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Recovery of Sparse Signals Using Multiple
Orthogonal Least Squares

Jian Wang, Student Member, IEEE, and Ping Li

Abstract—Sparse recovery aims to reconstruct sparse signals
from compressed linear measurements. In this paper, we pro-
pose a sparse recovery algorithm called multiple orthogonal least
squares (MOLS), which extends the well-known orthogonal least
squares (OLS) algorithm by allowing multiple L indices to be se-
lected per iteration. Owing to its ability to catch multiple sup-
port indices in each selection, MOLS often converges in fewer
iterations and hence improves the computational efficiency over
the conventional OLS algorithm. Theoretical analysis shows that
MOLS (L > 1) performs exact recovery of K-sparse signals
(K > 1) in at most K iterations, provided that the sensing ma-
trix obeys the restricted isometry property with isometry constant
δLK <

√
L/(

√
K + 2

√
L). When L = 1, MOLS reduces to

the conventional OLS algorithm and our analysis shows that exact
recovery is guaranteed under δK+1 < 1/(

√
K + 2). This con-

dition is nearly optimal with respect to δK+1 in the sense that,
even with a small relaxation (e.g., δK+1 = 1/

√
K), exact recov-

ery with OLS may not be guaranteed. The recovery performance
of MOLS in the noisy scenario is also studied. It is shown that
stable recovery of sparse signals can be achieved with the MOLS
algorithm when the signal-to-noise ratio scales linearly with the
sparsity level of input signals.

Index Terms—Compressed sensing (CS), sparse recovery, or-
thogonal matching pursuit (OMP), orthogonal least squares (OLS),
multiple orthogonal least squares (MOLS), restricted isometry
property (RIP), signal-to-noise ratio (SNR).

I. INTRODUCTION

IN RECENT years, sparse recovery has attracted much at-
tention in applied mathematics, electrical engineering, and

statistics [1]–[5]. The main task of sparse recovery is to recover
a high dimensional K-sparse vector x ∈ Rn (‖x‖0 ≤ K � n)
from a small number of linear measurements

y = Φx, (1)
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where Φ ∈ Rm×n (m < n) is often called the sensing matrix.
Although the system is underdetermined, owing to the signal
sparsity, x can be accurately recovered from the measurements
y by solving an �0-minimization problem:

min
x

‖x‖0 subject to y = Φx. (2)

This method, however, is known to be intractable due to the com-
binatorial search involved and therefore impractical for realistic
applications. Thus, much attention has been focused on develop-
ing efficient algorithms for recovering the sparse signal. In gen-
eral, the algorithms can be classified into two major categories:
those using convex optimization techniques [1]–[6] and those
based on greedy searching principles [7]–[15]. Other algorithms
relying on nonconvex methods have also been proposed [16]–
[20]. The optimization-based approaches replace the nonconvex
�0-norm with its convex surrogate �1-norm, translating the com-
binatorial hard search into a computationally tractable problem:

min
x

‖x‖1 subject to y = Φx. (3)

This algorithm is known as basis pursuit (BP) [1]. It has been re-
vealed that under appropriate constraints on the sensing matrix,
BP yields exact recovery of the sparse signal. Here and through-
out the paper, exact recovery means accurate reconstruction of
all coefficients of the underlying signal.1

The second category of approaches for sparse recovery is
greedy method, in which signal support is iteratively identified
according to various greedy principles. Due to its computa-
tional simplicity and competitive performance, greedy method
has gained considerable popularity in practical applications.
Representative algorithms include matching pursuit (MP) [8],
orthogonal matching pursuit (OMP) [7], [21]–[28] and orthogo-
nal least squares (OLS) [9], [29]–[32]. In a nutshell, both OMP
and OLS identify the support of the underlying sparse signal by
adding one index to the list at a time, and estimate the sparse
coefficients over the enlarged support. The main difference be-
tween OMP and OLS lies in the greedy rule of updating the
support at each iteration. While OMP chooses a column that is
most strongly correlated with the signal residual, OLS seeks a
candidate that gives the most significant decrease in the resid-
ual power. It has been shown that OLS has better convergence
property but is computationally more expensive than the OMP
algorithm [31].

In this paper, with the aim of improving the recovery ac-
curacy and also reducing the computational cost of OLS, we
propose a new method called multiple orthogonal least squares
(MOLS). Our method can be viewed as an extension of the OLS

1Note that our definition of exact recovery differs from that in some other
literature (e.g., [21]) which refers to exact reconstruction of the support of x.
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TABLE I
THE MOLS ALGORITHM

algorithm in that multiple indices are allowed to be chosen at
a time. It is inspired by that some sub-optimal candidates in
each identification of OLS are likely to be reliable and could
be utilized to better reduce the power of signal residual at each
iteration, thereby accelerating the convergence of the algorithm.
The main steps of the MOLS algorithm are specified in Table I.
Owing to selection of multiple “good” candidates in each time,
MOLS often converges in fewer iterations and improves the
computational efficiency over the conventional OLS algorithm.

Greedy methods with a similar flavor to MOLS in
adding multiple indices per iteration include stagewise OMP
(StOMP) [10], regularized OMP (ROMP) [11], and general-
ized OMP (gOMP) [12], [33] (also known as orthogonal super
greedy algorithm (OSGA) [34]), etc. These algorithms identify
candidates at each iteration according to correlations between
columns of the sensing matrix and the residual vector. Specif-
ically, StOMP picks indices whose magnitudes of correlation
exceed a deliberately designed threshold. ROMP first chooses
a set of K indices with strongest correlations and then narrows
down the candidates to a subset based on a predefined regulariza-
tion rule. The gOMP algorithm finds a fixed number of indices
with strongest correlations in each selection. Other well-known
greedy methods adopting a different strategy of adding as well
as pruning indices from the list include compressive sampling
matching pursuit (CoSaMP) [13] and subspace pursuit (SP) [14]
and hard thresholding pursuit (HTP) [15], etc.

The contributions of this paper are summarized as follows.
i) We propose a new algorithm, referred to as MOLS, for

solving sparse recovery problems. We analyze the MOLS
algorithm using the restricted isometry property (RIP)
introduced in the compressed sensing (CS) theory [6]
(see Definition 1 below). Our analysis shows that MOLS
(L > 1) exactly recovers any K-sparse signal (K > 1)
within K iterations if the sensing matrix Φ obeys the RIP
with isometry constant

δLK <

√
L√

K + 2
√

L
. (4)

When L = 1, MOLS reduces to the conventional OLS
algorithm. We establish the condition for OLS as

δK +1 <
1√

K + 2
. (5)

This condition is nearly sharp in the sense that, even with
a slight relaxation (e.g., relaxing to δK +1 = 1√

K
), exact

recovery of K-sparse signals may not be ensured.
ii) We also analyze the recovery performance of MOLS in the

presence of noise. Our result demonstrates that MOLS can
achieve stable recovery of sparse signals when the signal-
to-noise ratio (SNR) scales linearly with the sparsity level
of input signals. In particular, for the case of OLS (i.e.,
when L = 1), we show that the linear scaling law of the
SNR is necessary for exactly recovering the support of the
underlying signals of interest. We stress that our analysis
for MOLS is strongly motivated from [12], [27], [35],
where similar results for the OMP and gOMP algorithms
were established. The connections will be discussed in
detail in Sections III and IV-A.

The rest of this paper is organized as follows: In Section II,
we introduce notations, definitions, and lemmas that are used
in this paper. In Section III, we give a useful observation
regarding the identification step of MOLS and analyze the
theoretical performance of MOLS in recovering sparse signals.
In Section IV, we present proofs for our theoretical results. In
Section V, we study the empirical performance of the MOLS
algorithm and concluding remarks are given in Section VI.

II. PRELIMINARIES

A. Notations

We briefly summarize notations in this paper. Let Ω =
{1, · · · , n} and let T = supp(x) = {i|i ∈ Ω, xi �= 0} denote
the support of vector x. For S ⊆ Ω, |S| is the cardinality of
S. T \ S is the set of all elements contained in T but not in
S. xS ∈ R|S| is the restriction of the vector x to the elements
with indices in S. Throughout the paper we assume that Φ
is normalized to have unit column norm (i.e., ‖φi‖2 = 1 for
i = 1, · · · , n).2 ΦS ∈ Rm×|S| is a submatrix of Φ that only
contains columns indexed by S. If ΦS has full column rank,
then Φ†

S = (Φ′
SΦS)−1Φ′

S is the pseudoinverse of ΦS where
Φ′

S denotes the transpose of ΦS . span(ΦS) is the span of
columns in ΦS . PS = ΦSΦ

†
S is the projection onto span(ΦS).

P⊥
S = I − PS is the projection onto the orthogonal complement

of span(ΦS) where I is the identity matrix.

B. Definitions and Lemmas

Definition 1 (RIP [6]): A matrix Φ is said to satisfy the RIP
of order K if there exists a constant δ ∈ (0, 1) such that

(1 − δ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ)‖x‖2
2 (6)

for all K-sparse vectors x. In particular, the minimum of all
constants δ satisfying (6) is called the isometry constant δK .

The following lemmas are useful for our analysis.
Lemma 1 (Monotonicity [6]): If a matrix satisfies the RIP of

both orders K1 and K2 where K1 ≤ K2 , then δK 1 ≤ δK 2 .
Lemma 2 (Consequences of RIP [13]): Let S ⊆ Ω. If δ|S| <

1, then for any vector u ∈ R|S|,

(1 − δ|S|) ‖u‖2 ≤ ‖Φ′
SΦSu‖2 ≤ (1 + δ|S|) ‖u‖2 ,

(1 − δ|S|)‖(Φ′
SΦS)−1u‖2 ≤ ‖u‖2 ≤ (1 + δ|S|)‖(Φ′

SΦS)−1u‖2 .

2[36] showed that the behavior of OLS is unchanged whether columns of Φ
are normalized or not. As MOLS is a direct extension of OLS, one can verify
that the normalization does not matter either for the behavior of MOLS.
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Lemma 3 (Lemma 5 in [37]): Let S1 ,S2 ⊆ Ω and S1 ∩
S2 = ∅. Then the eigenvalues of Φ′

S1
P⊥

S2
ΦS1 satisfy

λmin(Φ′
S1

P⊥
S2

ΦS1 ) ≥ λmin(Φ′
S1 ∪S2

ΦS1 ∪S2 ),

λmax(Φ′
S1

P⊥
S2

ΦS1 ) ≤ λmax(Φ′
S1 ∪S2

ΦS1 ∪S2 ).

Lemma 4 (Proposition 3.1 in [13]): Let S ⊂ Ω. If δ|S| < 1,
then for any vector u ∈ Rm , ‖Φ′

Su‖2 ≤
√

1 + δ|S|‖u‖2 .
Lemma 5 (Lemma 2.1 in [5]): Let S1 ,S2 ⊆ Ω and S1 ∩

S2 = ∅. If δ|S1 |+ |S2 | < 1, then ‖Φ′
S1

Φv‖2 ≤ δ|S1 |+ |S2 | ‖v‖2
holds for any vector v ∈ Rn supported on S2 .

Lemma 6: Let S ⊆ Ω. If δ|S| < 1, then for any u ∈ R|S|,
√

1 − δ|S|‖(Φ†
S)′u‖2 ≤ ‖u‖2 ≤

√
1 + δ|S|‖(Φ†

S)′u‖2 . (7)

The upper bound in (7) has appeared in [13, Proposition 3.1]
and we give a proof for the lower bound in Appendix A.

III. SPARSE RECOVERY WITH MOLS

A. Observation

We begin with an important observation on the identification
step of MOLS. As shown in Table I, at the (k + 1)-th iteration
(k ≥ 0), MOLS adds to T k a set of L indices,

Sk+1 = arg min
S:|S|=L

∑

i∈S
‖P⊥

T k ∪{i}y‖2
2 . (8)

Intuitively, a straightforward implementation requires to sort all
elements in {‖P⊥

T k ∪{i}y‖2
2}i∈Ω\T k and then find the smallest

L ones (and their corresponding indices). This implementation,
however, is computationally expensive as it requires to construct
n − Lk different orthogonal projections (i.e., P⊥

T k ∪{i}, ∀i ∈ Ω \
T k ). It is thus desirable to find a cost-effective alternative to (8)
for the identification step of MOLS.

Interestingly, the following proposition illustrates that (8) can
be substantially simplified. It is inspired by the technical report
of Blumensath and Davies [36], which gave a geometric inter-
pretation of OLS in terms of orthogonal projections.

Proposition 1: At the (k + 1)-th iteration, the MOLS algo-
rithm identifies a set of L indices:

Sk+1 = arg max
S:|S|=L

∑

i∈S

|〈φi, rk 〉|
‖P⊥

T k φi‖2
(9)

= arg max
S:|S|=L

∑

i∈S

∣∣∣∣

〈
P⊥

T k φi

‖P⊥
T k φi‖2

, rk

〉∣∣∣∣. (10)

One can interpret from (9) that to identify Sk+1 , it suffices to

find the largest L values in { |〈φi ,rk 〉|
‖P⊥

T k φi ‖2
}i∈Ω\T k , which is much

simpler than (8), as it involves only one projection operator
(i.e., P⊥

T k ). Indeed, by numerical experiments, we have con-
firmed that the simplification offers massive reduction in the
computational cost. The proof of this proposition is essentially
identical to some analysis in [29], which is related to OLS, but
with extension to the case of selecting multiple indices per iter-
ation. This extension is crucial in that not only does it enable a
low-complexity implementation for MOLS, it also plays a key
role in the analysis of MOLS in Section IV. We thus include the
proof (in Appendix B) for completeness.

Following the arguments in [31], [36], we give a geometric
interpretation of the selection rule in MOLS: the columns of
sensing matrix are projected onto the subspace that is orthogonal
to the span of active columns, and the L normalized projected
columns that are best correlated with the residual vector are
selected. Thus, the greedy selection rule in MOLS can also be
viewed as an extension of the gOMP rule.

B. Main Results

In this subsection, we study the recovery performance of
MOLS under the RIP framework. We first provide the condition
of MOLS for exact recovery of sparse signals.

Theorem 1: Let x ∈ Rn be any K-sparse signal and let Φ ∈
Rm×n be the sensing matrix with unit �2-norm columns. Also,
let L ≤ min{K, m

K } be the number of indices selected at each
iteration of MOLS. Then if Φ satisfies the RIP with

{
δLK <

√
L√

K +2
√

L
, L > 1,

δK +1 < 1√
K +2

, L = 1,
(11)

MOLS exactly recovers x from y = Φx in at most K steps.
Note that MOLS reduces to the conventional OLS algorithm

when L = 1. Theorem 1 suggests that OLS recovers any K-
sparse signal in exact K iterations under δK +1 < 1√

K +2
. Similar

results have also been established for the OMP algorithm. For
example, it has been shown in [24], [25] that δK +1 < 1√

K +1
is sufficient for OMP to exactly recover K-sparse signals. The
condition is recently improved to δK +1 <

√
4K +1−1

2K [38] (by
utilizing techniques developed in [39]) and further to δK +1 <

1√
K +1 [41].
It is worth mentioning that there exist K-sparse signals and

measurement matrices having columns of equal length and sat-
isfying δK +1 = 1√

K
, for which OMP makes a wrong selection

at the first iteration and thus fails to recover the signals in K
iterations (see, e.g., [25, Example 1]). Since OLS coincides with
OMP in the first iteration when columns of Φ have the same
length [31], this counterexample immediately applies to OLS,
which therefore implies that

δK +1 <
1√
K

(12)

is also necessary for OLS. The claim that δK +1 < 1√
K

being
necessary for exact recovery with K iterations of OLS has also
been proved in [42, Lemma 1]. As 1√

K +2
≈ 1√

K
for large K, the

proposed bound δK +1 < 1√
K +2

is nearly sharp. We would like

to mention that although δK +1 < 1√
K

places a fundamental limit
on exact recovery with OLS in K iterations, if OLS is allowed
to perform more than K steps, there is still significant room to
improve the condition. This case has been studied thoroughly
in [30] under the name pure OMP (POMP).

Next, we consider the model where the measurements are
contaminated with noise as

y = Φx + v, (13)

where v is the noise. (13) is more applicable and includes the
noise-free model (1) as a special case when v = 0. Note that
when v �= 0, accurate recovery of all coefficients of x is im-
possible. Thus we use the �2-norm distortion (‖x − x̂‖2) as a
performance measure and will derive an upper bound for it.
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As detailed in Table I, MOLS runs until ‖rk‖2 ≤ ε or k = K.
When the iteration terminates, if the number of selected indices
exceeds K, these candidates are pruned to a subset of K indices
(i.e., T̂ ) according to K most significant coordinates in xk . Fi-
nally, a standard least squares (LS) procedure is solved on T̂ ,
yielding a K-sparse signal estimate (i.e., x̂). This step is also
known as debiasing, which is helpful for lowering the recon-
struction error. The following theorem provides an upper bound
on ‖x − x̂‖2 when the algorithm is terminated by ‖rk‖2 ≤ ε
where k ≤ K.

Theorem 2: Consider the measurement model in (13). If
MOLS satisfies ‖rk̄‖2 ≤ ε for some k̄ ≤ K and Φ obeys the
RIP of order max{Lk̄ + K, 2K}, then the output x̂ satisfies

‖x − x̂‖2

≤
2ε
√

1+δ2K +2(
√

1+δ2K +
√

1 − δLk̄+K )‖v‖2√
(1 − δLk̄+K )(1 − δ2K )

. (14)

In particular, when ε = ‖v‖2 , x̂ satisfies

‖x − x̂‖2 ≤
(4
√

1 + δ2K + 2
√

1 − δLk̄+K )‖v‖2√
(1 − δLk̄+K )(1 − δ2K )

. (15)

Proof: See Appendix C. �
From Theorem 2, we can see that when ‖v‖2 = 0, ε = 0

directly implies x = x̂, Thus the stopping rule of MOLS in
the noise-free case can simply be ‖rk‖2 = 0; furthermore, the
pruning operation in Table I may become unnecessary for this
case because the current signal estimate is already K-sparse,
although more indices may have been selected. To be specific,
suppose ‖rk̄‖2 = 0 for some k̄ ≤ K. Then by Table I we have
y = Φxk̄ , which implies that Φ(x − xk̄ ) = 0, where x − xk̄ is
an (Lk̄ + K)-sparse vector. Since δLk̄+K < 1 ensures arbitrary
Lk̄ + K columns of Φ to be linearly independent, by basic
linear algebra theory we have xk̄ = x. On the other hand, since
MOLS iterates at most K times, if ‖rk‖2 �= 0 for k = 1, · · · ,K
we can infer that xK �= x, which also implies that the algorithm
fails to catch all support indices.

While the residual tolerance ε of MOLS can be set to zero
for the noise-free scenario, such is not the case when noise is
present. When ‖v‖2 �= 0, ε should be chosen properly to avoid
late or early termination of the algorithm. Note that late ter-
mination makes some portion of the noise be treated as signal
(over-fitting), while early termination often leads to signal that
is not fully reconstructed (under-fitting). In both cases, the re-
construction quality is degraded. Such issue is typically among
sparse recovery algorithms. To achieve proper termination un-
der noise, current methods generally assume that the noise is
either bounded or Gaussian with known variance and then use
information about the noise to establish a stopping criterion
(see, e.g., [4], [43]). It is also commonly assumed that knowl-
edge about the signal sparsity is known in prior in the algorithm
design/analysis [13]–[15]. In practice, neither of the two infor-
mation is strictly easier to determine than the other. If one of
them is available, it might be possible to estimate the other via,
e.g., cross-validation [44], [45].

In Theorem 2, we have analyzed the case where ‖rk‖2 ≤ ε
is satisfied when k ≤ K. We now consider the remaining case
that ‖rk‖2 ≤ ε is not met for k ≤ K. Clearly if ε is set too
small, then the residual tolerance may be difficult to meet by
increasing the number of iterations, which therefore indicates

the need of setting a maximum iteration number for MOLS
(in order to prevent over-fitting and save computations), In this
paper, we let MOLS execute at most K iterations. This, however,
raises the question of whether a reliable recovery can indeed be
achieved if the algorithm is forced to stop after K iterations. The
following theorem aims to answer this question; to this end, we
build a condition under which MOLS successfully selects all
support indices by iterating at most K times. In our analysis,
we parameterize the dependence on noise v and signal x with
two quantities: i) the SNR and ii) the minimum-to-average ratio
(MAR) [46], which are defined, respectively, as below,

snr :=
‖Φx‖2

2

‖v‖2
2

and κ :=
minj∈T |xj |
‖x‖2/

√
K

. (16)

Theorem 3: Consider the measurement model in (13) and let
L ≤ min{K, m

K } be the number of indices selected at each iter-
ation of MOLS. Suppose ‖rk‖2 ≤ ε is not met for k ≤ K. Then
if the sensing matrix Φ has unit �2-norm columns satisfying (11)
and the SNR satisfies

⎧
⎨

⎩

√
snr ≥ 3(1+δK + 1 )

κ(1−(
√

K +2)δK + 1 )

√
K, L = 1,

√
snr ≥ (2

√
L+1)(1+δL K )

κ(
√

L−(
√

K +2
√

L)δL K )

√
K, L > 1,

(17)

MOLS chooses all support indices in at most K iterations.
One can interpret from Theorem 3 that MOLS catches all

support indices of x in at most K iterations when the SNR
scales linearly with the sparsity K. In particular, for the special
case of L = 1, the algorithm returns the true support of x (i.e.,
T̂ = T K = T ). We would like to point out that the SNR being
proportional to K is also necessary for exactly recovering T
with OLS. Indeed, there exist a sensing matrix Φ satisfying (11)
and a K-sparse signal, for which the OLS algorithm fails to
recover the support of the signal under

snr ≥ K. (18)

Specifically, OLS is not guaranteed to make a correct selection
at the first iteration. See [27, Theorem 3.2] for more details.3

Moreover, we would like to mention that the factor κ in (17) may
be close to zero when there are strong variations of magnitudes
in xT . In the case, (17) would hardly be satisfied, which in
turn implies that it may be difficult to identify those nonzero
elements whose magnitudes are very small.

The result in Theorem 3 is closely related to the results in [38],
[47]. There, the researchers considered the OMP algorithm with
data-driven stopping rules (i.e., residual based stopping rules),
and established conditions for exact support recovery that de-
pend on the minimum magnitude of nonzero elements of input
signals. It can be shown that the results of [38], [47] essentially
require a same scaling law of the SNR as the result in Theorem 3.

Our proof of Theorem 3 extends the proof technique in [12,
Theorem 3.4 and 3.5] by considering the measurement noise.
We mention that [12, Theorem 4.2] also provided a noisy case
analysis based on �2-norm distortion of the signal recovery with
gOMP, but the corresponding result is inferior. Indeed, the re-
sult in [12] suggested a recovery distortion upper bounded by
O(

√
K)‖v‖2 ; whereas, the following theorem shows that (un-

der similar RIP conditions to [12]) the recovery distortion with
MOLS is at most proportional to the noise power.

3[27, Theorem 3.2] concerns the first step of OMP, but it immediately applies
to OLS, since OLS coincides with OMP in the first step [31].
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Corollary 1: Consider the measurement model in (13) and
suppose ‖rk‖2 ≤ ε is not met for k ≤ K. Then if the sensing ma-
trix Φ satisfies the RIP of order LK and the SNR satisfies (17),
the output x̂ of MOLS satisfies
⎧
⎨

⎩

‖x̂ − x‖2 ≤ ‖v‖2√
1−δK

, L = 1,

‖x̂ − x‖2 ≤
(
1 +

√
1+δ2 K

1−δL K

)
2‖v‖2√
1−δ2 K

, L > 1.
(19)

Proof: See Appendix D. �
We can gain good insights by studying the rate of convergence

of MOLS. The next theorem demonstrates that in the noise-free
case, the residual power of MOLS decays exponentially with
the number of iterations.4 The proof is left to Appendix E. It
is essentially inspired by [48], where exponential convergence
was established for MP and OMP.

Theorem 4: Consider the measurement model in (1). Let Φ
be the sensing matrix with unit �2-norm columns. If Φ satisfies
the RIP of order Lk + K and δLk+1 <

√
5−1
2 , then the residual

of MOLS satisfies

‖rk+1‖2
2 ≤ (α(k, L))k+1‖y‖2

2 , 0 ≤ k < K, (20)

where

α(k, L) := 1 − L(1 − δLk+K )2

K(1 + δL )(1 + δLk+K )

(
1 −

δ2
Lk+1

1 − δLK

)
.

IV. PROOFS

A. Main Idea

This section is dedicated to the proofs of our main results in
Section III, We focus on the proof for Theorem 3, as Theorem 1
deduces from Theorem 3.

The proof of Theorem 3 follows along a similar line as the
analysis in [27, Theorem 3.1], in which the condition for exact
support recovery with OMP under measurement noise was es-
tablished in terms of the SNR and MAR. Specifically, the proof
works by mathematical induction. For convenience of stating
the results, we say that MOLS makes a success at an iteration if
it selects at least one correct index at the iteration. We first de-
rive a condition for success at the first iteration. Then we assume
that MOLS has been successful in previous k (1 ≤ k < K) iter-
ations and derive a condition for it to make a success also at the
(k + 1)-th iteration. Clearly under the two conditions, MOLS
succeeds in every iteration and hence will select all true indices
in at most K iterations.

The proof of Theorem 3 owes a lot to the work by Li
et al. [35]. In particular, some ideas for proving Proposition 2 are
inspired from [35, Eq. (25), (26)], which offered similar bounds
for the gOMP algorithm. Note that MOLS differs with gOMP
in the identification step. In Proposition 1, the difference is pre-
cisely characterized by the denominator term (i.e., ‖P⊥

T k φi‖2)
on the right-hand side of (10), for which there is no counter-
part in gOMP. In fact, the existence of the denominator term
results in a looser bound of vL for the MOLS algorithm (see
(29) in Proposition 2) and also makes the subsequent proof
for Theorem 3 more complex than the gOMP case [35].
Moreover, we would like to mention that in the proof of

4Note that the proof for the convergence property of MOLS is valid for the
noise-free case only. Whether similar result can be established for the noisy case
is an interesting open question.

Proposition 2, the way we lower bound ‖P⊥
T k φi‖2 is motivated

from [30, Theorem 2].

B. Proof of Theorem 3

1) Success at the first iteration: From (9), MOLS selects at
the first iteration the index set

T 1 = arg max
S:|S|=L

∑

i∈S

|〈φi, r0〉|
‖P⊥

T 0 φi‖2

(a)
= arg max

S:|S|=L
‖Φ′

Sy‖1 = arg max
S:|S|=L

‖Φ′
Sy‖2 , (21)

where (a) is because T 0 = ∅ so that ‖P⊥
T 0 φi‖2 = ‖φi‖2 = 1.

By noting that L ≤ K,5

‖Φ′
T 1 y‖2 ≥

√
L

K
‖Φ′

T y‖2
(13)
=

√
L

K
‖Φ′

T Φx + Φ′
T v‖2

(a)
≥

√
L

K
(‖Φ′

T ΦT xT ‖2 − ‖Φ′
T v‖2)

Lemma 2,4
≥

√
L

K

(
(1−δK )‖x‖2−

√
1+δK ‖v‖2

)
, (22)

where (a) is from the triangle inequality.
On the other hand, if no correct index is chosen at the first

iteration (i.e., T 1 ∩ T = ∅), then

‖Φ′
T 1 y‖2 = ‖Φ′

T 1 ΦT xT + Φ′
T v‖2

≤ ‖Φ′
T 1 ΦT xT ‖2 + ‖Φ′

T v‖2

Lemma 5,4
≤ δK +L ‖x‖2 +

√
1 + δK ‖v‖2 .

This, however, contradicts (22) if

δK +L‖x‖2 +
√

1 + δK ‖v‖2

<

√
L

K

(
(1 − δK )‖x‖2 −

√
1 + δK ‖v‖2

)
, (23)

Since δK ≤ δK +L by monotonicity of the isometry constant,
one can show that (23) holds true whenever

(
(1 − δK +L )

√
L

K
− δK +L

)‖x‖2

‖v‖2
>
(
1 +

√
L

K

)√
1 + δK +L .

(24)
Furthermore, note that

‖x‖2

‖v‖2

RIP
≥ ‖Φx‖2√

1 + δK ‖v‖2

(16)
=

√
snr√

1 + δK

Lemma 1
≥

√
snr

√
1 + δK +L

.

(25)

Hence, (24) is guaranteed by

(
(1 − δK +L )

√
L

K
− δK +L

)√
snr >

(
1 +

√
L

K

)
(1 + δK +L ),

which, under δK +L <
√

L√
K +

√
L

, can be rewritten as

√
snr >

(1 + δK +L )(
√

K +
√

L)√
L − (

√
K +

√
L)δK +L

. (26)

5The average of L largest elements in {〈φi , y〉2}i∈Ω must be no less than
that of any other subset of {〈φi , y〉2}i∈Ω whose cardinality is no less than L.
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Therefore, under δK +L <
√

L√
K +

√
L

and (26), at least one cor-
rect index is chosen at the first iteration of MOLS.

2) Success at the (k + 1)-th iteration: We assume that
MOLS selects at least one correct index at each of the pre-
vious k (1 ≤ k < K) iterations and denote by � the number of
correct indices in T k . Then,

� = |T ∩ T k | ≥ k. (27)

Also, we assume that T k does not contain all correct indices
(� < K). Under these assumptions, we derive a condition that
ensures MOLS to select at least one correct index at the (k + 1)-
th iteration. We first introduce two quantities that are useful for

stating results. Let u1 denote the largest value of |〈φi ,rk 〉|
‖P⊥

T k φi ‖2
,

i ∈ T and let vL denote the L-th largest value of |〈φi ,rk 〉|
‖P⊥

T k φi ‖2
,

i ∈ Ω \ (T ∪ T k ). It is clear that if

u1 > vL,

u1 belongs to the set of L largest elements amongst all elements

in { |〈φi ,rk 〉|
‖P⊥

T k φi ‖2
}i∈Ω\T k . Then it follows from (9) that at least one

correct index (i.e., the one corresponding to u1) will be selected
at the (k + 1)-th iteration. The following results are a lower
bound for u1 and an upper bound for vL .

Proposition 2: Let Φ have normalized columns and satisfy
the RIP with δLK <

√
5−1
2 . Then, we have

u1 ≥
(1−δK +Lk−�)

∥
∥xT \T k

∥
∥

2 −
√

1+δK +Lk−� ‖v‖2√
K − �

, (28)

vL ≤ 1√
L

((
δL+K−� +

δL+LkδLk+K−�

1 − δLk

)∥∥xT \T k

∥∥
2

+
√

1 + δL+Lk‖v‖2

)(
1 +

δ2
Lk+1

1 − δLk − δ2
Lk+1

)1/2

. (29)

The proof is given in Appendix F. Since 1 ≤ k ≤ � < K and
1 ≤ L ≤ K, we obtain from Lemma 1 that

K − � < LK ⇒ δK−� ≤ δLK ,

Lk + K − � ≤ LK ⇒ δLk+K−� ≤ δLK ,

Lk < LK ⇒ δLK ≤ δLK , (30)

Lk + 1 ≤ LK ⇒ δLk+1 ≤ δLK ,

L + Lk ≤ LK ⇒ δL+Lk ≤ δLK .

From (29) and (30), we have

vL ≤ 1√
L

(
1 +

δ2
LK

1 − δLK − δ2
LK

)1/2

×
((

δLK +
δ2
LK

1 − δLK

)∥∥xT \T k

∥∥
2 +

√
1 + δLK ‖v‖2

)

=
1√
L

(
1 − δLK

1 − δLK − δ2
LK

)1/2 (δLK

∥∥xT \T k

∥∥
2

1 − δLK

+
√

1 + δLK ‖v‖2

)
. (31)

Also, using (28) and (30), we have

u1 ≥ 1√
K − �

(
(1 − δLK )‖xT \T k ‖2 −

√
1 + δLK ‖v‖2

)
.

(32)
Thus, by (31) and (32), u1 > vL is guaranteed if

1√
K − �

(
(1 − δLK )‖xT \T k ‖2 −

√
1 + δLK ‖v‖2

)

>
1√
L

(
1−δLK

1−δLK−δ2
LK

)1/2(δLK

∥∥xT \T k

∥∥
2

1−δLK
+
√

1+δLK ‖v‖2

)
.

(33)

One can show that when δLK <
√

L√
K +2

√
L

is satisfied, (33)
holds true under (see Appendix G)

√
snr ≥ (2

√
L + 1)(1 + δLK )

κ(
√

L − (
√

K + 2
√

L)δLK )

√
K, (34)

Therefore, under δLK <
√

L√
K +2

√
L

and (34), MOLS selects at

least one correct index at the (k + 1)-th iteration.
3) Overall condition: Thus far we have obtained conditions

δK +L <
√

L√
K +

√
L

and (26) for success of MOLS at the first

iteration and conditions δLK <
√

L√
K +2

√
L

and (34) for success
of the general iteration. We now combine them to get an overall
condition ensuring the success of MOLS in every iteration. The
following two cases need to be considered.

i) L ≥ 2: Since K ≥ L (see Table I), L ≥ 2 implies δLK ≥
δK +L . By noting that

√
L√

K +
√

L
>

√
L√

K +2
√

L
, δLK <

√
L√

K +2
√

L
is more restrictive than δK +L <

√
L√

K +
√

L
. Also,

note that (34) is more restrictive than (26). Therefore, un-
der δLK <

√
L√

K +2
√

L
and (34), MOLS ensures selection

of all support indices in at most K steps.
ii) L = 1: In this case, MOLS reduces to OLS and con-

ditions δK +L <
√

L√
K +

√
L

and δLK <
√

L√
K +2

√
L

become,

respectively: δK +1 < 1√
K +1

and δK < 1√
K +2

, both of

which are ensured by δK +1 < 1√
K +2

. Moreover, since
δK +1 ≥ δK , both (26) and (34) hold true under

√
snr ≥ 3(1 + δK +1)

κ(1 − (
√

K + 2)δK +1)

√
K. (35)

Therefore, δK +1 < 1√
K +2

and (35) ensure selection of all
support indices in K iterations of OLS.

The proof is now complete.

V. EMPIRICAL RESULTS

A. Experimental Setup

We empirically study the performance of MOLS in recover-
ing sparse signals for both noise-free and noisy scenarios. In
the noise-free case, we adopt the testing strategy in [12], [14],
which measures the performance of recovery algorithms by test-
ing their empirical frequency of exact reconstruction of sparse
signals. In the noisy case, we use the mean square error (MSE)
as a metric to evaluate the recovery performance. In each trial,
we construct an m × n matrix (where m = 128 and n = 256)
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with each element an independent and identically distributed
(i.i.d.) draw of a Gaussian distribution, with zero mean and 1

m
variance. For each value of K in {5, · · · , 64}, we generate a K-
sparse signal of size n × 1, whose support is chosen uniformly at
random and nonzero elements are 1) drawn independently from
a standard Gaussian distribution, or 2) chosen randomly from
the set {±1}. We refer to the two types of signals as the sparse
Gaussian signal and the sparse 2-ary pulse amplitude modu-
lation (2-PAM) signal, respectively. For comparative purposes,
our simulation includes the following recovery approaches:6

1) OMP and OLS;
2) MOLS (https://sites.google.com/site/jianwanghomepa-

ge);
3) StOMP (http://sparselab.stanford.edu/);
4) ROMP (http://www.cmc.edu/pages/faculty/DNeedell);
5) CoSaMP (http://www.cmc.edu/pages/faculty/DNeedell);
6) BP (or BPDN for the noisy case) (http://cvxr.com/cvx/);
7) Iterative reweighted LS (IRLS);
8) Linear minimum MSE (LMMSE) estimator.

B. The Noise-Free Case

In the noise-free case, we perform 2,000 independent trials
for each recovery approach and plot the empirical frequency
of exact reconstruction as a function of the sparsity level. By
comparing the maximal sparsity level, i.e., the so called critical
sparsity [14], of sparse signals at which exact reconstruction is
always ensured, recovery accuracy of different algorithms can
be compared empirically. As shown in Fig. 1, for both sparse
Gaussian and sparse 2-PAM signals, MOLS outperforms other
greedy approaches with respect to the critical sparsity. Even
when compared to the BP and IRLS methods, MOLS still ex-
hibits competitive reconstruction performance. For the Gaussian
case, the critical sparsity of MOLS is 43, which is higher than
that of BP and IRLS, while for the 2-PAM case, MOLS, BP
and IRLS have almost identical critical sparsity (around 37).
A key reason for the superior performance of MOLS is that
MOLS actually estimates a support of greater size (up to KL),
which is thus more likely to contain all support indices. Note
that as long as all support indices are included, those selected
incorrect indices do not affect the recovery, because the LS
projection yields exact recovery of x:7 Fig. 2 depicts the sup-
port detection performance of MOLS in recovering sparse sig-
nals. To measure the support detection performance, we adopt
the false alarm ratio expressed by |T̂ \T |/K, which is equiva-

6In our test, both OMP and OLS run K iterations before stopping. For MOLS,
since L ≤ K , we choose L = 3, 5 in our simulation. Interested readers may try
other options. We suggest to choose L to be small integers and have empirically
confirmed that choices of L = 2, 3, 4, 5 generally lead to similar recovery per-
formance. Moreover, ε is set to be equal to the noise power (ε = ‖v‖2 ) when
v �= 0 and zero when v = 0. StOMP has two thresholding strategies: false
alarm control (FAC) and false discovery control (FDC) [10]. We exclusively use
the FAC strategy since it outperforms FDC. For CoSaMP, we set the maximal
iteration number to 50 to avoid repeated iterations. In addition, we implement
IRLS (with p = 1) as featured in [17], and terminate BPDN when the �2 -norm
of residual falls below the noise power, as in [43].

7Suppose T ⊆ T k̄ for some k̄ ≤ K . Since L ≤ min{K, m
K }, the number

of selected columns satisfies Lk̄ ≤ m. For random matrices, those selected
columns are linearly independent with probability one, which allows us to
recover x via an LS procedure: xk̄

T k̄
= arg minu ‖y − ΦT k̄ u‖2 = Φ†

T k̄
y =

Φ†
T k̄

ΦT k̄ xT k̄ = xT k̄ , That is, xk̄ = x. We note that the LS procedure is

also involved in other OMP-type algorithms under test. We all use matrix left
division of Matlab to solve them in the simulation.

Fig. 1. Frequency of exact recovery of sparse signals as a function of K .

Fig. 2. False alarm/Miss-detection ration for recovering sparse signals as a
function of K , where the solid and dash lines correspond to sparse Gaussian
and sparse 2-PAM signals, respectively.

lent to the miss-detection ratio since |T̂ | = |T | = K (and thus
|T \T̂ | = |T̂ \T |). We observe that the false alarm ratio goes
up as the sparse level increases. In particular, MOLS performs
better in recovering sparse Gaussian signals than sparse 2-PAM
signals, which matches the results in Fig. 1.

In Fig. 4, we plot the running time and the number of itera-
tions for exact reconstruction of K-sparse Gaussian and 2-PAM
signals as a function of K. The running time is measured us-
ing the MATLAB program under the 28-core 64-bit processor,
256 Gb RAM, and Windows Server 2012 R2 environments.
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Fig. 3. Frequency of exact recovery of sparse signals as a function of m.

Overall, we observe that for both sparse Gaussian and 2-PAM
cases, the running time of BP and IRLS is longer than that of
OMP, CoSaMP, StOMP and MOLS. In particular, the running
time of BP is more than one order of magnitude higher than the
rest of algorithms require. This is because the complexity of BP
is quadratic in the number of measurements (O(m2n3/2)) [49],
while that of greedy algorithms is O(Kmn) [10]–[13], [32].8

Moreover, the running time of MOLS is two to three times as
much as that of OMP. We also observe that the number of it-
erations of MOLS for exact reconstruction is smaller than that
of OLS. The associated running time of MOLS is also less than
that of OLS. This is because MOLS can select more than one
support index at a time so that it may take much fewer than K
iterations to catch all support indices (or to satisfy ‖rk‖2 = 0).
It should be noted that in some cases, MOLS may be required to
run K iterations before stopping. For example, if MOLS selects
only one correct indices per time, then it would need K itera-
tions to catch all support indices. Even MOLS may fail to select
all support indices in K iterations for some sparsity region (see,
e.g., when K ≥ 43 in Fig. 1(a)). For those cases, however, the
complexity and running time of MOLS are higher than OLS,
because at the k-th iteration (k = 1, · · · ,K) MOLS actually
solves a linear system of size Lk, whereas OLS solves a linear
system of size k. Nevertheless, these situations do not occur
often in the exact recovery sparsity region. Indeed, as observed
in Fig. 4, in which the result is averaged over 2,000 independent
trials, MOLS has shorter running time over OLS.

In Fig. 3, by varying the number of measurements m, we plot
empirical frequency of exact reconstruction of K-sparse Gaus-
sian signals as a function of m. We let sparsity K = 45, for
which none of the reconstruction methods in Fig. 1(a) are guar-
anteed to perform exact recovery. Overall, we observe that the
performance comparison is similar to Fig. 1(a) in that MOLS
performs the best and OLS, OMP and ROMP perform worse
than other methods. Moreover, for all recovery methods un-
der test, the frequency of exact reconstruction improves as m
increases. In particular, MOLS roughly requires m ≥ 135 to
ensure exact recovery of sparse signals, while BP, CoSaMP and
StOMP always succeed when m ≥ 150.

8Similar to OMP, ROMP and StOMP, the MOLS algorithm involves LS
projections over a sequentially enlarged support list, which essentially allows
for computational savings through recursively using the QR factorization of
previously selected columns. See [12, Appendix F] for more details on recursive
use of QR factorization.

Fig. 4. Running time and number of iterations for exact reconstruction of
K -sparse Gaussian and 2-PAM signals.

C. The Noisy Case

In the noisy case, we empirically compare MSE performance
of each recovery method. The MSE is defined as

MSE =
1
n

n∑

i=1

(xi − x̂i)2 , (36)

where x̂i is the estimate of xi . For each simulation point of the
algorithm, we perform 2,000 independent trials. In Fig. 5, we
plot the MSE performance for each recovery method as a func-
tion of SNR (in dB) (i.e., SNR := 10 log10 snr). In this case, the
system model is expressed as y = Φx + v where v is the noise
vector whose elements are generated from Gaussian distribution
N (0, K

m 10−
SNR
1 0 ).9 The benchmark performance of Oracle least

squares estimator (Oracle-LS), the best possible estimation hav-
ing prior knowledge on the support of input signals, is plotted
as well.

In general, we observe that for all reconstruction methods,
the MSE performance improves with the SNR. For the whole
SNR region under test, the MSE performance of MOLS is very
competitive. In particular, in the high SNR region the MSE of
MOLS matches with that of the Oracle-LS estimator, because
MOLS detects all support indices of sparse signals successfully
in that SNR region. We should mention that the actual recovery

9Note that E|(Φx)i |2 = K
m , as each component of Φ has power 1

m and
signal x is K -sparse with nonzero elements drawn i.i.d. from N (0, 1). From

the definition of SNR, we have E|vi |2 = E|(Φx)i |2 · 10−
SNR
1 0 = K

m 10−
SNR
1 0 .
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Fig. 5. MSE for recovering sparse 2-PAM signals as a function of SNR.

error of MOLS may be much smaller than indicated in
Theorem 2 and 3. Consider MOLS (L = 5) for example.
When SNR = 20 dB, K = 20, and vj ∼ N (0, K

m 10−
SNR
1 0 ),

we have E‖v‖2 = (K · 10−
SNR
1 0 )1/2 =

√
5

5 . Thus, by assum-
ing small isometry constants we obtain, respectively, from
Theorem 2 and 3 that ‖x − x̂‖2 ≤ 4

√
5

5 and ‖x − x̂‖2 ≤ 6
√

5
5 .10

Whereas, the �2-norm of the actual recovery error of MOLS
is ‖x − x̂‖2 = (n · MSE)1/2 ≈ 0.2 (Fig. 5(b)), which is much
smaller. The gap between the theoretical and empirical results
is perhaps due to i) that our analysis is based on the RIP and
hence is essentially a worst-case-analysis and ii) that some
inequalities (relaxations) in our analysis may be loose.

D. Discussions

As in [4], [43], knowledge about noise (typically the noise
power) is necessary to set the residual tolerance ε for MOLS.
In practice, however, this knowledge is unknown and may be
hard to estimate accurately. If the noise power is under- or over-
estimated, then ε may be set improperly and consequently, the
algorithm may have either an early or late termination. In Fig. 6,
by varying ε, we empirically study the effect of early/late ter-
mination on the support detection performance (i.e., the false
alarm/miss-detection ratio) of MOLS. Specifically, we consider
the MOLS with ε = η‖v‖2 where η ∈ {10−10 , 1

3 , 2, 3}. Note

10We can verify condition (17) in Theorem 3. Specifically, since 2-PAM sig-

nals have κ = 1 and snr = 10
SNR
1 0 = 100, whenΦ has small isometry constants,

(17) roughly becomes
√

100 ≥
√

5+1√
5

√
20, which is true.

Fig. 6. False alarm/Miss-detection ratio for recovering sparse 2-PAM signals
as a function of SNR where the tasted SNR ∈ {−10,−8, · · · , 40} (in dB).

that η = 2 and η = 3 represent early termination situations,
while η = 10−10 and η = 1

3 lead to late termination. In particu-
lar, η = 10−10 essentially represents the case of ε = 0, in which
case the algorithm always runs K iterations to stop because the
criterion ‖rk‖2 ≤ ε cannot be met in advance.

We also provide an alternative way to establish the stop-
ping rule when information about noise is completely unavail-
able. To be specific, instead of setting the residual tolerance, we
employ cross-validation (CV) [44] to predict a reasonable termi-
nation. In CV, measurements are divided into two distinct sets:
a training/estimation set and a test/CV set. The signal estimate
resulting in the minimal CV error indicates a proper termina-
tion. See [44, Section 3.2] for more details. In our simulation,
we use MOLSCV (#%) to mean MOLS adopting # percent of
measurements for CV.

In Fig. 6(a), we plot the miss-detection/false alarm ratio
as a function of the SNR where the tested SNR region is
{−10,−8, · · · , 40} (in dB). We observe that MOLS is very
sensitive to early termination. Indeed, the support detection per-
formance degrades significantly when ε is set to be twice or
thrice the noise power. In contrast, late termination results in
only moderate performance degradation. This is because MOLS
employs a pruning step (followed by a subsequent step of debi-
asing), which can largely reduce the potential over-fitting issue
caused by selection of incorrect indices. We also observe that
MOLS offers superior accuracy in the high SNR region but
performs worse than OLS in the low SNR region. The inferior
performance of MOLS to OLS in low SNR is mainly due to
selection of too many incorrect indices before stopping. Those
incorrect indices are supposed to be finally pruned; however,
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accuracy of the pruning step is also limited by the high-
level noise (i.e., low SNR). In addition, we see that the CV-
aided MOLS is effective in the high SNR region. In particular,
MOLSCV (5%) and MOLSCV (10%) exhibit promising detec-
tion performance that gradually approaches the ideal case as the
SNR goes high. Fig. 6(b) depicts the support detection perfor-
mance of MOLS for correlated sensing matrix (where only 80
random measurements are used). We observe that for the whole
SNR range under test, MOLSCV does not perform well, owing
to lack of measurements; whereas, using a relatively small ε
(i.e., letting the algorithm iterate relatively more steps) seems to
be a good choice.

VI. CONCLUSION

In this paper, we have studied a sparse recovery algorithm
called MOLS, which extends the conventional OLS algorithm
by allowing multiple candidates entering the list in each selec-
tion. Our method is motivated by the fact that “sub-optimal”
candidates in each of the OLS identification may also be reli-
able and can be selected to accelerate the convergence of the
algorithm. We have demonstrated by RIP analysis that MOLS
performs exact recovery of any K-sparse signal in at most K
iterations when the isometry constant scales inversely with

√
K.

For the special case of MOLS when L = 1 (i.e., the OLS case),
we have shown that any K-sparse signal can be exactly recov-
ered in K iterations under δK +1 < 1√

K +2
, which is a nearly op-

timal condition for the OLS algorithm. We have also studied the
MOLS algorithm in the noisy scenario. Our result showed that
stable recovery of sparse signals can be achieved with MOLS
when the SNR has a linear scaling in the sparsity level of signals
to be recovered. In particular, for the case of OLS, there exists
a counterexample illustrating that the linear scaling law for the
SNR is actually necessary [27].

It is interesting to note the gap between conditions of OLS
and OMP (i.e., δK +1 < 1√

K +2
and δK +1 < 1√

K +1 [41]) in the
noise-free case. This gap is due to the difference in their iden-
tification rules. As indicated in (9), OLS has an extra denom-
inator term (i.e., ‖P⊥

T k φi‖2) compared to the OMP algorithm.
While this term does not affect the first iteration of OLS because
‖P⊥

T 0 φi‖2 = ‖φi‖2 = 1 (so that OLS coincides with OMP for
this step), it does make a difference in subsequent iterations and
ultimately leads to an overall condition for OLS that is more
restrictive than the OMP algorithm. Whether it is possible to
bridge this gap (i.e., to show that condition δK +1 < 1√

K +1 [41]
also works for the OLS algorithm) is an interesting open
question.

APPENDIX A
PROOF OF LEMMA 6

Proof: We focus on the proof for the lower bound in (7).
Since δ|S| < 1, ΦS has full column rank. Suppose that ΦS
has singular value decomposition ΦS = UΣV′. Then from the
definition of RIP, the minimum diagonal entry of Σ satisfies
σmin ≥

√
1 − δ|S|. Note that

(Φ†
S)′ = ((Φ′

SΦS)−1Φ′
S)′

= UΣV′((UΣV′)′UΣV′)−1 = UΣ−1V′, (A.1)

where Σ−1 is the diagonal matrix formed by replacing nonzero
diagonal entries of Σ by their reciprocal. Hence, all singular
values of (Φ†

S)′ are upper bounded by 1
σm in

≤ 1√
1−δ |S|

. �

APPENDIX B
PROOF OF PROPOSITION 1

Proof: Since P⊥
T k ∪{i}y and PT k ∪{i}y are orthogonal with

each other, we have ‖P⊥
T k ∪{i}y‖2

2 = ‖y‖2
2 − ‖PT k ∪{i}y‖2

2 , and
hence (8) is equivalent to

Sk+1 = arg max
S:|S|=L

∑

i∈S
‖PT k ∪{i}y‖2

2 . (B.1)

It is well-known that ‖PT k ∪{i}y‖2
2 can be decomposed as fol-

lows (see, e.g., [29], [30], [36]):

‖PT k ∪{i}y‖2
2 = ‖PT k y‖2

2 +

(
|〈φi, rk 〉|
‖P⊥

T k φi‖2

)2

. (B.2)

By relating (B.1) and (B.2), we obtain (9).
Furthermore, noting from Table I that

rk = y − Φxk = y − ΦT k Φ†
T k y = P⊥

T k y (B.3)

where

P⊥
T k = (P⊥

T k )2 = (P⊥
T k )′, (B.4)

if we write |〈φi, rk 〉| = |φ′
i(P

⊥
T k )′P⊥

T k y| = |〈P⊥
T k φi, rk 〉|

in (9), we obtain (10). �

APPENDIX C
PROOF OF THEOREM 2

Proof: Let zk̄ denote the best K-sparse approximation of xk̄ .
Recalling from Table I that T̂ = arg minS:|S|=K ‖xk̄ − xk̄

S‖2 ,

we have zk̄
T̂ = xk̄

T̂ and zk̄
Ω\T̂ = 0.

Observe that

‖zk̄ − x‖2 = ‖zk̄ − xk̄ + xk̄ − x‖2

(a)
≤ ‖zk̄ − xk̄‖2 + ‖xk̄ − x‖2

(b)
≤ 2‖xk̄ − x‖2

RIP
≤ 2‖Φ(xk̄ − x)‖2√

1 − δLk̄+K

(c)
≤ 2(‖rk̄‖2 + ‖v‖2)√

1 − δLk̄+K

≤ 2(ε + ‖v‖2)√
1 − δLk̄+K

, (C.1)

where (a) is from the triangle inequality, (b) is because z is
the best K-sparse approximation to xk̄ and hence is a better
approximation than x, and (c) is due to the fact that rk̄ = y −
Φxk̄ = Φ(xk̄ − x) + v.
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On the other hand, since zk̄ and x are both K-sparse,

‖zk̄ − x‖2
RIP
≥ ‖Φ(zk̄ − x)‖2√

1 + δ2K

=
‖Φzk̄ − y + v‖2√

1 + δ2K

(a)
≥ ‖Φzk̄ − y‖2 − ‖v‖2√

1 + δ2K

(b)
≥ ‖Φx̂ − y‖2 − ‖v‖2√

1 + δ2K

=
‖Φ(x̂ − x) − v‖2 − ‖v‖2√

1 + δ2K

(c)
≥ ‖Φ(x̂ − x)‖2 − 2‖v‖2√

1 + δ2K

RIP
≥

√
1 − δ2K ‖x̂ − x‖2 − 2‖v‖2√

1 + δ2K

, (C.2)

where (a) and (c) are from the triangle inequality and (b) is
because zk̄ is supported on T̂ and x̂T̂ = Φ†

T̂ y = arg minu ‖y −
ΦT̂ u‖2 (see Table I). Combining (C.1) and (C.2) yileds the
desired result. �

APPENDIX D
PROOF OF COROLLARY 1

Proof: Let k̄ (≤ K) be the number of actually performed
iterations of MOLS. We first consider the case L = 1. In this
case, k̄ = K. By Theorem 3 we have T̂ = T K = T and x̂ =
xK (where x̂T = Φ†

T y and x̂Ω\T = 0). Hence,

‖x̂ − x‖2 = ‖Φ†
T y − xT ‖2 = ‖Φ†

T v‖2

RIP
≤ ‖ΦT Φ†

T v‖2√
1 − δK

=
‖PT v‖2√

1 − δK

≤ ‖v‖2√
1 − δK

. (D.1)

Next, we prove the case of L > 1. In this case, by Theorem 3
we have T K ⊇ T . Consider the best K-sparse approximation
zK of xK and observer that

‖zK − x‖2 = ‖zK − xK + xK − x‖2

(a)
≤ ‖zK − xK ‖2 + ‖xK − x‖2

(b)
≤ 2‖xK − x‖2

(c)
= 2‖Φ†

T K y − xT K ‖2
(d)
= 2‖Φ†

T K v‖2

RIP
≤

2‖ΦT K Φ†
T K v‖2√

1 − δ|T K |
=

2‖PT K v‖2√
1 − δLK

≤ 2‖v‖2√
1 − δLK

, (D.2)

where (a) uses the triangle inequality, (b) is because zK is the
best K-sparse approximation to xK and hence is a better ap-
proximation than x (note that both zK and x are K-sparse), (c)
is because (xK )T K = Φ†

T K y, (xK )Ω\T K = 0 and T K ⊇ T ,
and (d) is from y = ΦT xT + v = ΦT K xT K + v.

On the other hand, by following (C.2) with k̄ = K, we have

‖zK − x‖2 ≥
√

1 − δ2K ‖x̂ − x‖2 − 2‖v‖2√
1 + δ2K

. (D.3)

Combining (D.2) and (D.3) yields the desired result. �

APPENDIX E
PROOF OF THEOREM 4

We shall prove Theorem 4 in two steps. First, we show that
the residual power difference of MOLS satisfies

‖rk‖2
2 − ‖rk+1‖2

2 ≥
1 − δLK − δ2

Lk+1

(1 + δL )(1 − δLK )
max

S:|S|=L
‖Φ′

Sr
k‖2

2 ,

(E.1)

which is essentially an extension of the OLS result in [30,
Theorem 2]. In the second step, we show that

max
S:|S|=L

‖Φ′
Sr

k‖2
2 ≥ L(1 − δLk+K )2

K(1 + δLk+K )
‖rk‖2

2 . (E.2)

The theorem is established by combining (E.1) and (E.2).
1) Proof of (E.1): First, for any integer 0 ≤ k < K,

rk − rk+1 (B.3)
= P⊥

T k y − P⊥
T k + 1 y

(a)
= (PT k + 1 − PT k + 1 PT k )y

= PT k + 1 (y − PT k y) = PT k + 1 rk , (E.3)

where (a) is because span(ΦT k ) ⊆ span(ΦT k + 1 ) so that
PT k y = PT k + 1 (PT k y). Since T k+1 ⊇ Sk+1 , we have
span(ΦT k + 1 ) ⊇ span(ΦS k + 1 ) and hence

‖rk − rk+1‖2
2

(E.3)
= ‖PT k + 1 rk‖2

2 ≥ ‖PSk + 1 rk‖2
2 .

Further, since ‖rk − rk+1‖2
2 = ‖rk‖2

2 − ‖rk+1‖2
2 ,

‖rk‖2
2 − ‖rk+1‖2

2 ≥ ‖PSk + 1 rk‖2
2 = ‖P′

Sk + 1 rk‖2
2

= ‖(Φ†
Sk + 1 )′Φ′

Sk + 1 rk‖2
2

Lemma 6
≥

‖Φ′
Sk + 1 rk‖2

2

1 + δ|Sk + 1 |
=

‖Φ′
Sk + 1 rk‖2

2

1 + δL
, (E.4)

Next, we build a lower bound for the term ‖Φ′
Sk + 1 rk‖2

2
in (E.4). Denote S∗ = arg maxS:|S|=L ‖Φ′

Sr
k‖2

2 . Then,

∑

i∈Sk + 1

|〈φi, rk 〉|2
‖P⊥

T k φi‖2
2

(9)
= max

S:|S|=L

∑

i∈S

|〈φi, rk 〉|2
‖P⊥

T k φi‖2
2
≥
∑

i∈S∗

|〈φi, rk 〉|2
‖P⊥

T k φi‖2
2

(a)
≥
∑

i∈S∗

|〈φi, rk 〉|2 = max
S:|S|=L

‖Φ′
Sr

k‖2
2 , (E.5)

where (a) holds because ‖P⊥
T k φi‖2 ≤ ‖φi‖2 = 1.
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On the other hand, since δLk+1 <
√

5−1
2 ,

∑

i∈Sk + 1

|〈φi, rk 〉|2
‖P⊥

T k φi‖2
2

≤
∑

i∈Sk + 1 |〈φi, rk 〉|2
mini∈Sk + 1 ‖P⊥

T k φi‖2
2

=
∑

i∈Sk + 1 |〈φi, rk 〉|2
1 − maxi∈Sk + 1 ‖PT k φi‖2

2

(a)
≤
(
1 −

δ2
Lk+1

1 − δLK

)−1

‖Φ′
Sk + 1 rk‖2

2 . (E.6)

where (a) is because for any i /∈ T k ,

‖PT k φi‖2
2 = ‖P′

T k φi‖2
2 = ‖(Φ†

T k )′Φ′
T k φi‖2

2

Lemma 6
≤

‖Φ′
T k φi‖2

2

1 − δLK

Lemma 5
≤

δ2
Lk+1

1 − δLK
. (E.7)

Combining (E.5) and (E.6) yields

‖Φ′
Sk + 1 rk‖2

2 ≥
(

1 −
δ2
Lk+1

1 − δLK

)
max

S:|S|=L
‖Φ′

Sr
k‖2

2 . (E.8)

Finally, using (E.4) and (E.8), we obtain (E.1).
2) Proof of (E.2): Since L ≤ K,

max
S:|S|=L

‖Φ′
Sr

k‖2
2 ≥ L

K
‖Φ′

T rk‖2
2

(a)
=

L

K
‖Φ′

T ∪T k rk‖2
2

=
L

K
‖Φ′

T ∪T k ΦT ∪T k (x − xk )T ∪T k ‖2
2

RIP
≥ L

K
(1 − δLk+K )2‖(x − xk )T ∪T k ‖2

2

RIP
≥ L(1 − δLk+K )2

K(1 + δLk+K )
‖ΦT ∪T k (x − xk )T ∪T k ‖2

2

=
L(1 − δLk+K )2

K(1 + δLk+K )
‖rk‖2

2 , (E.9)

where (a) is because Φ′
T k rk (B.3)

= Φ′
T k (P⊥

T k y)
(B.4)
=

Φ′
T k (P⊥

T k )′y = (P⊥
T k ΦT k )′y = 0. From (E.1) and (E.9),

‖rk‖2
2 − ‖rk+1‖2

2 ≥ L(1 − δLk+K )2

K(1 + δL )(1 + δLk+K )

(
1 −

δ2
Lk+1

1 − δLK

)

× ‖rk‖2
2 ,

which implies that

‖rk+1‖2
2 ≤ α(k, L)‖rk‖2

2 , (E.10)

where

α(k, L) := 1 − L(1 − δLk+K )2

K(1 + δL )(1 + δLk+K )

(
1 −

δ2
Lk+1

1 − δLK

)
.

Since δLk+1 , δLk+1 , and δLk+K are increasing monotone
functions of k (by Lemma 1), α(k, L) is increasing with k.
Repeating (E.10) we obtain

‖rk+1‖2
2 ≤

k∏

i=0

α(i, L)‖r0‖2
2 ≤ (α(k, L))k+1‖y‖2

2 . (E.11)

APPENDIX F
PROOF OF PROPOSITION 2

A. Proof of (28)

Since u1 is the largest value of
{ |〈φi ,rk 〉|

‖P⊥
T k φi ‖2

}
i∈T \T k ,

u1

(a)
≥ 1

√
|T \T k |

(
∑

i∈T \T k

〈φi, rk 〉2
‖P⊥

T k φi‖2
2

)1/2

(b)
≥ 1√

K − �

√ ∑

i∈T \T k

〈φi, rk 〉2 =
‖Φ′

T \T k rk‖2
√

K − �
(F.1)

where (a) is due to Cauchy-Schwarz inequality and (b) is be-
cause ‖P⊥

T k φi‖2 ≤ ‖φi‖2 = 1.
To lower bound ‖Φ′

T \T k rk‖2 in (F.1), we apply the improved
result of [12, Lemma 3.7] recently obtained by Li et al. [35].
Specifically, [35, Eq. (25)] implies that

‖Φ′
T \T k rk‖2

≥ (1 − δK +Lk−�)‖xT \T k ‖2 −
√

1 + δK +Lk−� ‖v‖2 . (F.2)

Using (F.1) and (F.2), we obtain (28).

B. Proof of (29)

First, let F be the index set corresponding to L largest el-

ements in
{ |〈φi ,rk 〉|

‖P⊥
T k φi ‖2

}
i∈Ω\(T ∪T k ) . Since vL is the L-th largest

value in
{ |〈φi ,rk 〉|

‖P⊥
T k φi ‖2

}
i∈F ,

vL ≤ 1√
L

(
∑

i∈F

|〈φi, rk 〉|2
‖P⊥

T k φi‖2
2

)1/2

≤ 1√
L

( ∑
i∈F |〈φi, rk 〉|2

mini∈F ‖P⊥
T k φi‖2

2

)1/2

=
1√
L

( ∑
i∈F |〈φi, rk 〉|2

1 − maxi∈F ‖PT k φi‖2
2

)1/2

(E.7)
≤

(
1 −

δ2
Lk+1

1 − δLK

)−1/2 ‖Φ′
Frk‖2√

L
, (F.3)

where in the last inequality we have used the fact that 1 ≤ k < K

and 1 ≤ L ≤ K so that δLk+1
Lemma 1
≤ δLK <

√
5−1
2 .

Next, we find an upper bound for ‖Φ′
Frk‖2 in (F.3). Since

‖Φ′
Frk‖2 = ‖Φ′

FP⊥
T k (Φx + v)‖2

≤ ‖Φ′
FP⊥

T k Φx‖2 + ‖Φ′
FP⊥

T k v‖2

≤ ‖Φ′
FΦT \T k xT \T k ‖2 + ‖Φ′

FP⊥
T k v‖2

+ ‖Φ′
FPT k ΦT \T k xT \T k ‖2 , (F.4)

we upper bound ‖Φ′
FΦT \T k xT \T k ‖2 , ‖Φ′

FP⊥
T k v‖2 , and

‖Φ′
FPT k ΦT \T k xT \T k ‖2 , respectively.

Since F and T \ T k are disjoint (F ∩ (T \ T k ) = ∅), and
also noting that T ∩ T k = � by hypothesis in (27), we have
|F| + |T \ T k | = L + K − �. Hence, by Lemma 5, we have

∥∥Φ′
FΦT \T k xT \T k

∥∥
2 ≤ δL+K−�

∥∥xT \T k

∥∥
2 . (F.5)
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Following the argument in [35, Eq. (26)], we can upper bound
‖Φ′

FP⊥
T k v‖2 as

‖Φ′
FP⊥

T k v‖2 ≤
√

1 + δL+Lk‖v‖2 . (F.6)

Moreover, since F ∩ T k = ∅ and |F| + |T k | = L + Lk,
∥
∥Φ′

FPT k ΦT \T k xT \T k

∥
∥

2

= ‖Φ′
FΦT k (Φ†

T k ΦT \T k xT \T k )‖2

≤ δL+Lk‖Φ†
T k ΦT \T k xT \T k ‖2

= δL+Lk‖(Φ′
T k ΦT k )−1Φ′

T k ΦT \T k xT \T k ‖2

Lemma 2
≤ δL+Lk

1 − δLK

∥
∥Φ′

T k ΦT \T k xT \T k

∥
∥

2

Lemma 5
≤ δL+LkδLk+K−�

1 − δLK

∥∥xT \T k

∥∥
2 . (F.7)

where in the last inequality we have used the fact that |T k ∪ (T \
T k )| = Lk + K − �. (Note that T k and T \ T k are disjoint and
|T \ T k | = K − �.)

Finally, using (F.3), (F.4), (F.5), (F.6) and (F.7) yields (29).

APPENDIX G
PROOF OF (34)

Proof: Rearranging the terms in (33) we obtain
√

L

K − �
(1 − δLK ) − δLK

1 − δLK

(
1 − δLK

1 − δLK − δ2
LK

)1/2

>

((
1 − δLK

1 − δLK − δ2
LK

)1/2

+

√
L

K − �

) √
1 + δLK ‖v‖2

‖xT \T k ‖2
.

(G.1)

In the following, we will show that (G.1) is guaranteed by (34).
First, since

‖xT \T k ‖2

‖v‖2
≥

√
|T \T k |minj∈T |xj |

‖v‖2

(16)
=

κ
√

K − �‖x‖2√
K‖v‖2

RIP
≥ κ

√
K − � ‖Φx‖2√

K(1 + δLK )‖v‖2

(16)
=

κ
√

(K − �)snr
√

K(1 + δLK )
,

it is clear that (G.1) holds true under
√

L

K − �
(1 − δLK ) − δLK

1 − δLK

(
1 − δLK

1 − δLK − δ2
LK

)1/2

>

((
1 − δLK

1 − δLK − δ2
LK

)1/2

+

√
L

K − �

) √
K(1 + δLK )

κ
√

(K − �)snr
.

(G.2)

For notational simplicity, denote β := ( 1−δL K

1−δL K −δ 2
L K

)1/2 , γ :=
√

L
K−� , δ := δLK , and τ :=

√
K

κ
√

(K−�)snr
. Then, we can rewrite

(G.2) as γ(1 − δ) − δβ
1−δ > (β + γ)(1 + δ)τ. That is,

γ (1 − δ − (1 + δ)τ) > β

(
δ

1 − δ
+ (1 + δ)τ

)
. (G.3)

Next, we build an upper bound for β in (G.3). Define

f(δ) = (1 − δ)3/2(1 − δ − δ2)1/2 and g(δ) = 1 − 2δ.

Since L ≤ K and hence δ <
√

L√
K +2

√
L
≤ 1

3 <
√

5−1
2 , one can

show that f(δ) > g(δ), which immediately implies that

(
1 − δ

1 − δ − δ2

)1/2

<
(1 − δ)2

1 − 2δ
. (G.4)

That is, β < (1−δ)2

1−2δ . Thus the right-hand side of (G.3) satisfies

β

(
δ

1 − δ
+ (1 + δ)τ

)
<

(1 − δ)(δ + (1 − δ2)τ)
1 − 2δ

(a)
≤ (1 − δ)(δ + (1 + δ)τ)

1 − 2δ
, (G.5)

where (a) is because 1 − δ2 ≤ 1 + δ.
By (G.3) and (G.5), we directly have that (G.1) holds if

γ (1 − δ − (1 + δ)τ) > (1−δ)(δ+(1+δ)τ )
1−2δ . Equivalently,

δ <
1

1 + τ

(
γ

u + γ
− τ

)
where u :=

1 − δ

1 − 2δ
. (G.6)

We now simplify (G.6). Observe that

δ <

√
L√

K + 2
√

L

(27)⇒ δ <

√
L√

K − � + 2
√

L

⇔ δ <
γ

1 + 2γ
⇔ u < 1 + γ

⇔ γ

u + γ
>

γ

1 + 2γ
. (G.7)

From (G.6) and (G.7), we further have that (G.1) holds true
whenever

δ <
1

1+τ

( γ

1+2γ
− τ
)

=
1

1+τ

( √
L√

K−�+2
√

L
− τ

)

. (G.8)

Since δ <
√

L√
K +2

√
L
≤

√
L√

K−�+2
√

L
, (G.8) can be rewritten as

√
snr >

(1 + δ)(
√

K − � + 2
√

L)
κ(
√

L − (
√

K − � + 2
√

L)δ)
√

K − �

√
K. (G.9)

Finally, since 1 ≤ K − � < K, (G.9) is guaranteed by (34)
and this completes the proof. �
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