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This paper describes a new kernel-based approach for linear system identification of stable systems.
We model the impulse response as the realization of a Gaussian process whose statistics, differently
from previously adopted priors, include information not only on smoothness but also on BIBO-stability.
The associated autocovariance defines what we call a stable spline kernel. The corresponding minimum
variance estimate belongs to a reproducing kernel Hilbert space which is spectrally characterized.
Compared to parametric identification techniques, the impulse response of the system is searched for
within an infinite-dimensional space, dense in the space of continuous functions. Overparametrization is
avoided by tuning few hyperparameters via marginal likelihood maximization. The proposed approach
may prove particularly useful in the context of robust identification in order to obtain reduced order
models by exploiting a two-step procedure that projects the nonparametric estimate onto the space
of nominal models. The continuous-time derivation immediately extends to the discrete-time case. On
several continuous- and discrete-time benchmarks taken from the literature the proposed approach

Stochastic embedding

compares very favorably with the existing parametric and nonparametric techniques.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the problem of identifying the impulse response
of a BIBO-stable linear and time-invariant system, fed with a
known input, from noisy and discrete output measurements. The
usual identification approaches use finite-dimensional parametric
models. The standard methods to select the best model order rely
on complexity criteria such as Akaike (AIC), Generalized Cross
Validation (GCV) or Minimum Description Length (MDL). When
identification is motivated by robust-control design purposes
model order has to be relatively low (Ljung, 1999b; Reinelt, Garulli,
& Ljung, 2002; Soderstrom & Stoica, 1989). Thus, in general, not
only the obtained nominal model will be uncertain due to the
variance of its estimated parameters but it will also be biased due
to undermodeling. Robust identification has to do with the joint
assessment of variance and bias affecting the estimated nominal
model. It is well known that, in the presence of undermodeling, the
form of the input signal may significantly affect the estimate and
the reliability of the model in frequencies relevant to the intended
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use. Prefiltering of input and output data is often adopted as a
remedy even if the choice of the operating frequency range may
be nontrivial (Wahlberg & Ljung, 1986).

In order to characterize the variance and bias error, robust
identification has been developed along three main directions.
Two of them, namely stochastic embedding (Goodwin, Braslavsky,
& Seron, 2002; Goodwin, Gevers, & Ninness, 1992) and model-
error modeling (Ljung, 1999a; Stenman & Tjarnstrom, 2000), share
a probabilistic background; see also Hakvoort and Van den Hof
(1997) for another statistical approach. The third approach, namely
set-membership identification (Garulli, Vicino, & Zappa, 2000; Gi-
arre’, Milanese, & Taragna, 1997; Milanese, Norton, Piet-Lahanier,
& Walter, 1996; Milanese & Vicino, 1991), relies on a deterministic
worst-case paradigm (Makila, Partington, & Gustafsson, 1995). The
starting point of all these methods is the identification of a low-
order nominal model by standard techniques such as maximum
likelihood or prediction error methods. The subsequent step is
the assessment of bias and variance for the nominal model. The
stochastic embedding approach models the bias error as the re-
alization of a stochastic process, e.g. white noise with decreasing
variance over the time domain (Goodwin et al., 1992) or a ran-
dom walk over the frequency domain (Goodwin et al., 2002). The
model-error modeling approach exploits residual analysis in order
to characterize undermodeling, whereas set-membership identifi-
cation determines the worst-case error associated with the nomi-
nal model (Reinelt et al., 2002). A schematic representation of the
identification scheme common to the three approaches is reported
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Fig. 1. (a) Identification scheme common to stochastic embedding, model-error
modeling and set-membership approaches. Notation u indicates the system input
while output measurements are y, with their filtered versions denoted by u and y,
respectively. M, denotes the estimate of the nominal model while Ay is uncertainty
associated with bias and variance error. (b) New identification scheme proposed in
this paper. E[f |y] and Var[f|y] denote the posterior mean and autocovariance of the
impulse response, respectively, while  is the space of nominal models.

in Fig. 1(a). After a possible prefiltering phase, the data are passed
to a parameter estimation module which yields the nominal model.
The nominal model and the data are then processed by a model-
error estimation module in order to quantify the bias and variance
error.

Even if stochastic embedding has some connection with
Bayesian estimation, only few Bayesian contributions to robust
identification are available; see e.g. Hjalmarsson and Gustafsson
(1995) and Johansen (1997). Differently from Goodwin et al. (2002,
1992), in this paper the probabilistic prior is formulated directly on
the unknown impulse response, rather than on the bias error, and
the impulse response is assumed to be the realization of a Gaus-
sian process. As such, it belongs to an infinite-dimensional func-
tion space (Barry, 1986; Rasmussen & Williams, 2006; Smola &
Scholkopf, 2003; Williams & Rasmussen, 1996). The prior is defined
as an integrated Wiener process over a suitable transformation of
the time-axis. Such prior prevents overfitting and accounts for con-
tinuity and nonstationarity of the impulse response. Moreover, in-
formation on BIBO-stability is incorporated within the prior, whose
realizations are proven to be almost surely BIBO-stable. Connec-
tions with Tikhonov-type regularization (Bertero, 1989; Pillonetto
& Saccomani, 2006; Poggio & Girosi, 1990b; Tikhonov & Arsenin,
1977) and Reproducing Kernel Hilbert Spaces (RKHS) (Aronszajn,
1950; Cucker & Smale, 2001; Wahba, 1998) are extensively dis-
cussed. Among other things, it is shown that the estimate belongs
to a space which is dense in the space of continuous functions.

If a low-order model is desired for some specific use, a two-
step procedure can be adopted. First, a low-bias nonparametric
estimate of the impulse response is computed by the proposed
method. Then, the desired parametric model is obtained by pro-
jecting the nonparametric estimate onto a suitable low-order
finite-dimensional space. A formal proof of optimality of this two-
step procedure is also given (Proposition 4). It is worth noting that
such result translates to the Bayesian context Hjalmarsson'’s advice
“always first model as well as possible” based on the invariance/
separation principle; see Section 4.2 in Hjalmarsson (2005). The
new robust identification scheme is schematically illustrated in
Fig. 1(b), where the output of the nonparametric estimator is fed
into a projection module yielding the nominal model and its un-
certainty. Compared to Fig. 1(a), note that prefiltering is no more
needed. Even if schemes (a) and (b) in Fig. 1 share the same com-
mon objective of finding a low-order model suitable for robust con-
trol, there is a substantial difference between them. In fact, the
former yields a low-order model whose amount and type of bias
depend on the experimental design, e.g. choice of the input. For
instance, if the system is excited by a low frequency input, bias
will be concentrated at high frequencies. The second procedure,
conversely, first uses all the available information, i.e. data and

prior knowledge on impulse response, to obtain the best possible
estimate. Then, the subsequent projection step is not directly af-
fected by experimental design conditions.

The paper is organized as follows. In Section 2, the identification
problem is formulated and regression via Gaussian processes in
RKHS is concisely overviewed. In Section 3, it is shown how to
obtain a nominal model by projecting the Bayes estimate onto a
finite-dimensional space. In Section 4, we propose a new Gaussian
prior for system identification by defining a suitable Mercer kernel
K. In Section 5, a spectral characterization of K is provided. It is
also shown that realizations from the new prior are almost surely
associated with BIBO-stable systems and that the RKHS defined by
K is dense in the space of continuous functions. In Section 6, we use
simulated benchmarks taken from the literature to demonstrate
the effectiveness of the proposed approach. Conclusions end the
paper. Proofs are gathered in the Appendix.

2. Preliminaries

We are given a finite set of noisy data sampled from the output
of a continuous-time linear dynamic system fed with a known in-
put u(t). We will mainly refer to such continuous-time setting even
if the proposed approach can deal with discrete-time problems just
by replacing integral operators with suitable discrete convolutions.
In what follows, f represents the unknown impulse response and
N(u, X') denotes a Gaussian density of mean u and covariance ma-
trix X. Let q(t) denote the noiseless output defined as follows

t
Q(f)iL?[f]=/f(t—r)u(r)dr, teD (1)
0

where D is an interval on the real line. The associated measurement
model is

ying[f]—FUi, i=1,...,n (2)
where t;, i = 1,...,n are the sampling instants while the
errors v;, i = 1,...,n, are independently distributed with v; ~

N(0,02) Vi. In what follows, y = [y y2...ya", v =
[v; v;...v,]" and the shorthand notation L} isused in place ofL;‘i.
Adopting a Bayesian viewpoint, it is assumed that there exists
a prior for f which consists of a Gaussian measure in an infinite-
dimensional function space. In particular, f denotes a zero-
mean Gaussian process with autocovariance cov(f (~t,-), f (~tj)) =
A2K(t;, t;). Here, A2 is a possibly unknown scale factor while K
represents a Mercer kernel, i.e. a mapping K : D x D — R which
is continuous, symmetric and positive definite. Let I,, be then x n
identity matrix. The statistical model for f reads as follows

d
F©) =Y 0y +f(©), teD (3)
i=1

6 ~N(Q, ply), p — 400

where 6 is independent off and v, while {y; ?:1 are assigned
functions that account for components on whose amplitude no
prior knowledge is assumed. In what follows, 8 will denote the
subspace spanned by {;}. A careful choice of 8 helps minimizing
the bias when estimating certain classes of impulse responses,
e.g. those with a dominant pole. For what concerns linear system
identification, this will be extensively discussed in Section 4.
Since f and v are assumed jointly normal, the posterior of f
given y is Gaussian as well. Our target estimate is the minimum
variance estimate of f, i.e. the posterior mean E[f|y]. To define
such estimate in rigorous mathematical terms, it is useful to recall
that a Mercer Kernel K can be associated with a unique RKHS
J¢, with norm || - || 5, containing scalar continuous functions on
D; see Aronszajn (1950) and Wahba (1998) for details. If the
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dimension of J is infinite, it can be proven that realizations from f
do not fall in # with probability one (Lukic & Beder, 2001; Wahba,
1990). Nevertheless, the following result points out that, for known
y, the minimum variance estimate of f belongs to the direct sum of
J¢ and B (denoted as # @ B) and can be obtained as the solution of
a Tikhonov-type variational problem. Below, and in what follows,
itis assumed that L{' : # — Rs continuous Vi.

Proposition 1 (Wahba, 1990). Assume that f is independent of v.
Let P[g] denote the orthogonal projection of g onto ¥, in # & B
and let also y = o?/A2. For known y and y, the minimum variance
estimate of f is given by

n

> (v — L'gl)” + v IPglI% (4)

i=1

f =arg min
ZEHDB

Remark 2. The above proposition states the duality between
Gaussian processes and RKHS (Lukic & Beder, 2001; Wahba, 1990),
which will be further exploited in what follows. In particular, we
will use f to denote Gaussian processes, with the abbreviated nota-
tion f; often used in place of f (t), while g will indicate deterministic
functions and g the corresponding first derivative.

In (4), besides the choice of B, also K and y will greatly in-
fluence the quality of the estimate. The former reflects our prior
knowledge about f and will determine fundamental properties of
J such as its capability of approximating a wide class of functions.
The latter is the so-called regularization parameter that controls
the balance between expected regularity of the solution and adher-
ence to experimental data (the so-called bias/variance trade off).
The main contribution of the present paper is the suggestion of a
specific choice of 8 and K for linear system identification such that,
by a proper tuning of A? and o2 (and hence y), the solution of (4)
has favorable bias and variance properties.

As far as K is concerned, typical choices are Gaussian or poly-
nomial kernels (Smola & Schélkopf, 2003). In particular, when the
signal is just known to be smooth, the most popular approach is
to model f as an integrated Wiener process with completely un-
known initial conditions. Under these statistical assumptions, one
has that (Neve, De Nicolao, & Marchesi, 2007)

2

o i(r_f) s<t
W(s, ) = Cou(f(s), f(r)) = { 2 3 (5)

7(73)
—|s—=) s>r.
2 3

This kernel underlies also the Bayesian interpretation of cubic
smoothing splines (Wahba, 1990). For the subsequent derivation,
it is useful to focus on the cubic spline kernel W (s, t) defined over
the domain S x S where S = [0, 1]. Since the RKHS #, asso-
ciated with the kernel W is a Sobolev space of functions g with
g(0) = g(0) = 0 (Adams & Fournier, 2003; Burenkov, 1998), it is
convenient to select ¥ and v, as a constant and a linear function,
respectively. In this way, & € R? and

Bw =span{l,t} teS. (6)

In the practical application of Gaussian regression, a hierarchi-
cal approach is adopted. Few high level parameters (called hyper-
parameters), e.g. A% and o2, are regarded as fixed and deterministic
in order to obtain closed form formulas for the estimate f .
According to the so-called Empirical Bayes method, the tuning of
the hyperparameters grounds on statistical criteria based on the
stochastic interpretation underlying Problem (4), as described in
Section 4.

3. Mean square optimal finite-dimensional approximation

In this section £ indicates the set of all functions' mapping D
into the real line, with generic element denoted by g. In our context
£ will represent the set of all possible models while $» C £ will be
used to represent the set of nominal models. For example, & may
contain all the first-order approximations of our dynamic system,
ie.

P=|g:gt)=Ae ", AcRacR" t eR"}.

Let I" be an operator mapping the observation vector y into func-

tions g, i.e. I' : R" — L. Furthermore, we use I'; : R" — R to

represent I'(y) evaluated at t,i.e.if " : y — gthen I} : y — g(t),

t € D. Finally, w(t), t € D, is a strictly positive weighting function.
The next two results do not require Gaussianity of f.

Proposition 3. Let I8 satisfy

['? = argmin fD E[(f; — i) lylw(t)dt  Vy.
Then,

P y) = Elfily] = /R fo Gy Yy

where p;(f;, y) is the joint density of f; and y.

It is worth remarking that the above result shows that when
there is no restriction on the range of I", the optimal estimate does
not depend on the weighting function w(t). Let instead I"” be an
operator that maps vectors y into functions g € #,i.e. I'” : R* >
&. The next result shows that the optimal estimate of f; restricted
to J# is given by a projection, weighted by w, of the Bayes estimate
onto the set & of nominal models. The result is an extension of
that obtained in Zhu and Rohwer (1995) where f is restricted to be
a Gaussian process.

Proposition 4. Let
7 = argmin / EL: — I () lylw(D)de V.
r* Jp

Then,

- 5 2

7 (y) = argmin f (11 ) —g(t)) w(t)de Vy. 7)
ge? Jp

The above proposition provides a simple way to approximate
the impulse response within a desired finite-dimensional space.
It states that the mean squared error is minimized by looking for
the approximating function that best fits the Bayes estimate I8,
thus suggesting a two-stage procedure, i.e. regularized Bayesian
estimation followed by projection onto the finite-dimensional
space. It is worth noting that the projection step is just a
continuous-time least squares problem. The weighting function
w(t) can be used to specify where a more accurate approximation
is needed. The use of frequency weighting, e.g. to obtain a low
frequency approximation, is also easily implementable.

4. System identification using a new Gaussian prior

4.1. Modeling the unknown impulse response

Regularization methods which rely upon the kernel W defined
in (5) are widely employed in nonparametric function estimation;

1 Here, and in what follows, Lebesgue measurability is implicitly assumed.
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see e.g. the extensive literature on cubic spline regression (Suykens,
Gestel, Brabanter, De Moor, & Vandewalle, 2002; Thompson &
Tapia, 1990; Wahba, 1977, 1990). However, this kernel is not suit-
able to reconstruct the impulse response of a stable dynamic sys-
tem because of the following limitations:

e The Tikhonov estimator (4), with J# @ By defining our hy-
pothesis space, coincides with the cubic smoothing spline es-
timator (Wahba, 1990). As such, it is able to fit straight lines
without bias. However, in system identification one would bet-
ter obtain unbiased estimates of exponentials on the noncom-
pact domain X = [0, +00).

e The variance of the process associated with kernel W increases
over time. But, for stable systems, a priori impulse response un-
certainty is likely to decrease with time. In particular, a prior is
needed on X which incorporates the BIBO-stability constraint.

The following definition will prove useful in the derivation of a new
prior specifically suited for system identification.

Definition 5. A prioronf preserves a family of functions ¥ if there
exists n such that, for any distinct times tq, ..., t;,n > n, it holds
that

EfIf(t1) =g(t),....f(t) =8(tn)] =8, Vg€ F.

For instance, if a prior preserves lines, this means that, given
sampled observations of the unknown function, the Bayes estima-
tor projects lines onto themselves. In other words, the estimate
draws all information on the linear trend from the data without bi-
asing the estimate towards prior knowledge. It is well known that
the Wiener prior associated with linear splines preserves constant
functions whereas the integrated Wiener prior associated with
cubic splines preserves lines. However, when estimating impulse
responses, it is convenient to adopt a prior that preserves exponen-
tials. Below, we will introduce a mapping which converts X into the
unit interval S = [0, 1] such that the prior which preserves expo-
nentials in the old coordinates preserves straight lines in the new
ones. In other words, the time-transformation maps an exponen-
tial, with rate constant 8, into a straight line. It will be also shown
that impulse response stability is guaranteed by imposing that in
the new coordinates the function value at zero is null (Proposi-
tion 10).

A prior on S enjoying all the desired features is the integrated
Wiener process with zero initial value and arbitrary first-order
derivative at zero. Summarizing, the desired time-transformation
is

r=ef teX, B>0.

In the original coordinates, the prior for the unknown impulse
response is thus defined as follows

0 ift <0
f = {eef” +F) ifrex

where 6 ~ N(0, oo) and f(t), independent of 4, is a zero-mean
Gaussian process with autocovariance

(8)

Cov(f(s), f(t)) = A2K(s, t; B) (5, t) € X x X (9)
where
K(s,t; B) =W(e ™, e P (s,t) e X x X. (10)
Finally,
By = span{e ?'} teX. (11)

The kernel K will be hereafter named “stable spline kernel”, given
its connection with the cubic spline kernel and its intrinsic ability,
when coupled with the bias space By, to preserve a family of stable
exponential functions.

Remark 6. For the sake of simplicity, we will restrict our attention
to a bias space which is the span of a single exponential. However,
in principle, By could be easily extended to include the span of
two or more exponential functions, although as demonstrated in
the example section, even the simple model (11) performs very
satisfactorily in a variety of situations.

Finally, when dealing with discrete-time systems, the model for
f becomes the sampled version of (8), i.e. for k € Z we have

ifk <0

fork=0,1,2,3,.... (12)

0
o = {ee—ﬂ" +F(k)

4.2. Estimating hyperparameters and impulse response

The impulse response estimate is provided by the Tikhonov es-
timator (4) with hypothesis space # & B replaced by #x & By.
However, such estimator requires the knowledge of the hyperpa-
rameter vector £ = [A, 8, 0].

According to the empirical Bayes approach, & is obtained by
maximizing the marginal likelihood, i.e. the probability of y ob-
tained by integrating out f from the joint probability of y and f.
In the following, we give formulas for the computation of the log-
marginal likelihood. For this purpose, define

CE) = (L[h)...Lih]), h=ef

M) = Var[y|, &].

Note that the (i, j)-entry of M is

M(E)ij = MLIL K, 5 &)] + 05 (13)

with §; the Kronecker delta. In (13), L}‘L}‘[K ] means that LJP‘ is first

applied to K (-, -) as a function of one of its arguments. This leads
to a well defined function in # to which the second functional is
applied. Ambiguity is avoided by the symmetry of the kernel.

In the following, dependence of C and M on £ is sometimes
omitted to simplify the notation. If & ~ N(0, p), using Lemma 19
in Bell and Pillonetto (2004) we have

det(Var[y|€]) = det(M + pCCT)

= pdetM)(p~ ' +C"M7'0). (14)
When 6 ~ N(0, c0), one has
b() = ,,'er)‘c In (det(Var[y|¢])) — In(p)

= In (det(M)) + In(C"M~'0). (15)
In addition, using Eq. (1.5.12) in Wahba (1990) we also have
A€) = lim (Var[ylg])™!
p—00

=M1, —cc™M~ o)~ 'c"TM™ (16)
Using (15) and (16), we obtain the following optimization problem
§ = argmin)(y; §) (17)

where the cost function

1 1
J:§) = 5bE) + EyTA(é)y (18)

is equal to the opposite of the asymptotic log-marginal likelihood
apart from terms independent of £. According to the empirical
Bayes approach the estimate of f is obtained through the Tikhonov
estimator (4) with hyperparameters £ replaced by their maximum
likelihood estimate é Explicit formulas for the solution of (4) with
the stable spline kernel are reported below, in Eqs. (19)-(22).
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They are obtained using the so-called representer theorem; see
e.g. Section 1.1.2 in Wahba (1998) or also the proof of Theorem
1.5.3 in Wahba (1990). The new identification algorithm reads as
follows.

Nonparametric system identification algorithm

The input to this algorithm includes the system input u and the
measurements vector y. The output of this algorithm is the esti-
mate f of the impulse response of the system.

e Determine the estimate of the hyperparameter vector £ and 6
as follows

= argmin) (v; &) (19)
c&™ECE)
where

1 1,
Ju:8) = Eb@) + 7Y A§)y
b(&) = In (det(M)) + In(C"M~'C)
AE) =M1, —c(Cc"M'O)7 "M
CE) = (LUh]...L4h]), h=e
ME)lij = ALILKC, 5 £)] 4 0?5,

Calculate the estimate of the system impulse response accord-
ing to the formula

>>
Il

(20)

A A n A
fo) =be P 4323 g [K(-, t; ,3)] (21)
i=1
where {c;} are the elements of vector c € R" given by
c=ME) 'y —CEb). (22)

Needless to say, in a discrete-time context the same approach
can be followed provided that integral operators are replaced by
their discrete counterparts.

4.3. Computing confidence intervals

Assume that hyperparameters A, 8 and o are known or set to
their maximum likelihood estimates. Our first aim is to compute
the autocovariance of the noiseless output g, conditional on y,
sampled on an arbitrarily dense grid 2 = {Si}L which contains
the sampling grid {t;}1_;.

By omitting the dependence on &, to simplify notation, the
noiseless output g(t) can be written as

q(t) = Ba(t) + b(t)

where

at) = L{e VL () = L{If()]

Cou[b(s), b(t)] = A*L'LY [K (-, -)].

Given a function or stochastic process g(t), its sampled version on
s

g = 1861 g(s2)...g(sm1".

This allows us to write

qe =lag Iyl [beg] =Q |:b9_9:|

0
y=P|:bQ]+U

where P € R™®+D s obtained from Q by keeping only rows
associated with actual output observations in y.

Using standard properties of Gaussian random variables, see
e.g. Anderson and Moore (1979), we finally obtain

1

QT

where, since the prior variance of 6 is infinite,

B o' [0 O1xn
V= (Var [b9]> N (Ole (Var[bg])1)

with 04 the 1 x N matrix with zero entries.?

Once the posterior autocovariance of g has been computed,
confidence intervals for linear transformations of g can be eas-
ily obtained. For instance, when confidence intervals over the fre-
quency domain are needed, let F (jw) denote the Fourier transform
of f with Re[F(jw)] and Im[F (jw)] indicating its real and imagi-
nary part, respectively. The problem amounts now to computing
Var [(Re[F(jw)] Im[F(jw)])"|y] for any given w. Letting

Var[gelyl = Q (0 *P'P 4+ V)~

F%:q Re[F(jw)], FP g Im[F(jw)]

(corresponding to composition of the Fourier transform with the
inverse of L) one has

Var [Re[mwn ‘y] _(FRARIK 0]
Im([F (jw)] Ry [KYC ]
where

K3 (s, t) = Cov[q(s), q(t)Iy].

FREP K]
AR LACD]

5. Stable spline kernel: Spectral analysis

In this section, we report a complete spectral analysis of the
stable spline kernel K defined by (10). The scope of the section is
twofold. First, it is shown that realizations drawn from the new
prior are almost surely the impulse response of a BIBO-stable
system (Proposition 10). Second, a spectral characterization of
the RKHS associated with the stable spline kernel K is derived
(Proposition 11). We start with some definitions and a proposition
which can be derived from results contained in Cucker and Smale
(2001), Freedman (1999) and Pillonetto and Bell (2007).

Definition 7. Define the sequence {};}, with A;11 < A;, as
A=/t i=1,2,... (23)
where «; denotes the solution of

1/ cosh() 4 cos(x) =0 (24)

which is closest to (i — 1/2)7.
In addition, define functions {¢;} and {;} as follows

¢i(t; aj)) = Ci(oy) cos(a;it) + Gy (o) sin(ey;t)
+ C3(ap)e 417D 4 Cu(e)e™t tes (25)

pi(ti o) =i P a) TeX (26)

2 Existence of the inverse of matrix o ~2PTP + V can be established by the same
arguments as in the proof of Proposition 4 in Neve et al. (2007).
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where {C,} are scalars satisfying
Ci(a) = (/ [C1(1) cos(at) + C2(1) sin(at)
s

—1/2
+ C3(1)e0-9 4 e*‘“]2 dt)

2
C3(C4) = C4(O[) |:‘l_i_e2a — 1} /Sin(O[)

Co(Cy) = Caa) — G3(Cy)e™
Ci1(Cy) = —C4lo) — C3(Cyle™™.

Below, L%(S) denotes the classical Lebesgue space on S equipped
with the inner product (-, -),.

Proposition 8 (Cucker &Smale, 2001). Let W be defined by (5). Then,
it holds that

)1 ifj=k
(), u)2 = {O otherwise

)"j¢j(s) = fW(S, t)¢j(t)dt
S

W(s,t) = Z Aidi()g;(t)
=1

J

where the above sum converges uniformly with respect to (s, t) €
S x S. In addition, letting F¢\, be the RKHS associated with the cubic
spline kernel W
[ee) 00 a?
Hy = {geLz(S)‘g: Zajq’)j, 2+ < oo}. (27)
=1 P
Hereafter, L?(X) is used to indicate the space of square integrable
functions on X where the (probability) measure v admits the
density e # (8 > 0and t > 0) with respect to Lebesgue
measure. The inner product on Lﬁ (X) is denoted as (., .),.

Proposition 9. The integral operator on L?(X) associated with the
kernel K in (10) and defined by

/K(x, Of(r)dv(r) xeX
X

is a bounded, compact and positive trace-class (nuclear) integral
operator mapping Lﬁ (X) into C(X). We also have

(05, prdy = {(1) i;tti;;Mz;se (28)

6 = [ K6, 05000 (29)
X

K(s,t) =Y 2pi(s)p;(t) (30)

j=1

where {p;} are defined by (26) and the sum above converges uniformly
with respect to (s, t) € X; x Xp, X1 and X, being any compact subset
of X.

The next result highlights the nature of the proposed prior on
the impulse response of the system.

Proposition 10. Let LP(X) denote the classical Lebesgue space of p-

power integrable functions on X. Let f(t), witht € X, be a zero-
mean Gaussian process with stable spline autocovariance K. Then,

realizations fromf(t) belong to L (X), with p > 1, almost surely,

i.e. realizations from f (t) are almost surely the impulse response of a
BIBO linear system.

Recalling (8), it is immediate to see that stability with probability
one of realizations off(t) implies that of realizations of f (t).

As already mentioned, the optimal estimate given the data be-
longs to #y @ B. The next proposition characterizes such hypoth-
esis space showing that within the RKHS #¢x any continuous-time
impulse response can be approximated arbitrarily well in the uni-
form topology.

Proposition 11. It holds that

a

00 2
Hyx = {geLﬁ(X)‘g:Zajpj,Z)j<oo}. (31)
=1 j

j=1

<

Further, J#y is dense in the space of continuous functions defined on
any compact subset of X, i.e. given any continuous function g on the
compact X; C X and any scalar € > 0, there exists g. € Hy such
that

sup 1g(t) — ge(7)| < e.

T€Xy

The eigenfunctions associated with some of the largest eigenvalues
of #yw and Hy (with B set to 1) are displayed in Fig. 2. They
give an interesting insight into the nature of the hypothesis space
chosen for system identification. In fact the unknown impulse
response is seen as the linear combination of eigenfunctions
through independent weights with decreasing variance.

6. Examples

6.1. Discrete-time test functions

The proposed nonparametric identification scheme is first
applied to the identification of discrete-time dynamic systems
from noisy output data. In particular, as a benchmark we consider
5 simulated impulse responses displayed in the left (and right)
panels of Fig. 3 (solid line). They are listed below, where all, but
the third one, are given in the z-transform domain

0.0355z% 4 0.02465z

z3 —1.273z2 4 0.333
0.36z

5(z2 + 0.24 + 0.36)

f3(k) = e*%/\/z?, k=1,2,...

0.01z* + 0.0074z3 + 0.000924z2 — 0.000017642z

75 — 2.14z% + 1.5549z3 — 0.438722 + 0.042025z
23 4+ 0.522

74— 2273424272 — 1872+ 0.7225°

The first two represent second-order systems taken from Goodwin
et al. (1992), while the third one is proportional to a normal
density with support only on the positive axis. The last two
impulse responses are a fifth- and a fourth-order model, taken from
Example 5.1 in Wahlberg and Ljung (1986) and Section 8.6 of Ljung
(1999a), respectively. The system input is white noise of unit
intensity. System identification has to be performed starting from
100 output noisy samples. In particular, system initial conditions
are null at instant 0 and the forcing input is applied starting from
instant 1. Measurement noise is white and normal with standard
deviation set to 5% of the maximum absolute value of the generated
noiseless output samples. Measurements are collected at instants
k=1,2,...,100.

We consider 5 Monte Carlo (MC) studies, one for any test func-
tion, consisting of 300 runs with independent noise realizations.
The prior model of the system impulse response is the sampled

Fi(2) =

FR(2) =

Fy(z) =

F5(z) =
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Table 1

87

Discrete-time test functions (Section 6.1). Results from Monte Carlo simulation using white noise as system input: Err using ETFE with oracle (first column), classical cubic
spline kernel W (second column), the Gaussian kernel (third column), the new stable spline kernel K (fourth column), PEM with Akaike (fifth column) and with oracle (sixth

column).
MC study ETFE + oracle w G K PEM + AIC PEM +- oracle
#1 3.4e-2 17e—-2 4e—2 0.82e—2 1.9e—2 0.47e—2
#2 2.7e—1 24e—1 43e—1 1.3e—1 1.8e—1 0.33e—1
#3 17e—2 3le—2 24e—2 4.5e—2 13e—2 3.5e—2
#4 2e—2 12.1e-2 6.1e—2 0.67e—2 2.2e—2 0.53e—2
#5 1.6 9.1 19 0.73 091 0.3
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Fig. 3. Discrete-time test functions (Section 6.1). Results from Monte Carlo
-1 -1 simulation using white noise as system input: true impulse response (solid line)
and 99% variability bands of the estimates (dashed lines) obtained modeling the
-2 02 04 06 08 -2, 2 4 Py unknown function using the classical cubic spline kernel W (left) and the stable
Time Time spline kernel K (right).

Fig. 2. Eigenfunctions {¢;} of the standard cubic spline kernel W (left) and
eigenfunctions {p;} of the novel stable spline kernel K (right) forj = 1, 2, 3, 5, 10.

version of either the cubic spline prior with unknown initial condi-
tions or the new stable spline prior. The number of reconstructed
impulse response coefficients is equal to 100. Noise standard de-
viation ¢ and parameters A, 8 are unknown and estimated from
data.

In the left panels of Fig. 3, results obtained by using the cubic
spline kernel W are depicted (left column). The true function (solid
line) and the 99% variability bands (dashed lines) of the 300 esti-
mates are visible. It is apparent that variability bands are rather
wide. Reconstructed curves suffer from oscillations in the final
part of the experiment because the prior model does not include
asymptotic information on system stability.

In the right panels of Fig. 3 we display results obtained by ex-
ploiting the stable spline kernel K (right column). In addition to
the improved quality of the estimates, variability bands are much

narrower and always close to the true function. Comparing these
results with those reported in Section 7 of Goodwin et al. (1992),
one can notice that the second-order impulse responses are much
better estimated. Furthermore, we have used far fewer output
measurements (100 in place of 1000). In particular, the proposed
regularization method removes the oscillations, due to ill-
conditioning, which instead affect the estimates reported in Figs. 5,
6 and 7 of Goodwin et al. (1992).

Given an estimate of f obtained at the jth run, namely f]
the reconstruction error and the average reconstruction error are
denoted by err; and Err, respectively, and defined by

300
o Z err;
e =Y () —fR)2,  Emr= 123100 (32)
k=1

In addition to the cubic and stable spline methods, Table 1 presents
Err values obtained in the same MC studies described above by two
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Table 2

Discrete-time test functions (Section 6.1). Results from Monte Carlo simulation using square wave as system input: Err using ETFE with oracle (first column), classical cubic
spline kernel W (second column), the Gaussian kernel (third column), the new stable spline kernel K (fourth column), PEM with Akaike (fifth column) and with oracle (sixth

column).
MC study ETFE + oracle w G K PEM + AIC PEM +- oracle
#1 11e—2 5.4e—2 5.5e—2 2.4e—-2 24e—-2 0.86e—2
#2 6.2e—1 5.5e—1 6.1e—1 3.6e—1 8.1e—1 0.8e—1
#3 53e—2 8.4e—2 8.7e—2 4.5e—2 25.5e—2 5.4e—2
#4 1.8e—1 1.3e—1 0.46e—1 0.12e—1 1.7e—1 0.1e—1
#5 4.4 2.1 2.1 15 9.4 13

other nonparametric approaches and two parametric ones. In par-
ticular, employed estimators are

(1) empirical transfer function estimation (ETFE) as implemented
in the etfe.m function of the MATLAB System Identification
Toolbox (Ljung, 2008). The smoothing parameter is chosen by
an “oracle”, i.e. setting the value to that minimizing Err at any
Monte Carlo study (this is an ideal tuning yielding a lower
bound on the realistically achievable performance)
regularized impulse response estimation using the standard
cubic spline kernel W with hyperparameters tuned via max-
imum likelihood (already discussed)

(3) the same with a Gaussian kernel G defined by (see e.g. Ras-

mussen & Williams, 2006)

(i—k)?
w

—
N
—

GG, k) =212 =2, jk=1,2,...

with A and the kernel width zo estimated via maximum likeli-

hood
(4) the same with the new stable spline kernel K (already dis-
cussed)
the classical prediction error method (PEM) as implemented in
the oe.m function of the MATLAB System Identification Tool-
box (Ljung, 2008). At any run, model orders m; and m, of the
two polynomials defining the output error structure are cho-
sen by the Akaike criterion (AIC), i.e.

—~
(8]
s

Gy, i) = arg  m

in  2(m; +my) + nIn[RSS(my, my)]
1EM,myeM

(33)

wheren = 100, M = {1, 2, ..., 15} and RSS is the residual
sum of squares. The latter is computed using the predicted out-
put of the estimated model obtained by the predict.m MATLAB
function.

(6) the same with model order chosen by the oracle which mini-
mizes Err obtainable by PEM.

It is seen that the stable spline kernel outperforms all approaches
but PEM + oracle with respect to which it performs almost as
well. Table 2 is similar to Table 1 except that system input for
identification is a square wave which alternates between levels 1
and 0 with period 20. It is apparent that the new nonparametric
approach still outperforms the other nonparametric approaches
and PEM + AIC while is only marginally worse than PEM+oracle.

In Table 3, we give the root mean square error obtained by ap-
plying the stable spline kernel K on reduced sampling grids (20, 40,
60 and 80 samples randomly chosen from the original 100 ones)
with data generated using white noise as system input. Again, 300
MC runs for any subsampled schedule were performed. It is ap-
parent that, even under these reduced sampling schedules, the im-
pulse responses are accurately reconstructed. It is worth remarking
that standard nonparametric spectral approaches like ETFE can-
not handle nonuniform sampling schedules, which are routinely
adopted in some fields, e.g. biomedical modeling.

Table 3

Discrete-time test functions (Section 6.1). Results from Monte Carlo simulation
using white noise as system input: Err using the new stable spline kernel K with
reduced and full sampling grids (number of samples are within brackets).

MC study K (20) K (40) K (60) K (80) K (100)
#1 2.8e—2 1.3e—2 1.le—2 9.5e—3 8.2e—3
#2 38e—1 22e—1 1.7e—1 1.5e—1 1.3e—1
#3 1.07e—2 6.7e—2 5.6e—2 5e—2 45e—2
#4 1.5e—2 le—2 8.3e—3 7.3e—3 6.7e—3
#5 1.9 1.08 8.3e—1 7.5e—1 7.3e—1

6.2. Randomly generated discrete-time test functions

In this subsection, we consider a more probing simulated study
where, at any of the 300 runs, a discrete-time system of order
30 is randomly generated. In particular, the coefficients of the
numerator of the transfer function are realizations of white noise
with variance 4. The denominator is instead generated by using the
MATLAB function drmodel.m with system poles constrained to lie
inside the circle of radius 0.9.

System is at rest at instant 0 and the forcing input is white
noise of unit variance. Measurement noise is white and Gaus-
sian with standard deviation set to 10% of the maximum absolute
value of the generated noiseless output samples. The identification
data set consists of 150 output measurements collected at instants
1,2,...,150. A

In this case, given an estimate f; obtained at the jth run, it is
useful to define the relative error

ﬁ (k) — F(k))?
k=1

errj = (34)

A
k=1

and Err as in (32). Employed estimators are

(1) regularized estimation of the first 100 impulse response coef-
ficients using the new stable spline kernel K. Hyperparameters
are tuned via maximum likelihood.

(2) PEM with model order of the two polynomials defining the
output error structure chosen by AICwithM = 1,2,...,35
and my = m, in (33)

(3) the same with model order chosen by BIC

(4) the same with model order chosen by the oracle which mini-
mizes Err obtainable by PEM.

At any Monte Carlo run j, we also computed the 95% confidence
interval around the nonparametric estimate (see Section 4.3) and
let x; indicate the fraction of samples of {f (k)};i] that belong to
such interval.

Table 4 displays Err values. Remarkably, the proposed nonpara-
metric estimator outperforms PEM equipped with AIC and BIC.
Moreover, its performance is very close to that of PEM equipped
with the oracle. In addition, the average value for y; is 0.937, indi-
cating that confidence intervals obtained from the nonparametric
estimator are highly informative under these experimental condi-
tions.
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Table 4

Randomly generated discrete-time test functions (Section 6.2). Results from Monte
Carlo simulation: Err using the new stable spline kernel K (first column), PEM with
AIC (third column), PEM with BIC (third column) and with oracle (fourth column).

K PEM + AIC PEM + BIC PEM + oracle
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Fig. 4. Model selection example (Section 6.3). Boxplots of errors err; (see Eq. (32))
relative to the 10 estimators used to reconstruct the impulse response of Eq. (35).

6.3. Other model selection examples

We now consider a discrete-time second-order system with
frequency response F(z) given by

_ 2(z—-03)?
T 5(z2 — 1.4z 4+ 0.65)

As in Lecchini and Gevers (2004), the real part of the two complex
poles of the system is 0.7 and the problem consists of reconstruct-
ing f using a step function as input applied to the system at rest.
In particular, estimation has to be performed from 40 noisy mea-
surements corrupted by a noise with standard deviation o = 0.04
which is assumed unknown. For the sake of comparison, we will
also consider identification of f by means of finite Laguerre expan-

sions, i.e.
J1=p (1=pz\*!
z

—-p zZ—p

F(z) (35)

Fz.m) =) ml(), L) =
k=1

where value for p is either 0 (corresponding to FIR models) or is
optimally chosen and set to 0.7.

We perform 10 MC studies, each consisting of 300 runs with
independent realizations of the noise. The studies use

(1) least squares estimation of the Laguerre coefficients withp =
0 and model order m chosen by AIC with maximum allowed
value equal to 15

(2) the same with model order chosen by BIC

(3) the same with model order chosen by an oracle which
minimizes the reconstruction error Err defined in (32)

(4) the same except that p = 0.7 and model order is chosen by

AIC

(5) the same except that p = 0.7 and model order is chosen by
BIC

(6) the same except that p = 0.7 and model order is chosen by
an oracle

(7) regularized impulse response estimation using the stable
spline kernel K

25 :
ot
_ 157
5 -
-
1F —_
05} | | e
. . 4 | —
PEM+AIC PEM+BIC PEM-+oracle  Stable spline

Fig. 5. Model selection example (Section 6.3). Boxplots of errors err; (see Eq. (32))
relative to the 4 estimators used to reconstruct the Runge function reported in
Eq. (36).

(8) PEM with model order chosen by AIC, as described in (33) but
withM = {1, ..., 6}
(9) the same with model order chosen by BIC
(10) the same with model order chosen by an oracle.

In Fig. 4, boxplots of the errors achieved by the 10 estimators are
shown. Remarkably, the proposed nonparametric approach out-
performs AIC- and BIC-based estimators also when basis func-
tions include knowledge on pole position and when PEM is used.
Furthermore, results are better than those obtained by combin-
ing an oracle and FIR models and are close to those achieved by
PEM+oracle and by combining the oracle with Laguerre polynomi-
als having p set to the optimal value 0.7.

Estimation of Laguerre coefficients by least squares is not robust
in this case because is subject to ill-conditioning. This problem is
exacerbated when FIR models are used since they do not include
any information regarding regularity of the impulse response.
Conversely, when Laguerre polynomials are optimally chosen,
smoothness information on f is included in the model. However,
AIC- and BIC-based model selection is not satisfactory. At first
sight, it may seem that the new stable spline estimator differs
from parametric ones only in the choice of the basis functions (see
Fig. 2). As a matter of fact, the difference is more substantial. In
fact, the basis functions are not fixed but are adapted to the specific
data set through the tuning of the hyperparameters. Moreover, the
coefficients of the basis functions are not found by regression but
rather through regularization which dampens high frequency basis
functions. Seen in another way, model complexity is controlled by
the regularization parameter y while 8 encodes information on
stability.

To further illustrate flexibility of stable spline basis functions,
let us consider the reconstruction of an infinite-dimensional sys-
tem whose impulse response is a translated and scaled version of
the well known Runge function (Runge, 1901)

2\ —1
f(k)=<1+25<k;020)> . k=1,2,.... (36)

The system has to be reconstructed from 100 noisy measurements
using a step as input to the system which is initially at rest. Noise
standard deviation is 2% of the maximum absolute value of the gen-
erated noiseless output samples. We perform 4 MC studies, each
consisting of 300 runs, where the following estimators are used

(1) PEM with model order chosen by AIC, as described in (33) with
M={1,...,15}

(2) the same with model order chosen by BIC

(3) the same with model order chosen by an oracle

(4) regularized impulse response estimation using the stable
spline kernel K.
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Experiment A: comb input
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Fig. 6. Continuous-time second-order system (Section 6.4). Left: true impulse response (thick line), estimated impulse response obtained by fitting a first-order model to
data (dashed lines) and by the new nonparametric approach (continuous line). Right: noisy output samples and reconstructed output. System input is a comb (top panels)

or a step function (bottom panels).

Fig. 5 displays boxplots of errors err; as defined in (32). In this case,
the oracle performs worse than the nonparametric estimator. As
a matter of fact, Err values are 0.63 and 0.37 using the oracle and
the stable spline kernel, respectively, while those obtainable using
PEM + AIC and PEM + BIC are similar and around 0.8.

6.4. First-order low frequency approximation of a continuous-time
second-order system

Consider a continuous-time second-order system whose fre-
quency response F(s) is given by

55+ 15
F(s)=27.
s2 4+ 21s+ 20

The impulse response is displayed in the top (and bottom) left pan-
els of Fig. 6 (thick line) while the Bode plot of the magnitude is
displayed in the top (and bottom) panel of Fig. 7 (thick line). In
Fig. 6, we plot 200 noisy output samples generated by using as in-
put either a comb function with noise standard deviation equal to
0.08 (top right panel) or a step function with o = 0.02 (bottom
right panel). Suppose now that for control purposes it is desirable
to achieve a first-order approximation of the system for use at low
frequencies. In the left panels of Fig. 6 we plot the estimates of the
impulse response obtained by fitting a first-order model to data via
least squares (dashed lines) while the corresponding Bode plots are
visible in Fig. 7 (dashed lines). One can see that the result obtained
by using the comb function is very inaccurate at low frequencies.
This result could be improved by resorting to prefiltering methods
but this would require a careful choice of the bandwidth. In the
left panels of Fig. 6 and in Fig. 7 the estimates obtained by the new
nonparametric approach proposed in this paper are shown (thin
lines). One can notice that the estimate is less sensitive to the type
of system input due to the infinite-dimensional nature of the sta-
ble spline hypothesis space. In particular, it closely approximates
the true magnitude plot over a wide frequency range. The desired
lower-order model can be derived from the regularized estimate
via Proposition 4. For instance, Fig. 7 plots the magnitude plot of
a first-order model obtained by projecting the nonparametric es-
timate onto a first-order model using a weighting function which,
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Fig. 7. Continuous-time second-order system (Section 6.4). True magnitude (thick
line), estimated magnitude obtained by fitting a first-order model to data (dashed
lines), using the new nonparametric approach (continuous line), and projecting the
regularized estimate onto a first-order model (dash-dotted lines). System input is a
comb (top panel) or a step (bottom panel).

over the frequency domain, is constant on [0, 1] rad/s and 0 else-
where (dash-dotted line). Finally, in Fig. 8, we display the true mag-
nitude and phase and the nonparametric estimates together with
99% confidence intervals (dashed lines). Given this information, it
is possible to obtain the robustness margin Ay, to be used for con-
trol design; see e.g. Goodwin et al. (1992). In the simplest case, if a
symmetric deterministic error bound around the nominal model is
desired, it suffices to take the smallest Ay, such that both the lower
and upper confidence limits of the nonparametric estimate (with
prescribed confidence level, e.g. 1%) are encompassed.

7. Conclusions

Methods which are currently used for robust identification start
with a low-order nominal model identified by standard techniques



G. Pillonetto, G. De Nicolao / Automatica 46 (2010) 81-93 91

5+
10}
o
% 15} Experiment A:
3 comb input
S, 20
@
=
25
30 . . .
102 10" 10° 10’
Frequency (rad/sec)
0
20
>
L7}
T 40t
2
s Experiment A:
o 60 comb input
-80 B\
10 10 10° 10’ 10

Frequency (rad/sec)

Experiment B:
step input

Magnitude (dB)

10

20+
40t

Experiment B:
-60 step input

\

Frequency (rad/sec)

Phase (deg)

Fig. 8. Continuous-time second-order system (Section 6.4). Top: True magnitude Bode plot (thick line), nonparametric estimate (continuous line) and 99% confidence
intervals (dashed lines). Bottom: True phase Bode plot (thick line), nonparametric estimate (continuous line) and 99% confidence intervals (dashed lines). System input is a

comb (left panels) or a step (right panels).

such as least squares and prediction error methods. Then, on the
basis of the nominal model, bias and variance errors are quantified.
In this paper, we have embedded this problem in a fully Bayesian
framework. In particular, a new probabilistic prior has been formu-
lated directly on the unknown impulse response f, rather than on
the bias error. This prior, in some sense, is the least committing one
that incorporates information on both continuity of f and system
BIBO-stability. The actual degree of continuity, as measured by the
norm of the intensity of the white noise entering the prior, is reg-
ulated by a hyperparameter which is tuned from the data. The rate
of asymptotic exponential decay is also estimated from the data.
The mean square estimate is the solution of a Tikhonov regulariza-
tion problem formulated on a suitable RKHS which has been fully
characterized and shown to be dense in the space of continuous
functions. If a nominal low-order model is needed, first, a virtually
unbiased estimate of f is computed in such an RKHS and then the
desired nominal model is obtained by projecting the regularized
estimate onto a finite-dimensional space. Simulated benchmarks
taken from the literature demonstrate the effectiveness of the pro-
posed approach.

The results obtained in this paper, in particular those re-
ported in Tables 1-4, could appear surprising. In fact, even when
PEM + AIC is applied to candidate models which contain the
true one, searching the estimate within the stable spline infinite-
dimensional space leads to much better results. The reasons of
the superiority of the proposed nonparametric approach are three-
fold. First of all, Akaike-like criteria rely on approximations of
the likelihood that are only asymptotically exact. On the con-
trary, in our approach, the likelihood of the hyperparameters is
exact, irrespective of the sample size. Second, it is well known
that a drawback of Akaike-like criteria is that they neglect un-
certainty of the estimated parameters (Kass & Raftery, 1995).
Instead, the approach of this paper fully accounts for impulse re-
sponse uncertainty because the hyperparameter likelihood is ob-
tained after marginalizing with respect to the random impulse
response. Finally, the issue of local maxima of the likelihood is
far less critical in our nonparametric setting. In fact, the presence
of only 3 unknown variables in (18) makes it possible even to
use grid methods for hyperparameter tuning (Luenberger, 1989).

Conversely, Akaike-like methods are faced with optimization in
larger dimensional spaces (the joint likelihood is a function of
all model parameters) and therefore more exposed to local max-
ima. For what concerns the computational complexity of the new
method, it depends on the cost of evaluating the marginal log like-
lihood (18), which in general is an O(n®) problem. When deal-
ing with large data sets, a simple yet effective strategy to reduce
computational complexity is to determine the hyperparameters
using only a subset of the measurements, subsequently exploit-

ing the entire data set to achievef in (21); see e.g. Rasmussen
& Williams, 2006. A more sophisticated option is to combine
the spectral analysis in Section 5 and the efficient computational
schemes developed in Bell and Pillonetto (2004) and Pillonetto
and Bell (2007). These results exploit the fact that accurate ap-
proximations of regularized estimates in RKHS typically belong to
subspaces spanned by few kernel eigenfunctions, i.e. with dimen-
sion i much smaller than n; see also Zhu, Williams, Rohwer, and
Morciniec (1998) and Ferrari-Trecate, Williams, and Opper (1999).

In practice, this permits both computation of f and evaluation of
the objective (18) with only O(i1®) operations; see Bell and Pil-
lonetto (2004) and Pillonetto and Bell (2007) for details.

As for the asymptotic properties of the stable spline estimator,
it can be shown that for n tending to infinity and under suitable
technical conditions, a consistency property holds for a wide class
of impulse responses, dense in the space of continuous functions.
This result can be derived by extending the error analysis reported
in Smale and Zhou (2007). A detailed derivation will be the object
of future work.

Finally, it is worth stressing that the proposed method can be
used also for identification of MIMO systems. In particular, this can
be obtained by replacing the projection module depicted in Fig. 1
with a subspace algorithm fed with a stable spline estimator of the
one-step-ahead predictor. Preliminary results on this can be found
in Pillonetto, Chiuso, and De Nicolao (2008) and Chiuso, Pillonetto,
and De Nicolao (2008).
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Appendix

Proof of Proposition 3. The problem can be written as finding

arg min / ( f (i = n))? pt(ft|y)dft> w(t)dt
b \Jr
which is equivalent to solving for any value of t

argmin [~ 0.0 i
t Jr

i.e.,, minimization is independent of w since the objective can be
optimized pointwise. In particular, for any t the solution is the
conditional expectation and this completes the proof. O

Proof of Proposition 4. We have

E[(f, — I7 )yl =El( — I7 ) + TEw) — [E@)2y]

=E[(f, — IP0)* ] + B[P w) — I ()% y]
+2E[(f; — TR w) — 17 ())Iyl-

The first term in the RHS does not depend on I”. As for the last
term,

E[(f, — PNy — 7o)yl
_ f G — FPONTPO) - I o))l
R

= (FPy) - 17 ) f e A
R
=Py - 17 w) ( / fipe(fily)dfi — E[My]) =
R
Hence, one is reduced to solve
argﬂrlifn/E[(ﬁB(v) — 177 () lylw(t)dt
D

= arg min/(f“f(y) — 7 ()*w(dt. O
re D

Proof of Proposition 9. By definition, K(s,t) = W (e, e F!).
Hence, K is a positive definite kernel. Since W is continuous on the
compact domain S x S, there exists a scalar M such that

sup W(s,t) <M < 400 (37)
(s,t)eSxS

and thus we have

// IK (s, £)|2dv(s)dv(t)
X JX

://lW(e_ﬁS,e‘ﬂ[)Fﬁ e Pe~Pldsde
X JX

= //|W(s, t)2dsdt < M? < +o0.
SJS

Furthermore, for any x € X
/|K(x, 7)12dv(1) =/|W(e’ﬁx,e’ﬁf)|2ﬂe’ﬁfdr
X X

= /|W(e’ﬁ", H)dt < M? < 400 (38)
S

which shows that for any x € X, K(x,.) € Lﬁ(X). Further, by
defining k(x) = fx |K (x, T)|*dv(7), from (38) one also obtains that
k(x) is bounded on any X; C X. The first part of the thesis now
follows by exploiting Propositions 1, 2 and 3 in Sun (2005).

As for (28) and (29), they can be easily obtained using the fact
that integration on X involving kernel K may be converted into in-
tegration on S involving kernel W and exploiting (26) and Propo-
sition 8. Finally, (30) derives from Mercer theorem on noncompact
domains; see Theorem 2 in Sun (2005). O

Proof of Proposition 10. We must show that
/ If(O)Pdt < +o0 a.s. (39)
X

Sincef(t) = fuw(e=P"), where fiy is integrated Wiener process, it
holds that

/ F@©)Pde = f fw (e PH)|Pdt = —
X X S

Since fiy (t) is almost surely continuous, it suffices to study how
|fw (7)|P /T behaves near zero to assess if (39) holds. In view of
Proposition 8, we obtain the following Karhunen-Loeve expansion
of fy on S

fw@P
T

+00 z
fw@®) =" S¢it)

i=1 i

where {z;} are zero-mean and independent Gaussian variables of
unit variance. Now, define fort € S

it) — 1 i it
ha(t; o) = [COS(“)} L (e = [Sm(“’ )]
a;it ot
et — 1 e %t —1
hs(t; ;) =™ [ :| , ha(t; o) = [} .
a;t ot
By exploiting (25) and the fact that ¢;(0) = 0, Vi, it holds that
0=Ci(o) +e CG(e) + Calay) i=1,2,...
i(t)
(IZ‘ = Cilaphi(t; ;) + G(a)ha(t; o)
1

+ G(ap)hs(t; ) + Caapha(t; o) t€S.

Recalling also that |sin(o;)| V1 —4e=7, Vi, see Pillonetto
and Bell (2007), one easily obtains that there exists M < +oo
independent of indices i, k and of t € S such that

IGla)] <M k=1,2,3,4, i=1,2,...
Ihe(t,o)] <M teS, k=1,2,3,4 i=1,2,...
Thus, we obtain
fw(f) ¢:(f) Zz 2 XKz
vz aMy, O = —.

-y 05

i=1

In view of the definition of «; given in (23) and (24), for i tending
to +00, o; tends to +o00 not slower than i. Thus, 9 is a zero-mean
Gaussian with a finite variance. It emerges that realizations from
Ifw (t)|/t are almost surely continuous on S, and hence also those
drawn from |fw (7)|P/z. O

Proof of Proposition 11. As far as (31) is concerned, it can be
immediately obtained by exploiting Proposition 9 and results
on separability of RKHSs defined on noncompact sets; see
e.g. Corollary 1 in Sun (2005). As for density of # in the space of
continuous functions, we start noticing that #y is associated with
the Green’s function of a self-adjoint differential operator. Hence,
functions in J¢y (plus a term able to accommodate a failure of
the boundary condition at zero) can approximate arbitrarily well
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any continuous function on a compact S; C S in the sup-norm
topology; see Adams and Fournier (2003) and also Proposition C.1
in Poggio and Girosi (1990a). The result is then obtained by noticing
from (27) and (31) that J and F¢ are isometrically isomorphic,
the isometry being established by a transformation ¥ : Hy, — Hg
which maps h(t), t € Sintog(t) = h(e™#"),r e X. O
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