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Recursive Identification Method for Piecewise ARX
Models: A Sparse Estimation Approach

Per Mattsson, Dave Zachariah, and Petre Stoica

Abstract—This paper deals with the identification of nonlinear
systems using piecewise linear models. By means of a sparse over-
parameterization, this challenging problem is turned into a convex
optimization problem. The proposed method uses a likelihood-
based methodology which adaptively penalizes model complexity
and directly leads to a recursive implementation. In this sparse es-
timation approach, the tuning of user parameters is avoided, and
the computational complexity is kept linear in the number of data
samples. Numerical examples with both simulated and experimen-
tal data are presented and the results are compared with previously
published methods.

Index Terms—System identification, nonlinear dynamical sys-
tem, piecwise linear approximations.

I. INTRODUCTION

IN this paper we consider the problem of identifying a nonlin-
ear model for a scalar dynamical system using a finite record

of its output y(t) and input u(t). A broad range of nonlinear
dynamical systems can be modeled as

y(t) = f(φ(t)) + e(t), (1)

where φ(t) is a function of past inputs and outputs, e(t) is a white
noise process, and f(·) is the unknown function of interest. A
common choice for the regression vector φ(t) is

φ(t) = [−y(t − 1) · · · − y(t − na)

u(t − 1) · · · u(t − nb) 1]�. (2)

The model (1) together with the regressor (2) is called a
nonlinear autogressive exogenous (NARX) model. The special
case when φ(t) depends only on past outputs {y(t − k)} is
called nonlinear AR, and when φ(t) depends only on past inputs
{u(t − k)} we get a nonlinear finite impulse response (NFIR)
model [1]. In this paper we focus on the NARX model structure,
but the proposed method can be applied to any regressors φ(t)
that can be computed using data collected until time t − 1.

The identification problem is then to find the unknown func-
tion f(·). In nonlinear black-box modelling, the function f(·)
is usually seen as a one-step-ahead predictor for the output y(t)
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given data collected until time t − 1 [2]. In this framework we
want to find a good predictor model of the underlying system.

If f(·) was allowed to be any function, the identification
problem would be very challenging. For this reason, f(·) is
usually restricted to some class of functions, such as block-
oriented models in which linear dynamics are mixed with static
nonlinearities [3], [4]. Such approaches commonly parameterize
the nonlinearities using basis functions. An alternative is to
linearize f(·) at each given point φ(t), using a set of training
points [5].

A related approach is to approximate f(·) with a piecewise
affine function. These functions are known for their universal ap-
proximation properties [6], [7], and are therefore popular in sys-
tem identification. Using a piecewise affine function in (1) and
(2) gives the flexible class of piecewise ARX models (PWARX).
In such models, the space in which φ(t) resides is partitioned
into separate regions and a local linearization of f(·) is used
for each region. These models are also useful for systems that
change their modes, e.g., due to saturations, and they have been
shown to be useful for both prediction and control of nonlin-
ear systems [8], [9]. Note also that applying a piecewise affine
function to the regressor φ(t) can be viewed as segmented linear
regression [10].

Even if the identification of (1) becomes simpler when we
restrict f(·) to be a piecewise affine function, this is still a
complex task. In fact, it was shown in [11] that identifying f(·)
by minimizing a loss function of the error y(t) − f(φ(t)) is an
NP-hard problem in general. The main problem here is that the
regions and the model parameters in each region have to be
estimated simultaneously. Extensive surveys of recent methods
and results can be found in [12] and [13].

In [14], it was shown how the PWARX identification prob-
lem, under relatively mild conditions, can be reformulated as
a mixed-integer linear or quadratic program. However, even
though heuristic algorithms for solving such a program exist, the
associated problem is still NP-hard, and can be prohibitively time
consuming for larger data sets. In [15] and algebraic approach
was developed for the noise-free case, but the resulting method
is rather sensitive to noise compared to other approaches. To
deal with noisy data a bounded-error approach was proposed in
[16], which decides the number of regions by a user-specified
bound on the prediction error. This results in an NP-hard op-
timization problem, which is solved using a greedy algorithm
that finds a suboptimal solution.

If the regions are given, the problem is reduced to finding
the linear submodels for each region. Different heuristics for
an initial clustering of the data into regions have been sug-
gested in the literature, such as the k-means like method in
[17], and an expectation maximization method in [18]. In [19]
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a Bayesian approach was used that alternates between updating
the submodels and assigning new samples to each cluster in a
greedy manner. A similar approach was taken in [20], where a
recursive method was developed in which each new sample is
assigned to a region and then the corresponding parameters are
locally optimized. Common to these methods is that they find
suboptimal solutions, and that good initializations and choice
of user parameters are typically needed in order to get a good
estimate.

The approach recently proposed in [21] estimates a linear
submodel for each observation and penalizes the number of
unique submodels. Such a penalization leads to a regularized
nonconvex optimization problem, but a convex relaxation using
a weighted sum of norms was proposed to tackle it. The unique
solution to the relaxed problem is, however, highly dependent on
carefully selecting the regularization parameters. Furthermore,
as the number of model parameters increases with the number of
data points, the computational requirements become prohibitive
for large data records.

The method proposed in this paper is based on selecting
a set of linearization points of the nonlinear system (1) and
then identifying a corresponding set of locally linear model
parameters. The method has the following features:

� It is based on a convex optimization problem.
� The problem is statistically motivated and tuning-

parameter free.
� The solution can be computed recursively.
Jointly these features address important limitations of the

aforementioned existing methods. The set of linearization
points, which form the regions of the local linear models, are se-
lected using a data-adaptive clustering technique. This is similar
to the approach in [17] and [18]. However, while those methods
are constructed for cases with few clusters, the proposed method
uses a likelihood-based approach, in which regions with simi-
lar dynamics are automatically penalized and pruned out—thus
allowing the user to initially overparameterize the model. At
the same time, this approach eliminates the need for carefully
tuned user parameters as in e.g. [21]. The proposed method au-
tomatically identifies a predictive PWARX model of the nonlinear
system after selecting the model order and the number of lin-
earization points. Furthermore, the resulting convex problem is
solved with a complexity that grows linearly with the number of
data points and the solution method is therefore well-equipped
to tackle large datasets.

The paper is organized as follows. The model and problem
formulation are presented in Section II, followed by a discussion
about selecting the linearization points in Section III. The pro-
posed identification method is presented in Section IV together
with a discussion about different regularization techniques. A
summary of the proposed method is presented in Section V.
Finally, in Section VI, the proposed method is tested on both
simulated and real data sets.

Remark: In the interest of reproducible research we have
made the MATLAB code for the proposed method available at
http://www.it.uu.se/katalog/davza513.

Notation: ‖ · ‖1 , ‖ · ‖2 and ‖ · ‖F denote the �1 , �2 and Frobe-
nius norms, respectively. x � y is the elementwise (Hadamard)

product between vectors x and y. Finally, X− denotes the gen-
eralized inverse of matrix X .

Abbreviations: Autoregressive with exogenous input (ARX),
nonlinear ARX (NARX), piecewise ARX (PWARX), least-squares
(LS), least absolute shrinkage and selection operator (LASSO),
maximum aposteriori (MAP).

II. THE PWARX MODEL

Let us first consider an affine ARX model, i.e.,

y(t) = −
na∑

i=1

aiy(t − i) +
nb∑

j=1

bju(t − j) + c + e(t), (3)

where {ai} and {bj} are the model coefficients, c is a constant
and e(t) is a zero-mean white process with unknown variance
σ2 . The affine equation (3) can also be written in a linear re-
gression form [22], i.e.,

y(t) = φ�(t)ϑ + e(t), (4)

where

ϑ =
[
a1 · · · ana

b1 · · · bnb
c
]�

(5)

is a vector of d = na + nb + 1 parameters and φ(t) is given in
(2). For large enough na and nb , ARX models can be used to
approximate any linear system [23].

Affine system models as in (4) are also useful as local approx-
imations of nonlinear systems, but they cannot capture nonlinear
dynamics. However, if the parameter vector ϑ is allowed to de-
pend on the region in the regressor space Rd to which φ(t)
belongs, then models with good approximation properties can
be constructed [6], [7], [20]. Models of this type are called
PWARX.

In order to formally define PWARX models, partition the re-
gressor space Rd into nr regions R1 , . . . ,Rnr

, and let (na , nb)
be the maximum model orders for all regions. Then the PWARX

model can be expressed as

y(t) = φ�(t)ϑi + e(t), if φ(t) ∈ Ri , (6)

where the parameter vector ϑi describes the dynamics in region
Ri . This is a nonlinear model that is piecewise affine in the
regressor space.

Even though (6) is a nonlinear model, it can be formulated as
a linear regression if the regions Ri are given. This is done by
stacking the parameter vectors on top of each other, i.e.,

y(t) = ϕ�(t)θ + e(t), (7)

where

θ =

⎡

⎢⎢⎢⎣

...

ϑi

...

⎤

⎥⎥⎥⎦ ∈ Rnr d , ϕ(t) =

⎡

⎢⎢⎢⎣

...

fi (φ(t))
...

⎤

⎥⎥⎥⎦ ∈ Rnr d , (8)

and fi is an indicator function

fi (φ(t)) =

{
φ(t) if φ(t) ∈ Ri

0 otherwise.
(9)
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Given N samples of y(t) and u(t), the problem is to find the
parameter vector θ in (7). However, in general the regionsRi are
not given beforehand. This is certainly the case when the PWARX

model is used to approximate a general nonlinear system. To
tackle this practical case, one approach is to overparameterize
the model in (7), by choosing nr to be large and thus yielding a
fine partitioning of the regressor space. This approach is pursued
here.

In an overparameterized model, the standard least-squares
(LS) method is inadequate without regularization. Different reg-
ularization approaches are discussed in Section IV, where a
recursive user parameter-free method is proposed.

Remark: In this paper we focus on the PWARX model structure.
However, the method proposed in Section V is not restricted to
regressors of the form (2). In fact, any regressor φ(t) that can be
computed from y(1), . . . , y(t − 1) and u(1), . . . , u(t − 1) can
be used.

III. SELECTION OF THE LINEARIZATION POINTS

In [20], it was shown how a general nonlinear ARX (NARX)
model (1) can be approximated by a PWARX model. The strategy
is to linearize f(φ) around a set of points μ1 , . . . , μnr

∈ Rd , and
then let the linearized submodel around μi be used in the region

Ri =
{
φ ∈ Rd | ‖φ − μi‖2 ≤ ‖φ − μj‖2 , ∀j

}
, (10)

which is a convex polyhedron. The linearization point μi is the
centroid of the regionRi ⊂ Rd . Hence, in order to determine the
regions R1 , . . . ,Rnr

it is sufficient to choose the linearization
points of the model.

In general, however, there is no prior information about how
many linearization points that are needed in order to get a good
approximation of the NARX model. As mentioned in Section II,
the approach taken in this contribution is to choose a ‘large’ nr .
A reasonable choice is to let the number of parameters nrd be
of the same order as N . If nrd exceeded N the identification
problem would become underdetermined. Note also that a prac-
tical upper limit on nr is set by the computational requirements
of the identification method.

The next problem is to decide around which points the model
should be linearized, i.e., where to place μi . This can be done in
several ways. One approach is to let each observed regression
vector φ(t) be a linearization point, thus creating one region
for each observation (hence nr = N ), cf. [21]. In this case the
number of parameters nrd to estimate will grow linearly with N ,
which renders the identification problems intractable for large
datasets.

For a fixed nr , an alternative approach is to arrange the lin-
earization points μi in a uniform lattice covering the interesting
part of the regressor space, thus giving nr rectangular lineariza-
tion regions. However, such a partitioning does not take into
account that different parts of the regressor space will contain
more data than others, and hence they will be more informative.

A common approach to cluster data is to use k-means cluster-
ing [24]. In this approach, the observed regression vectors φ(t)
are clustered into nr sets {S1 , . . . , Snr

}, that are obtained by

solving the following problem:

min
S1 ,...,Sn r

nr∑

i=1

∑

φ(t)∈Si

‖φ(t) − μi‖2
2 ,

where the linearization points {μi} are the means of each set of
discrete points Si , i.e.,

μi =
1

|Si |
∑

φ(t)∈Si

φ(t).

This is an NP-hard problem, but efficient heuristic algorithms
exist which scale well with the dataset size [25]–[27]. The re-
gions are then determined by the resulting linearization points
together with (10). Using k-means clustering leads to a data-
adaptive partioning of the regressor space.

Alternatives to the k-means approach include variants of hier-
archical clustering and the k-harmonic means method [28], [29].
Hierarchical clustering provides clusters with varying granu-
larity but is more computationally complex than the k-means
approach.

Remark 1: If the observed data were generated by a PWARX

model, with the number of regions being known, the regions
found by e.g. k-means usually would not be the same as the true
regions. For this reason it is desirable to use a fine partitioning,
i.e. choose nr to be significantly larger than the true number of
regions.

Remark 2: Using rectangular linearization regions Ri simpli-
fies the implementation of the identification methods discussed
below. When k-means is used, this can be achieved by per-
forming the clustering in each dimension of Rd separately. This
method has been used in the numerical examples below.

IV. IDENTIFICATION METHOD

By stacking N samples of y(t) into a vector y and the corre-
sponding regressor row vectors ϕ�(t) into an N × nrd matrix
Φ, we can write (7) as

y = Φθ + e,

where e is the noise with Ee [e] = 0 and Ee [ee�] = σ2IN , and θ
contains the nrd parameters of interest. A wide class of tractable
parameter estimators is obtained by the minimization of a sum
of two scalar cost functions

θ̂ = arg min
θ

Vr (θ) + Vc(θ), (11)

where Vr (θ) is a cost of the residuals, y − Φθ, and Vc(θ) is a
cost of the model complexity. The complexity can be quantified
in various ways, taking into account the model order as well as
the number of distinct regions.

A. Deterministic Approaches

We first consider θ to be an unknown deterministic parameter
vector. Then the well-studied LS method is obtained by setting

Vr (θ) = ‖y − Φθ‖2
2 , Vc(θ) = 0,

in (11). Under favourable conditions with a sufficient number
of samples in each region Rj , and well-exciting signals, the
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regressor matrix Φ has full rank, yielding a unique solution
[22]. For the model under consideration, however, nrd can be
large making it difficult or impossible to guarantee that there
are N ≥ nrd samples covering all regions. In such cases the LS

method is inadequate, producing either a nonunique solution or
estimation errors with high variance due to overfitting.

By introducing a cost of complexity, the LS method can be
biased towards some prior knowledge of the parameter vec-
tor so as to alleviate the problem of overfitting. The standard
regularized least-squares (REG-LS) sets

Vr (θ) = ‖y − Φθ‖2
2 , Vc(θ) = ‖θ‖2

Λ ,

where Λ 
 0 is a weighting matrix. Alternatively, for the LASSO

method

Vr (θ) = ‖y − Φθ‖2
2 , Vc(θ) = λ‖θ‖1 ,

where λ > 0 is a weight. Both REG-LS and LASSO are convex
problems and they can be solved by means of a recursive imple-
mentation [22], [30]–[32]. Their cost functions Vc(θ) penalize
coefficients in θ̂ that deviate from 0. This may be suitable for
penalizing the model order of ARX but is not appropriate for the
PWARX model under consideration since the parameter vector
(8) is not sparse.

A more appropriate cost of complexity for PWARX models was
suggested in [21]. The idea is to exploit the fact that in a finely
partitioned regressor space, neighbouring regions Ri are likely
to exhibit similar dynamics. In [21] the regions are chosen in
such a way that there is only one observed regressor φ(t) for each
region Ri . Hence, it is reasonable to assume that for many pairs
of regions, the corresponding parameter vectors should be nearly
the same, i.e., ‖ϑi − ϑj‖2 is close to zero. The method proposed
in [21] makes use of a sum-of-norms regularization of the least-
squares method (SNR-LS), that penalizes the weighted norms of
all pairwise differences ‖ϑi − ϑj‖2 , and it corresponds to:

Vr (θ) = ‖y − Φθ‖2
2 , (12)

Vc(θ) = λ

nr∑

i=1

nr∑

j=1

K(i, j)‖ϑi − ϑj‖2 , (13)

where K(·, ·) is some user-defined kernel and λ > 0 is a weight.
Unlike for REG-LS and LASSO, there is no recursive imple-

mentation of SNR-LS available in the literature which renders it
computationally intractable for large N . Furthermore, the above
three regularized identification methods share a central draw-
back in that they require the user to tune a set of parameters,
which can be somewhat impractical.

B. Stochastic Approaches

We now consider θ to be a random variable with a distri-
bution pθ (θ) such that Eθ [θ] = μθ and Covθ [θ] = Pθ 
 0. We
also consider a distributional form of the independent white pro-
cess e(t) ∼ pe(e(t)|yt−1), where yt−1 = {y(k)}t−1

k=1 . Here we
assume Gaussian distributions, due to the resulting tractability
and robustness of the estimator [33], [34].

The maximum a posterior (MAP) estimator is obtained by
maximizing p(θ|y) [35]. We note that

p(y(t)|yt−1 , θ) = pe(y(t) − ϕ�(t)θ|yt−1).

By a recursive application of the chain rule we therefore obtain
the likelihood function

p(y|θ) =
N∏

t=1

p(y(t)|yt−1 , θ)

=
N∏

t=1

pe(y(t) − ϕ�(t)θ|yt−1), (14)

where

pe(y(t) − ϕ�(t)θ|yt−1) ∝ exp
(
− (y(t) − ϕ�(t)θ)2

2σ2

)
.

The logarithm of the sought posterior distribution equals

ln p(θ|y) = ln p(y|θ) + ln pθ (θ) + K1

= −
N∑

k=1

(y(t) − ϕ�(t)θ)2

2σ2

− 1
2
(θ − μθ )�P−1

θ (θ − μθ ) + K2

= −1
2

(
σ−2‖y − Φθ‖2

2 + ‖θ − μθ‖2
P −1

θ

)
+ K3 ,

(15)

where the K : s are constant w.r.t θ. Therefore the maximization
of (15) is equivalent to (11) with

Vr (θ) = σ−2‖y − Φθ‖2
2 , Vc(θ) = ‖θ − μθ‖2

P −1
θ

. (16)

The parameters σ2 , μθ and Pθ are however unknown. These
would therefore be tuning parameters in any practical scenario.
We now propose a tractable and statistically motivated method
to automatically estimate the unknown parameters.

C. Proposed Method

The MAP estimator can be expressed in an alternative way,
by means of a reparameterization of θ. Let the parameters cor-
responding to a specific linearization region R� be denoted as
ϑ� . Consider this region to be the reference and let the parame-
ters of the remaining regions be formed by a set of differences
{δj}q

j=1 from ϑ� . Here we consider q = nr − 1, although other
alternatives are possible. It is reasonable to assume a priori that
the reference ϑ� and the q differences δ = [δ�1 , . . . , δ�q ]� are
uncorrelated.

Any given ordering of the regions is possible. In general, θ, δ
and ϑ� are related by a given linear transformation D, such that

θ = D

[
ϑ�

δ

]
,

and correspondingly

μθ = D

[
μ�

μδ

]
, Pθ = D

[
P� 0
0 Pδ

]
D�.
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As an example, consider q = nr − 1 incremental differences
and let ϑ� = ϑ1 so that we can write the parameters for each
region as a cumulative sum

ϑ2 = ϑ� + δ1

ϑ3 = ϑ� + δ1 + δ2

...

ϑnr
= ϑ� + δ1 + δ2 + · · · + δnr −1 .

For this example the incremental difference matrix becomes

D =

⎡

⎢⎢⎢⎢⎢⎣

I 0 0 · · · 0
I I 0 · · · 0
...

...
. . . 0

I I I · · · I

⎤

⎥⎥⎥⎥⎥⎦
.

Given the general linear relation between θ, δ and ϑ� , the
MAP estimates ϑ̂� and δ̂ are obtained as:

min
ϑ� , δ

σ−2

∥∥∥∥∥y − ΦD

[
ϑ�

δ

]∥∥∥∥∥

2

2

+ ‖ϑ� − μ�‖2
P −1

�
+ ‖δ − μδ‖2

P −1
δ

, (17)

and they yields an estimate θ

θ̂ = D

[
ϑ̂�

δ̂

]
.

When D is an invertible transformation, as in the example above,
θ̂ is equivalent to the MAP estimator given by (11) and (16).

We consider the following model choices for the statistical
moments:

(i) No prior knowledge of the reference ϑ� is assumed. This
ignorance can be modeled using a noninformative prior
pϑ (ϑ�) = const., viz. by setting P� = λId with λ → ∞,
so that P−1

� → 0 and μ� is eliminated from (17).
(ii) Given the assumption that most regions share similar

dynamics, prior knowledge on the cumulative differ-
ences pδ (δ) takes the form of a prior mean μδ = 0 with
unknown covariance Pδ .

(iii) For reasons of parsimony, we let Pδ be diagonal, i.e.
assuming no correlations between the differences prior
to observing the data. Note that Pδ is an auxiliary vari-
able, irrespective of any ‘true’ covariance of δ which is
naturally unknown.

Let ΦD = [F G] where the blocks F and G contain the data
and correspond to ϑ� and δ, respectively. Given the lack of prior
knowledge on ϑ� (see (i) above), the minimizers in (17) can be
written as

ϑ̂� = (F�C−1F )−F�C−1y

δ̂ = PδG
�C−1(y − Fϑ̂�), (18)

where

C � GPδG
� + σ2IN .

Note that δ̂ is always unique and ϑ̂� is unique when F has full
rank [36].

Following [37], [38], the unknown covariance parameters σ2

and Pδ can be estimated jointly by maximizing the marginal
likelihood function

p(y|ϑ� ;σ2 , Pδ ) =
∫

p(y|ϑ�, δ;σ2)pδ (δ;Pδ )dδ, (19)

where p(y|ϑ�, δ;σ2) follows from (14). Then we obtain the
following distributions

p(y|ϑ�, δ;σ2) ∝ exp
(
− 1

2σ2 ‖y − Fϑ� − Gδ‖2
2

)
, (20)

pδ (δ;Pδ ) ∝ exp
(
−1

2
‖δ‖2

P −1
δ

)
. (21)

After inserting the expressions into (19) we obtain, as we show
in Appendix A

p(y|ϑ� ;σ2 , Pδ ) =
1√

(2π)N |C|
exp
(
−1

2
‖y − Fϑ�‖2

C −1

)
.

Maximizing the marginal likelihood is equivalent to solving

min
ϑ� ,σ 2 ,Pδ

(y − Fϑ�)�C−1(y − Fϑ�) + ln |C| (22)

and results in estimates of Pδ and σ2 which can be used in (17).
While this method avoids a heuristic tuning of user parame-
ters, it has multiple local optima issues and cannot readily be
implemented recursively. We therefore consider linearizing the
concave function ln |C|.

For the sake of parsimony, choose P̃δ = 0 and an arbitrary
variance σ̃2 = c as the linearization point. Then we obtain the
first-order approximation

ln |C| � 1
c

tr {C} + K, (23)

where c and K are constants, as shown in Appendix B. The right
hand side of (23) is convex in Pδ and σ2 , cf. [39], [40]. Note that
this linearization is valid for all P̃δ and σ̃2 such that C = cI .
After linearization, the following convex problem is obtained

min
ϑ� ,σ 2 ,Pδ

(y − Fϑ�)�C−1(y − Fϑ�) +
1
c

tr{C}. (24)

Lemma 1: The minimizer ϑ̂� of (24) is invariant to the choice
of c > 0.

Proof: See (18) and [40], [41]. �
Theorem 1: The estimators in (18), using the covariance pa-

rameters obtained from (24), can be computed as the solution to
the following augmented minimization problem

min
ϑ� ,δ,σ 2 ,Pδ

σ−2 ‖y − Fϑ� − Gδ‖2
2 + ‖δ‖2

P −1
δ

+ tr{GPδG
� + σ2IN }. (25)

Proof: The minimizers ϑ̂� and δ̂ in (25) equal the expressions
in (18). After concentrating out δ in (25) one obtains (24) with
c = 1. It follows from Lemma 1 that the minimizer ϑ̂� of (25)
is equal to that in (24) for any c > 0. �
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The minimizing covariance parameters in (25) are given in
closed form as

σ̂2 = ‖y − Fϑ� − Gδ‖2/
√

N

[P̂δ ]ii = |[δ]i |/‖[G]i‖2 , i = 1, . . . , qd, (26)

where [δ]i and [G]i denote the ith element of δ and the ith column
of G. Define the (q + 1)d-dimensional parameter vector

θ̃ �
[

ϑ�

δ

]
and H � ΦD.

Then inserting (26) into (17) yields a concentrated cost function
that can be written in the compact form of (11), with

Vr (θ̃) = ‖y − Hθ̃‖2 , Vc(θ̃) = ‖w � θ̃‖1 , (27)

and

w =
1√
N

[
0, . . . , 0, ‖hd+1‖2 , ‖hd+2‖2 , . . . , ‖h(q+1)d‖2

]�
.

Here hi denotes the ith column of H . The estimator of θ using

the likelihood-based approach is then given by θ̂ = D
ˆ̃
θ. Note

that the method based on (27) uses the norm of the residual vec-
tor as a cost, Vr (θ̃), which is the square-root of the cost used in
LS, REG-LS, LASSO and SNR-LS. Further, the cost of model com-
plexity Vc(θ̃) penalizes the parameter differences between the
regions using an adaptively weighted �1-norm. Consequently,
the method yields sparse estimates of δ with few elements sig-
nificantly different from zero. That is, only few regions will have
rather dissimilar dynamics.

V. SUMMARY OF THE PROPOSED METHOD

In this section, the resulting recursive identification method
using locally linearized models (RILL) is summarized (af-
ter forming the regressor vectors {φ(t)}N

t=1 from the data
{u(t), y(t)}N

t=1 ):
1) Set the model orders na and nb and choose nr .
2) Choose the nr linearization points using {φ(t)}N

t=1 .
3) Construct incremental difference matrix D.
4) Solve problem (11) with (27) recursively.

5) Finally compute θ̂ = D
ˆ̃
θ.

The optimization problem in Step 4 requires no tuning param-
eters, and as shown in Section V-B, it can be solved recursively
with the same computational complexity as REG-LS and LASSO,
which is linear in N .

In Step 1, the model integer parameters have to be decided.
One possible method for this is to perform cross-validation on
the data set {u(t), y(t)}N

t=1 . That is, use the first N ′ samples to
identify the model for a given triplet. Then, predict the output
of the remaining N − N ′ samples, ŷ(t) = ϕ�(t)θ̂, via (7) and
choose the triplet which yields the minimum sum of squared
output errors.

In Step 2–3, the linearization points and the difference matrix
D have to be chosen. This can be done in many ways, but in
Section V-A we discuss a standard way of doing this that reduces
the number of choices that has to be made by the user.

Fig. 1. Stylized example of the linearization regions and parameterization
used, where nr = 9 (3 × 3 grid). The middle region is chosen as the reference
R� with ϑ� , and the differences δj as illustrated.

A. Incremental Differences

In this paper we choose the regions as in (10), and thus Step 2
in the proposed method amounts to choosing a set of lineariza-
tion points μi . In the case there is no prior knowledge to use in
the selection of linearization points, we propose to place them in
a lattice using k-means clustering in each dimension separately.
This yields rectangular linearization regions, and as we will see
this simplifies the selection of the difference matrix D. Also,
using k-means ensures that the data is well spread across the
regions.

In Step 3 the difference matrix D has to be determined. The
parameterization we propose to use is illustrated in Fig. 1 for
the case when the linearization regions are divided only with
respect to the current input and output, i.e. u(t) and y(t). That
is, let the middle region correspond to ϑ� , and let the incremen-
tal differences δi extend either vertically or horizontally. This
generalizes into higher dimensions if needed. Thus, the only
choice the user has to make is the size of the grid and in which
direction the differences should extend, where the latter choice
is binary.

B. Recursive Formulation

A similar optimization problem to that considered here was
solved numerically in [41] but for a different regression problem.
This type of solving technique is employed in Step 4 above. The
convex optimization problem given by (11) and (27) can be
solved recursively via a cyclic minimization approach, which
minimizes the cost function with respect to one variable θ̃i at
a time, while holding the remaining ones constant [42]. That
is, we solve following the convex problem cyclically for i =
1, . . . , (q + 1)d:

min
θ̃ i

‖ȳi − hiθ̃i‖2 + wi |θ̃i |, (28)
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where ȳi = y −
∑

j �=i hj θ̃j . Let ˇ̃
θi denote the current estimate.

Define the quantities

ΓN � H�H

ρN � H�y

κN � y�y.

Then the minimizer of (28) for i = 1, . . . , d equals

ˆ̃
θi =

ζi + ΓN
ii

ˇ̃
θi

ΓN
ii

, (29)

where we define the cyclically computed variable

ζ � ρN − ΓN ˇ̃
θ.

For i = d + 1, . . . , (q + 1)d, the minimizer of (28) takes the
form

ˆ̃
θi =

{
r̂ie

j ω̂ i , if
√

N − 1γi >
√

αiβi − γ2
i

0, else,
(30)

via a reparameterization of θ̃i in polar form, where

αi = η + ΓN
ii (ˇ̃θi)2 + 2ˇ̃

θiζi

βi = ΓN
ii

γi = |ζi + ΓN
ii

ˇ̃
θi |

r̂i =
γi

βi
− 1

βi

(
αiβi − γ2

i

N − 1

)1/2

ω̂i = arg(ζi + ΓN
ii

ˇ̃
θi) (31)

and

η � κN + ˇ̃
θ�ΓN ˇ̃

θ − 2ˇ̃
θ�ρN .

Note that the following variables can be computed recursively

Γt � Γt−1 + D�ϕ(t)ϕ�(t)D

ρt � ρt−1 + D�ϕ(t)y(t)

κt � κt−1 + y(t)2 ,

where t = 1, . . . , N .
This enables the online computation of the estimate of θ̃ for

each new sample y(t) and ϕ(t), as summarized in Algorithm 1
where we have dropped the superindices for notational conve-
nience and we replace N with t in (29)–(31). See [41] for fur-
ther details. Algorithm 1 computes an estimate of θ̃ for each t by
cyclically minimizing (28). When new data (y(t + 1), ϕ(t + 1))
arrives, the quantities Γ, ρ, κ are recursively updated and the
cyclic minimization can be performed for step t + 1.

The total computational complexity is O(NLq2d2), where L
is the number of iterations performed per sample. As L → ∞,
the estimate converges to the minimizer of the convex problem
in (11) and (27) for each t [43]. In practice, however, even a
small L works well since we cycle all parameters L times for
each new data sample, so in total each parameter gets updated
NL times. In numerical experiments it has been seen that L = 1

Algorithm 1: Recursive solution to (11) with (27).

1: Input: y(t), ϕ(t) and ˇ̃
θ

2: Γ := Γ + D�ϕ(t)ϕ�(t)D
3: ρ := ρ + D�ϕ(t)y(t)
4: κ := κ + y(t)2

5: η = κ + ˇ̃
θ�Γˇ̃

θ − 2ˇ̃
θ�ρ

6: ζ = ρ − Γˇ̃
θ

7: repeat
8: i = 1, . . . , (q + 1)d
9: Compute scalars in (31)

10: Compute ˆ̃
θi using (29) (i ≤ d) otherwise (30)

11: η := η + Γii(
ˇ̃
θi − ˆ̃

θi)2 + 2(ˇ̃θi − ˆ̃
θi)ζi

12: ζ := ζ + [Γ]i(
ˇ̃
θi − ˆ̃

θi)

13: ˇ̃
θi := ˆ̃

θi

14: until number of iterations equals L

15: Output: ˆ̃
θ

produces good results when N is sufficiently large. For small N ,
we found that increasing L to about 5 results in good estimates.

VI. NUMERICAL EVALUATION

RILL has been evaluated on several numerical examples. In
Sections VI-C and VI-D, two simulated PWARX models are
identified. In Sections VI-E and VI-F, real data from a pick-
and-place machine and a water tank are considered. These latter
examples illustrate the utility of the locally linearized submodels
for identification of real nonlinear systems.

A. Performance Metric

In the first two examples of this section the data is generated
by a PWARX model, and thus there are true regions R0

1 , . . . ,R0
n0

r

and a true parameter vector θ0 . However, since the regions used
in the identification part, R1 , . . . ,Rnr

, are not the same as
the true regions, and nr > n0

r , it is not possible to compare
the parameter vector θ0 and the identified parameter vector θ̂
directly. Instead we evaluate the identification methods with
respect to the model output

ŷ(t; θ) = φ̂�(t; θ)ϑi, if φ̂(t) ∈ Ri , i = 1, . . . , nr

where

φ̂(t; θ) = [−ŷ(t − 1; θ) · · · − ŷ(t − na ; θ)

u(t − 1) · · · u(t − nb) 1]�

for t > max(na , nb) and a given input signal u(t). The perfor-
mance is then evaluated by the sum of mean square errors on a
validation dataset of T samples,

MSE =
T∑

t=1

E
[
(y(t) − ŷ(t; θ̂))2

]
.

For the sake of comparison we normalize the error as

NMSE =
MSE
MSE0

,
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where MSE0 is the mean square error corresponding to the true
parameter vector and true regions R0

i , cf. [44],

MSE0 =
T∑

t=1

E
[
(y(t) − ŷ(t; θ0))2] .

The expectations are evaluated numerically using 1000 Monte
Carlo simulations.

For the real datasets considered below, NMSE is not defined
because θ0 does not exist nor can we evaluate the mean-square
error. For these sets we use a metric that compares the output er-
rors with those obtained using the empirical mean as a predictor,
viz.

FIT = 100
(

1 − ‖y − ŷ‖2

‖y − ȳ1‖2

)
,

where ŷ contains the model output, ȳ is the empirical mean of
y and 1 is a vector of ones.

B. Setup of Identification Methods

In this section we will describe how the numerical experi-
ments were conducted. Three methods have been used: RILL,
SNR-LS [21] and the affine ARX model in (3).

For RILL we follow the steps in Section V. In particular, we
have chosen the linearization points and incremental differences
as described in Section V-A. For all examples we have used a
9 × 9 grid of linearization points. Therefore only the model
orders na , nb and the vertical/horizontal orientation of the dif-
ferences have to be chosen.

The SNR-LS method in [21] uses a sum of-norm-
regularization as in (12)–(13). For the kernel we used the one
suggested in [21], i.e.,

K�(i, j) =

⎧
⎨

⎩

1, if φ(i) is one of the � closest neighbors of
φ(j) among all observations,

0, otherwise.
(32)

In this method the user has to specify the regularization pa-
rameter λ and �. In each example we have manually tuned λ

with respect to NMSE. The optimization problem has then been
solved using a CVX-based implementation [45], [46] provided
by the authors of [21]. As the number of parameters to esti-
mate increases with the number of observed data points N ,
we observed a rapid rise in the runtime of this algorithm. For
N > 650, the Monte Carlo simulations required to evaluate the
NMSE became intractable and for N ≥ 1000 the memory re-
quirement became infeasible. Therefore this method was only
tested on smaller data sets. For RILL we observed a runtime that
is linear in N as expected by analysis in Section V-B.

The last step in the SNR-LS approach is to divide the regressor
space into regions. The authors of [21] suggest using e.g. a
support vector machine (SVM), but note that such an approach
is not suitable for more complicated regions. We found that
indeed SVM approach does not always yield a desired number of
regions. Therefore we opted for using the more general nearest
neighbour classifier [24].

TABLE I
NMSE IN EXAMPLE IN SECTION VI-C

The affine ARX models have been estimated by the standard
LS method [22].

Finally, an important part of the experimental setup is the
choice of input signal. In identification of linear models the
importance of persistent excitation is well understood, see e.g.
[22]. A commonly used input signal for identification of linear
models is a pseudorandom binary sequence (PRBS), which is
a signal that shifts between two levels in a certain fashion.
One reason for using a PRBS is that it has similar correlation
properties to white noise [22].

For PWARX identification it is also important that the signals
significantly vary in amplitude, since otherwise most regions
will have no data. In this way PWARX identification has much in
common with identification of Hammerstein and Wiener mod-
els [47], [48]. The problem with a PRBS sequence is that it is
poorly distributed in amplitude. A remedy to this problem is
to multiply the signal in each interval of constant level with a
random uniformly distributed factor, cf. [49]. This type of input
signal has previously been used in e.g. Wiener model identifi-
cation, and is also used in three of the numerical examples in
this section.

C. Hammerstein System

Consider the system

y(t) = −0.5y(t − 1) − 0.1y(t − 2) + v(t − 1) + e(t), (33)

where v(t) is a saturated version of u(t),

v(t) =

⎧
⎪⎨

⎪⎩

1 if u(t) ≥ 1

u(t) if − 1 ≤ u(t) ≤ 1

−1 if u(t) < −1.

(34)

Here (n0
a , n0

b , n
0
r ) = (2, 1, 3). This type of system, with a static

nonlinear block followed by a linear dynamic block, is com-
monly referred to as a Hammerstein system. The input u(t) was
a zero-mean white Gaussian process with variance 4, and the
process noise e(t) was white Gaussian with variance 0.04. This
same setup was used in [18] and [21]. The system was identi-
fied using RILL, SNR-LS, and the affine ARX model. The model
orders na, nb where chosen equal to the true model orders for
all methods.

For RILL, we used nr = 81 regions for which the differences
extend vertically, see Section VI-B.

For the SNR-LS method we let � = 8 in (32), as in the corre-
sponding example found in [21]. For the regularization weight,
we chose λ = 0.08 which produced a lower NMSE than the
value used in [21].

The NMSE was computed for N equal to 250, 500 and 1000.
The results are shown in Table I. As noted in Section VI-B, we
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Fig. 2. A input-output realization of (35) with noise (blue dashed), without noise (blue solid); also the output of the model identified by RILL using N = 500
samples (red).

were unable to evaluate SNR-LS for N ≥ 650. The ARX model is,
as expected, outperformed by both SNR-LS and RILL. For RILL

no particular tuning was used except for choosing the direction
of the differences. Nevertheless, it performs better than SNR-LS.
Moreover, if it is known that the system has a Hammerstein
structure then this prior knowledge can be exploited by RILL

by only partitioning the regressor space along the u-dimension.
Using nr = 81 as above, the NMSE of RILL is then reduced to
1.14 already for N = 500.

D. Piecewise Affine ARX System

For the Hammerstein system in example in Section VI-C the
poles in each region of the regressor space are the same. By
contrast, consider the following PWARX system,

y(t) =

⎧
⎪⎪⎨

⎪⎪⎩

y(t − 1) − 0.5y(t − 2) if y(t − 1) ≤ 0.3
+ 0.5v(t − 1) + e(t),

1.2y(t − 1) − 0.35y(t − 2) if y(t − 1) > 0.3
+ 0.15v(t − 1) + e(t)

(35)
where v(t) is again a saturated version of u(t),

v(t) =

⎧
⎪⎨

⎪⎩

0.8 if u(t) ≥ 0.8

u(t) if − 0.8 ≤ u(t) ≤ 0.8

−0.8 if u(t) < −0.8.

Here (n0
a , n0

b , n
0
r ) = (2, 1, 6). Note that both linear subsystems

in (35) have a static gain equal to one, but the poles are real for
y(t) ≥ 0.3 and complex when y(t) goes below 0.3. In the simu-
lations, e(t) was chosen as white Gaussian noise with variance
0.01. The input signal u(t) was chosen as a modified PRBS, as
described in Section VI-B.

The model orders na, nb where chosen equal to the true model
orders for all three identification methods. For RILL, we used
nr = 81 linearization points, for which the differences extend
horizontally, see Section VI-B. For the SNR-LS method we let
� = 8 in (32), and tuned the regularization weight to λ = 0.05.

TABLE II
NMSE IN EXAMPLE IN SECTION VI-D

The results for N equal to 250, 500 and 1000 are shown in
Table II. As noted in Section VI-B, we were unable to eval-
uate SNR-LS for N ≥ 650. As in example in Section VI-C,
the affine ARX model is outperformed by both SNR-LS and the
RILL. Similarly, RILL performs better than SNR-LS. Note that in
both examples we obtain similar performance as SNR-LS with
N = 500 using only N = 250 data samples.

Fig. 2 shows a realization of (35) together with the model
output using the parameters identified with RILL using N = 500
samples. For the sake of clarity we also show the same output
realization when there is no process noise, it can be seen that
the identified model follows the noise-free output quite well.

E. Pick-and-Place Machine

In this example, a pick-and-place machine is studied. This
machine is used to place electronic components on a circuit
board, and is described in detail in [50]. The machine can be in
several different modes, with two major modes being the free
mode and the impact mode. In the free mode, the machine is
carrying an electronic component, but is not in contact with the
circuit board. When the electronic component gets in contact
with the circuit board the system switches to impact mode.
Besides these modes, the system could also exhibit saturation,
etc. These characteristics of the machine have made it a popular
choice for studying identification methods for PWARX systems.
The data used here are from a real physical process, and were
also used in e.g. [16], [21], [51]. The data set consists of a 15 s
recording of the voltage input u(t) and the vertical position of
the mounting head y(t). The data were sampled at 50 Hz, and
the first 8s were used for identifying the model and the last 7 s
for validation.
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Fig. 3. The input/output data (blue) for example in Section VI-E plotted
together with the output of the model (red) identified by RILL. The system was
identified using the first 8 seconds of data.

Fig. 4. Output error for example in Section VI-E, both for the ARX model
identified using LS (blue) and the PWARX model identified by RILL (red).

The order of the PWARX model was set to na = 2 and nb = 2
as in [21] and for RILL we used nr = 81 linearization points,
for which the differences extend horizontally, cf. Section VI-B.
The input/output data are shown, together with the output of
the identified model, in Fig. 3. The fit to the validation data
was 79.4% for RILL, which is slightly better than the one of
78.6% reported in [21]. These results can be compared to the
fit achieved with an affine ARX model of the same order, which
was 73.2%. See Fig. 4 for a comparison of the output errors.

F. Tank Process

In this example a cascade tank process is studied. It consists
of two tanks mounted on top of each other, with free outlets. The
top tank is fed with water by a pump. The input signal is given
by the voltage applied to the pump, and the output consists of
the water level in the lower tank. The setup is described in more
detail in [49].

The input signal for the system was a modified PRBS as de-
scribed in Section VI-B. The data set consists of 2500 samples
collected every five seconds. The identification was performed
using na = 4 and nb = 2 and nr = 81 linearization points, for
which the differences extend horizontally, cf. Section VI-B. The
input/output data are shown, together with the output of the iden-
tified model, in Fig. 5. The first 1250 samples where used for
identification, and the last 1250 samples for validation. The fit to
the validation data was 86.9% for RILL, which can be compared
to the fit achieved with an affine ARX model which was 77.4%.
See Fig. 6 for a comparison of the output errors.

Fig. 5. The input/output data (blue) for example in Section VI-F plotted
together with the output of the model identified by the RILL (red). The system
was identified using the first 6250 seconds of data.

Fig. 6. Output error for example in Section VI-F, both for the ARX model
identified using LS (blue) and the PWARX model identified by RILL (red).

VII. CONCLUSION

In this work we considered identification of nonlinear sys-
tems using piecewise linear models. We developed a recursive
method which solves a statistically motivated convex optimiza-
tion problem, avoids the tuning of user parameters, and has a
computational complexity that is linear in the number of data
samples. The proposed method uses a likelihood-based method-
ology which adaptively penalizes the complexity of a over-
parameterized sparse model. Both simulated and experimental
data were used to evaluate the proposed method and the results
showed that the method is a good candidate for application to a
wide range of nonlinear systems, including but not confined to
piecewise linear systems.

APPENDIX A
DERIVATION OF DISTRIBUTION

The sought-after distribution p(y;σ2 , Pδ ) is given by (19)–
(21). Note that p(y|ϑ�, δ;σ2) is not Gaussian since F and G
depends on y. We have

ln(p(y|ϑ�, δ;σ2)pδ (δ;Pδ ))

= α − 1
2

(
1
σ2 ‖y − Fϑ� − Gδ‖2

2 + ‖δ‖P −1
δ

)

= α − 1
2

(
‖δ − μ‖2

Σ−1 + ‖y − Fϑ�‖2
C −1

)
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where the matrix inversion lemma is utilized to show the second
equality. Here

α = −1
2

ln((2π)N +q (σ2)N |Pδ |)

C = GPδG
� + σ2I

Σ =
(
P−1

δ + σ−2G�G
)−1

μ = σ−2ΣG�(y − Fϑ�).

Since
∫

exp
(
−1

2
‖δ − μ‖2

Σ−1

)
dδ =

√
(2π)q |Σ|

it follows that

p(y|ϑ� ;σ2 , Pδ ) =
1√

(2π)N (σ2)N |Σ|−1 |Pδ |

× exp
(
−1

2
‖y − Fϑ�‖2

C −1

)
.

Since

|Σ|−1 |Pδ | = |Σ−1Pδ | = |I + σ−2PδG
�G|

= (σ2)−N |σ2I + GPδG
�| = (σ2)−N |C|

it follows that

p(y|ϑ� ;σ2 , Pδ ) =
1√

(2π)N |C|

× exp
(
−1

2
‖y − Fϑ�‖2

C −1

)
.

APPENDIX B
LINEARIZATION OF THE LOG-DETERMINANT

Let Pδ = diag(p) and denote the linearization point as p =
p̃ and σ2 = σ̃2 for which C = C̃. Then the first-order Taylor
expansion of the log-determinant can be written as

ln |C| � ln |C̃| + ∂p ln |C||C =C̃ (p − p̃)

+ ∂σ 2 ln |C||C =C̃ (σ2 − σ̃2). (36)

For the derivatives we have

∂ ln |C|
∂pi

= tr

{
C−1 ∂C

∂pi

}

= tr
{
C−1gig

�
i

}
,

where gi is the ith column of G. Similarly,

∂ ln |C|
∂σ2 = tr

{
C−1 ∂C

∂σ2

}

= tr
{
C−1} .

When p̃ and σ̃2 are chosen such that C̃ = cIN , then using the
derivative expression above in (36) gives

ln |C| �
∑

i

1
c

tr{gig
�
i pi} +

1
c

tr{σ2IN } + K

=
1
c

tr{GPδG
� + σ2IN } + K

=
1
c

tr{C} + K

which equals the expression in (23). Here K is a constant.
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