-TWL con-
verges to the TWL which requires the solution of a convex pro-
gram per time . Similar results holds for the OCCD-TWL and
OSCD-TWL algorithms that also provide a means of enhancing
the convergence speed.

Fig. 6 depicts the MSE of the OCD-TNWL, OCCD-TNWL,
OSCD-TNWL, and TNWL versus time. The scale is set to

with and
Also in this case the online algorithms converge to their pseudo
real-time counterparts.

Next, Gaussian observations are generated according to (1)
with a time-varying , and parameters

, and . A Gauss-Markov
model is assumed for with entries generated according to

with ,
and for ; (w2) is adopted with

, and scale . Fig. 7
shows a realization of the squared error (SE) for the OCD-TWL,
OCCD-TWL, OSCD-TWL, TWL, and RLS. The OCD-TWL
exhibits performance similar to that of the RLS. Indeed, up-
dating one coordinate per observation in time-varying settings
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Fig. 6. MSE comparisons of online weighted-norm estimators (time-invariant
� ).

Fig. 7. Squared error comparisons of online estimators (time-varying � with
exponentially decreasing window).

weakens tracking capabilities [12]. However, the performance
OCCD-TWL and OSCD-TWL approaches that of TWL, and
both outperform the RLS algorithm.

Successively, simulated tests are performed to assess perfor-
mance when the support of changes with time. The setting
in this example is identical to that of Fig. 7, except that here the
support of the sparse also undergoes step changes. Specifi-
cally, at the third entry of starts decreasing, and
after the same entry is set to zero. In addition, at

the fourth entry becomes nonzero. Figs. 8 and 9 depict, re-
spectively, the true variations of and across time,
along with their estimates obtained using the RLS, the OCCD-
TWL, and the OCCD-TNWL with
and . Observe that the developed sparsity-aware algo-
rithms can set to zero inactive entries while RLS estimates are
not sparse and yield a nonzero value even if the true entry is
zero. Moreover, after a few instants from the changing support
points, the developed algorithms are able to track entries that

Fig. 8. Trajectory of a varying entry of the true signal vector and its estimates
across time (tracking of a disappearing entry).

Fig. 9. Trajectory of a varying entry of the true signal vector and its estimates
across time (tracking of an emerging entry).

become nonzero, and are further able to set to zero entries that
disappear.

Finally, the novel algorithms are tested for identifying the
sparse, finite impulse response of a discrete-time, linear system
using input and noisy output data satisfying the input-output re-
lationship

(22)

where collects the unknown impulse
response coefficients, denotes the
given input data (the regressor vector in (1)), and the output
at time . As the system order maybe unknown, a large known
upper bound is selected. Since many entries of maybe
zero or negligible, the impulse response is sparse. In addition,
nonzero entries may exhibit slow time variations, which gives
rise to a time-varying impulse response . To assess perfor-
mance of the introduced algorithms, a system with
and nonzero entries at unknown locations is simulated.
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Fig. 10. MSE comparison of adaptive algorithms for estimating a sparse, linear,
time-varying impulse response.

The input sequence is assumed zero-mean, white, Gaussian,
with unit variance, and with . RLS,
OSCD-TWL, and OSCD-TNWL are tested along with the
GA-RLS for an exponential window with . Since the
regressors here are shift-invariant, all algorithms incur computa-
tional burden that scales linearly with . The impulse response
is generated according to a first-order Gauss-Markov process
with . The tuning parameters of the OSCD-TWL and
OSCD-TNWL have been chosen as in Fig. 8. Fig. 10 depicts
the MSE (averaged over 100 realizations) across time. It is
clear that both OSCD-TWL and OSCD-TNWL outperform the
RLS. In particular, the gain of the OSCD-TNWL is more than
one order of magnitude.

VI. CONCLUDING SUMMARY

Recursive algorithms were developed in this paper for es-
timation of (possibly time-varying) sparse signals based on
observations that obey a linear regression model, and become
available sequentially in time. The novel TWL and TNWL
algorithms can be viewed as -norm regularized versions of
the RLS. Simulations illustrated that TWL outperforms the
sparsity-agnostic RLS scheme when estimating time-invariant
and slowly-varying sparse signals. Moreover, the novel algo-
rithms exhibit enhanced tracking capability with respect to
RLS especially for short observation windows. Performance
analysis revealed that TWL estimates cannot simultaneously
recover the signal support and maintain convergence of RLS.
This prompted the development of TNWL, which for proper
selection of design parameters can achieve oracle consistency
properties for time-invariant sparse signals. However, TWL
and TNWL require solving a convex problem per time step,
and may be less desirable for real-time applications. To over-
come this limitation, low-complexity sparsity-aware online
schemes were also developed. The crux of these schemes
is a novel optimization algorithm that implements the basic
coordinate descent iteration online. Albeit simple, the resulting
OCD-TWL (OCD-TNWL) algorithm was proved conver-
gent when the sparse signal is time invariant. At complexity
comparable to OCD-TWL (OCD-TNWL) but with improved

convergence speed, online selective variants choose the best
coordinate to optimize and exhibit performance similar to the
pseudo real-time TWL (TNWL).

APPENDIX A
PROOF OF PROPOSITION 4

Define the vector for , that is, the one
containing the iterates at the end of the th cycle when each vari-
able has been updated times. The proof that converges to
as will proceed in five stages. In the first one, Algorithm
1 is put in the form of a noisy vector-matrix difference equa-
tion. The second and third stages prove that the corresponding
discrete-time dynamical system is exponentially stable, and that
the sequence is bounded. In the fourth stage, conver-
gence to a limit point is proved. The proof concludes by
showing that .

A. Dynamical System

Let denote the matrix with entries
, and the vector with entries

. Conditions (r1) and (r2) guar-

antee that and w.p. 1. Consider
the decomposition where is diagonal,
and is strictly lower (upper) triangular. Observe that

.
Dividing the cost function of the problem in (17) by

yields

(23)

The solution of this scalar minimization problem can
be obtained in two steps. First, solve the differentiable
linear-quadratic part of (23) using the auxiliary vector to
obtain

(24)

where was expanded according to its definition in (18)
and divided in two sums: the one already updated in the cycle

, and the second one updated in the th cycle
. The second step to solve (23) is to pass through the

soft-threshold operator

(25)

Using the decomposition of , (24) can be rewritten as
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whose solution is obtained (after equating the derivative to zero)
as

(26)

Concatenating the latter with yields the matrix-
vector difference equation

(27)

The soft-thresholding operation in (25) can be accounted for by
defining the error vector in which case (28)
can be re-written as

(28)

Assuming that there exists a such that is invertible
for each , (28) can be written as

(29)

with . The key point to be used subse-
quently is that (25) guarantees that the entries of are bounded
by a vanishing sequence. Specifically, it holds that

(30)

since the input-output variables of the soft-threshold operator
obey .

B. Exponential Stability

Let in (29) denote the product of the
transition matrices . The goal of this stage is to prove that

, with .
The convergence of to implies convergence of

to , where and
are the diagonal, lower triangular, and upper triangular parts of

, respectively. Since is positive definite, the spectral
radius of is strictly less than one, i.e., [15, p.
512]. Furthermore, for every there exists a constant
w.r.t. , such that ([15], p. 336).
Then, by selecting , and defining

, it holds that

(31)

Upon defining , the following recursion is
obtained

Using (31), the latter can be bounded as

which after multiplying both sides by yields

(32)

and allows one to apply the discrete Bellman-Gronwall lemma
(see, e.g., [21, p. 315]).

Lemma 5 (Bellman–Gronwall). If satisfy the
recursive inequality

(33)

then obeys the non-recursive inequality

(34)

For and , (32) takes
the form of (33), so that (34) holds and (after multiplying both
sides by ) results in

(35)

Raising both sides of (35) to the power of and applying the
geometric-arithmetic mean inequality, it follows that

which is readily rewritten as

Since and w.p. 1, for every
there exists an integer such that if , then

w.p 1. Thus, if is selected as
, and as , the following bound is ob-

tained

It is clear, by inspection, that the proof so far carries over even
if the product of transition matrices starts at ; that is

(36)
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Certainly, , and do not depend on . However, does
depend on the realization of the random sequence , and its
existence and finiteness are guaranteed w.p. 1.

C. Boundedness

Define , and rewrite (29) as

Using back substitution, can then be expressed as

Since , and converge, the random sequence
converges too w.p. 1; hence, it can be stochastically bounded by
a random variable ; that is, w.p. 1. This, com-
bined with the exponential stability ensured by (36), guarantees
that the realizations of the random sequence are (stochasti-
cally) bounded; thus

(37)

D. Convergence

Define the error , and similarly
, and . Using these

new variables, (28) can be rewritten in error form as

(38)

and, after regrouping terms, as

(39)

Equation (39) describes an exponentially stable linear time-in-
variant system with transition matrix- , and
input

. The input can be divided into its lim-
iting point , and the error

.
As , the vector goes to zero almost surely because
the sequence is bounded, and the error and
as well as , all go to zero w.p. 1.

With this notation and recalling the definition
, (39) is rewritten as

and back-substituting again the new expression for yields

(40)

Convergence of this recursion will be established by showing
that the first and third terms in the right-hand side vanish as

, while the surviving one corresponds to a stable geometric se-
ries. Given that such that ,
convergence of the first term to zero follows readily from (31).
The third term represents the limiting output value of a multiple
input-multiple output stable linear time-invariant system with
vanishing input; that is . As ,
(31) implies that it is possible to bound the sum under consid-
eration as

(41)

Since , it holds by the definition of the limit that
for any so that . Using the
latter along with (41), it follows that for

(42)

Because does not depend on , the limit of
the first summand in (42) goes to zero; hence,

The last inequality holds ; thus,

which establishes convergence to zero of the third sum in the
right-hand side of (40).

E. Limit Point

Once convergence is established, it is possible to take the limit
as in (38) to obtain

(43)

Recalling that , (43) reduces to

(44)

and since , it holds that

(45)

which concludes the proof.
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