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Deterministic Blind Identification of IIR Systems
With Output-Switching Operations

Chengpu Yu, Lihua Xie, and Cishen Zhang

Abstract—In this paper, a deterministic blind identification
approach is proposed for linear output-switching systems, which
are modeled by multiple infinite impulse-response (IIR) dy-
namic functions. By adopting a new over-sampling strategy, the
concerned single-input–single-output (SISO) output-switching
system is equivalently transformed into a time-invariant multi-
input–multi-output (MIMO) system. Further, by exploring the
mutual relations among the multiple inputs, the time-invariant
MIMO system model and subsequently the output-switching
system model are identified uniquely up to a scalar constant using
the proposed identification approach. Sufficient identifiability con-
ditions are provided for output-switching systems and numerical
simulations are carried out to validate the proposed approach.

Index Terms—Blind identification, linear output-switching
system, over-sampling operation, polyphase decomposition.

I. INTRODUCTION

T HIS paper investigates the blind identification of linear
output-switching systems [1]. The output-switching

system is widely used in many areas, such as wireless com-
munications [2], [3], switching control [4]–[6], and circuit
modeling [7]. One significant feature of the output-switching
system is that only one communication channel is adopted to
transmit several system outputs, thus increasing the communi-
cation efficiency and reducing the number of communication
channels. Since a great number of system observations are
lost during the switch process, it imposes great challenges
to blindly identify the associated multiple transfer functions
without accessing the system input.
The output-switching system is one kind of linear period-

ically time-varying (LPTV) system and is more general than
the linear time-invariant (LTI) system. In the literature, there
are several blind identification approaches for LPTV systems
which can be generally classified into two categories: statistical
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methods [8]–[10] and deterministic methods [11], [12]. The sta-
tistical methods adopt statistical properties of the system input,
while the deterministic methods do not. When the system input
is an independent and identically distributed (i.i.d.) random
signal and its mean and variance are known as a priori knowl-
edge, a cyclic-moment based estimator was proposed in [13],
[14] which can identify both the associated exponential bases
and the channel functions. A multi-step linear predictor was
designed for the blind identification of LPTV SIMO systems
by assuming the system input to be white [8], [10]. A blind
channel identification and interference rejection method was
developed based on the assumption that the desired input and
interfering signals are mutually independent white noises [9].
Deterministic blind identification methods do not rely on the

statistical properties of the system input. There are a number of
deterministic blind identification methods for SIMO FIR sys-
tems, such as cross-relation method [15], subspace method [16],
least-square smoothing method [17] and so on. In contrast, not
much work has been done on deterministic identification of
LPTV (or output-switching) systems. A subspace-based deter-
ministic method was developed for LPTV SIMO systems that
are described by complex exponential basis expansion models
[11]. In [12], SIMO systems modeled by more general basis
functions are investigated; however, the multiple channels can
only be identified up to an ambiguity matrix.
In this paper, a deterministic blind identification method for

output-switching systems is developed. Using the over-sam-
pling strategy proposed in [18], the concerned output-switching
system is equivalently transformed into a time-invariant
multi-input multi-output (MIMO) FIR system for which the
transfer function matrix can be identified up to a constant
ambiguity matrix under some mild conditions. Further, using
the redundancy information introduced by the over-sampling
operation, both the autoregressive parts of the involved transfer
functions and the ambiguity matrix are identified by the pro-
posed method. Although the over-sampling strategy proposed
in our previous works [18], [19] is adopted here, the consid-
ered identification problem differs from those in [18], [19]:
the output-switching system with multiple time-varying IIR
transfer functions is considered in this paper, while only a
single time-invariant IIR transfer function was considered in
[18], [19]. More specifically, compared with [18], [19], the
challenging points of the current work are as follows: 1) The
sufficient conditions for the blind multi-channel identification
are more complicated than that of the single-channel case.
Especially, the condition on the over-sampling rate is more
restrictive. 2) It is required to identify an extra ambiguity
matrix for the multi-channel case. In addition, compared with
the works in [11], [12], the concerned output-switching system
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is modeled by infinite impulse response (IIR) functions so that
the corresponding identification problem is more challenging.
Although the over-sampling technique has been widely ap-
plied to the blind identification of FIR systems [15], [20],
over-sampling output-switching systems that are modeled by
IIR functions are seldom investigated. The derived equivalent
time-varying SIMO system model in this paper is much the
same as that in [11]. However, the basis functions of the derived
model are linearly dependent so that the identification problem
cannot be solved by the method proposed in [11].
The rest of this paper is organized as follows. In Section II,

the blind identification problem under consideration is formu-
lated. The main result of this paper, namely a deterministic blind
identification approach for output-switching systems is derived
in Section III. Section IV shows several simulation examples
followed by the conclusion in Section V.
Throughout the paper, the superscripts and represent

the conjugate operator, matrix transpose and Hermitian trans-
pose, respectively. The superscripts and denote matrix in-
verse and Moore-Penrose inverse, respectively. is an identity
matrix of appropriate dimension and is an imagi-
nary unit. denotes the transfer function of in time
domain, and is a backward shift operator. represents
the transfer function in -domain. and stand for
the integer number set, natural number set and the complex
number set, respectively. and denote -fold up-sam-
pling and -fold down-sampling operators as defined in [21],
respectively, and stands for the remainder of di-
vided by .

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a discrete-time -channel output-switching system
as follows [1]:

(1)

where and are system input and output, respectively,
is an additive noise, denote IIR transfer

functions in time domain. Without loss of generality, we assume
all IIR filters have the same denominator and denote

where
and is the system order which is as-

sumed to be known. If the IIR filters have different denomina-
tors, they can be converted to a common denominator by some
trivial manipulations.
The problem of interest is to blindly identify the multiple

transfer functions from the system output
without accessing the system input.
Remark 1: The output-switching system is an important

kind of multi-channel system in the communication area.
Multiple channel outputs are transmitted through only one
communication channel, thus lowering the communication
cost and increasing the transmission efficiency. Compared
with the SIMO system, the output-switching system in (1)
transmits less observation samples to the receiver so that it
consumes less communication bandwidth. Therefore, it is

practically meaningful to investigate the identification problem
of output-switching systems.
Remark 2: The output-switching system in (1) is one kind

of linear periodically time-varying system. Compared with the
existing works on blind identification of linear time-varying
SIMO FIR systems [8]–[12], the considered output-switching
system is modeled by multiple IIR transfer functions so that the
corresponding identification problem is more general and chal-
lenging. Moreover, the concerned output-switching system in
(1) has multiple channels but only one output, so the identifica-
tion problem is quite challenging.
Throughout the paper, the following standard assumptions

are adopted.
[A1.] The deterministic input is not predictable,
namely the current value of cannot be determined
by its past values. In addition, the input signal has
bounded amplitude.
[A2.] are stable, i.e., all poles have amplitudes
smaller than one.

To address the identification problem, we first introduce an
equivalent system model of (1). At time for
, only the -th channel is connected to the system output

while others are disconnected. Note that the associated switch
operation can be modeled by multiplying the channel output
with a multiplication factor , where

. Indeed, it can be verified that

Thus, the system model (1) can be reformulated as follows

(2)

where and its matrix form is
as follows

...

...
...

. . .
...

...
(3)
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Fig. 1. An equivalent output-switching system with modulation at the output.

Fig. 2. An over-sampled output-switching system.

The equivalent output-switching system of (1) can be modeled
by the superposition of several modulated channels as shown in
Fig. 1. Since the system model in (1) and that in (2) are equiv-
alent, we will focus on the blind identification of the system in
(2) in the sequel.

III. MAIN RESULTS

A. Over-Sampling the Output-Switching System

Using the over-sampling technique, the temporal channel di-
versity can be increased so that the channel identification can
be realized without relying on the input statistics [9], [14]. For
a discrete-time system with a fixed sampling period, it is im-
possible to over-sample the system output with a smaller sam-
pling interval. Instead, we use the input holding strategy shown
in Fig. 2 to replace the output over-sampling operation, where

and . Let
, where . By adopting the novel over-sam-

pling strategy proposed in [18] and using the polyphase decom-
position techniques in ([21], Chapter 3), it can be established
that

(4)

where is generated from with each symbol
lasting for sampling periods. Then, an equivalent
time-varying SIMO model is derived as shown in Fig. 3, where

and
for .

Lemma 1: Consider the down-sampled IIR transfer function

for . Let
be the zeros of the polynomial and

. Then,
can be equivalently expressed by

(5)

Fig. 3. An equivalent over-sampled output-switching system.

where

The above lemma provides an alternative expression of a
down-sampled IIR function and the details of its derivation can
be found in [19]. It lays a foundation to the development of blind
identification algorithms in the sequel. It is noted that the down-
sampled IIR transfer functions have the same denominator poly-
nomial. If is a stable transfer function, are
all stable transfer functions.

B. Blind Identification of an MIMO FIR System

For notation simplicity, the noise effect will be neglected
during the development of the deterministic identification
method; however, it will be considered in numerical simula-
tions. The matrix-vector multiplication form of the time-varying
SIMO system shown in Fig. 3 is represented by

(6)

where ... and ... .

Let be the common source signal and
. Denote

and . By several
trivial manipulations, (6) can be alternatively represented as

(7)

where .
Equation (7) is an MIMO model with multiple unknown de-

terministic inputs. The advantage of such a representation is that
the channel matrix is time-invariant so that the blind iden-
tification framework for MIMO systems [22]–[25] can be ap-
plied here. In order to identify the channel matrix in (7) up
to a constant ambiguity matrix, the following conditions should
also be satisfied [22]: (a) all columns of have the same de-
gree (the degree of a polynomial vector is the largest polynomial
order of its entries); (b) the channel matrix is irreducible
and column reduced. Next, wewill discuss how these conditions
can be satisfied.
From the derivation of Lemma 1 in [19], it can be found that

the condition (a) mentioned above can be easily satisfied when
all have the same order . However, if the order
of is less than the , the following lemma can help to
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determine whether the column vector has degree or
not.
Lemma 2: According to the derivation of in Lemma

1, the column vector has degree if the order of
is larger than .

Proof: Denote by the order of . When is
non-zero, the length of the polynomial

is . If
or , it can be inferred that at least

one element of has length or order
. Since the degree of a polynomial vector is defined as the

maximum order of its elements, the result of this lemma is then
established.
For an SIMO IIR system, the involved non-zero polynomial

vector is surely column reduced, and its irreducibility can be
guaranteed under several conditions [19]. Compared with the
SIMO system, the analysis of the MIMO IIR system is much
more complicated. The polynomial matrix is determined
not only by and , but also the over-sampling
rate . Using the polyphase decomposition formula in -do-
main [21], can be expressed in terms of
and as follows:

(8)

where . Further, based on the result in Lemma 1, it
can be established that

Let and denote the vectors as follows:

...

Then, the matrix-vector multiplication form of is as
follows:

The entry of the polynomial matrix can be ex-
pressed by

Then, the polynomial matrix can be compactly formulated
by

...
. . .

...

...

(9)

where denotes the Hadamard product.
Remark 3: The expression of the polynomial matrix in

terms of is shown in (9). If
the right-hand side of (9) is of full column rank for all values of
(or ), then is irreducible. If the leading coefficient matrix
of the right-hand side of (9) is of full column rank, then
is column reduced. The polynomial matrix is irreducible
and column reduced if and only if [26] the block Toeplitz matrix

has full column rank when and , where
is defined as

. . .
. . . (10)

and are the coefficient matrices of .
Remark 4: Although it is difficult to derive closed-form suffi-

cient conditions for the irreducible and column reduced matrix
in terms of , several necessary

conditions can be derived from the expression of in (9) as
follows:
a) has no factor or other factors in the form

for any ;
b) has no zero pairs for and

;
c) has no factors in the form for any ;
d) has no zeros for , which
is guaranteed under Assumption A2;

e) is irreducible for .
To obtain an irreducible and column reduced matrix ,
it is not necessary for all or
to be coprime. Also, it does not require all the functions

in (1) to be irreducible. For instance, the gener-
ated polynomial matrix is irreducible and column reduced when

and . However, all should not have iden-
tical zeros and poles. Otherwise, it can be inferred from (3) that

are reducible, so is the polynomial matrix .
By concatenating vectors of in (7) vertically, we can

get that

(11)
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where

(12)

Further, by concatenating all available vectors of horizon-
tally, it follows that

(13)

where and
.

To ensure the sufficient richness of the signal to excite
the system, conditions on the source signal are to be in-
vestigated. By Assumption A1 that is deterministic, so we
introduce the linear complexity to describe its richness [15]. The
linear complexity of the sequence is
defined by the smallest value of for which there exist
such that for . Denote
by the linear complexity of . In the above
case, it has that .
Lemma 3: [18] Let denote the linear complexity of

. According to Fig. 3, is an over-sampled signal
of with an over-sampling rate . Then, the linear com-
plexity of satisfies that

.
The following theorem gives a sufficient and necessary con-

dition for the full row rank of the matrix in terms of
and .
Theorem 1: Assume that , where
is the ceil function. When and the number of ob-

servation samples is much larger than ,
the matrix has full row rank if and only if and
are mutually coprime.
The proof of the above theorem can be found in Appendix A.
When the matrix has full column rank and the matrix
has full row rank, has the same column space

with . By taking eigenvalue decomposition for the Hermitian
matrix , we can get that

(14)

Since the block Toeplitz matrix has the same column space
with that of , it can be established that

(15)

By rearranging the above equation, we can get that

... (16)

where and is a block Toeplitz matrix con-
structed from the matrix . It can be observed that , for any
nonsingular matrix , is also a solution to (16). For

the blind MIMO system identification problem, using only the
second-order statistics of the system output observations, it is
impossible to determine the ambiguity matrix [22]. However,
the multiple inputs in (7) are generated by modulating the same
sequence by different complex exponentials. Thus, mutual rela-
tions among multiple inputs will be exploited to determine the
ambiguity matrix .

C. Identification of the Ambiguity Matrix and the Denominator
Polynomial

In order to identify the denominator polynomial and the
ambiguity matrix , we first compute the multiple inputs
in (7). Denote by the estimate of the channel matrix
from adequate output observations, it follows that

Without noise effects, we can obtain that

(17)

When the polynomial matrix is a tall and irreducible ma-
trix, its Moore-Penrose inverse, which is also a polynomial ma-
trix, can always be calculated [26]. Further, it can be established
that

...
...

(18)

It is obvious that one necessary condition to determine the am-
biguity matrix is that all elements in should be
distinct. The following lemma provides a criterion to choose the
over-sampling rate so as to meet the above requirement.
Lemma 4: have different values if and only if
and are mutually prime.
Proof: The result is a special case of the Chinese Re-

mainder Theorem: If and are mutually prime numbers,
for each , there exists a unique integer pair

satisfying and . That
means the map from to is one-to-one.
Let . Then, according to the Chinese

Remainder Theorem, we can get that have
different values in the range . Otherwise, if
and are not mutually coprime, we can always find that sev-
eral elements in are identical.
It is shown in ([11], Theorem 4) that the ambiguity matrix
can be determined up to a scalar factor if the complex expo-

nential bases are distinct. However, we find that
all these exponential bases are linearly dependent such that the
ambiguity matrix cannot be determined up to a scalar factor.
Thus, the existing deterministic blind identification methods
[11], [14] cannot solve this identification problem.
According to the over-sampled output-switching system in

Fig. 3, the input signal of the time-varying SIMO system
(6) is still a piece-wise constant signal with each symbol lasting
for sampling periods. Next, based on the estimated signal

and the piece-wise constant property of , an identi-
fication method for the denominator polynomial and the
ambiguity matrix will be developed.
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Theorem 2: Assume that all conditions in Theorem 1 and As-
sumption A2 hold. The ambiguity matrix can then be deter-
mined up to a scalar constant and the denominator polynomial

can be uniquely determined from (18) if the following two
conditions are satisfied:
a) and are mutually coprime;
b) (or ) has no factors in the form for
any .

The proof of the above theorem can be found in Appendix B.
Denote by the entries of . Since

, (18) can be equivalently written as

(19)

Let with . By making use of the piecewise
constant property of , (20), shown at the bottom of the page,
can be derived, where .
In Equation (20), the unknown variables and

are coupled together, so it is a bilinear identification
problem. To deal with such a problem, we alternatively com-
pute the nontrivial solutions of and from
(20). It is noteworthy that the initial point is crucial for the
above alternating optimization method and should be carefully
selected. Applying the overparameterization technique [27]
and denoting

...
...

as an augmented coefficient vector, can be computed as a non-
trivial solution of (20). Note that there exists a scalar ambiguity
for the estimation of . Denote by the compo-
nents of the vector . Then, the initial value of the coefficient
vector of is computed as follows:

...
...

(21)

D. Blind Identification of the Output-Switching System

Suppose that the estimates of the ambiguity matrix and the
denominator polynomial have been achieved. Then, the
channel matrix can be uniquely determined up to a scalar
factor. Since , the estimate of

or
can be obtained as well. From Lemma 1, we can get that

(22)

By applying the polyphase decomposition identity in -domain
([21], Chapter 3), it can be established that

(23)

It is shown in Lemma 1 that the expression of can be de-
rived from . However, cannot be obtained directly
from .
As it is shown in Remark 4, to guarantee

the blind identifiability, the polynomial vector
should be irreducible.

Based on (23) and in view of Lemma 1, we can obtain that

...
...

(24)

where is a common factor of polynomial vector on the left
side of the above equation. Equation (24) can be considered as
an SIMO system model where is a common source signal;
thus, it can be solved by the subspace-based blind identification
method developed in [16].
Theorem 3: Assume that all conditions in Theorems 1–2 and

Assumptions A1–A2 hold. Assume also that the Toeplitz matrix
is of full column rank when and . In

the absence of noise, all the transfer functions or

can be identified up to a scalar constant.
The above theorem can be easily derived from the results in

Theorems 1–2.
In summary, the proposed blind identification method in-

cludes the following steps:
Step 1. Construct the matrix in (13) and compute

using the subspace-based method as shown in
(14)–(16).

Step 2. Compute the multiple source signals from (17).
Step 3. Determine the ambiguity matrix and coefficients

of from (20) using the method described in
Subsection III.C.

... (20)
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Fig. 4. Identification performance of the proposed algorithm.

Step 4. Compute the estimate of and from
(24) using the subspace-based method [16].

Step 5. Estimate the coefficients of based on
(2)–(3).

IV. NUMERICAL SIMULATIONS

In this section, numerical simulations are carried out
to validate the proposed blind identification algorithm for
output-switching systems. The input signal is generated
as a truncated Gaussian white noise so that the linear complexity
condition can be guaranteed with probability one. The noise

is also generated as a truncated Gaussian white noise.
The identification performances are evaluated with respect to
different noise levels and different dimensions of observation
samples. The noise level is described by the signal-noise ratio
(SNR), which is defined by

(25)

where is the number of Monte-Carlo trials which is set to
200 in the following simulations, and are generated
input signal and noise sequences, respectively, in the -th trial.
The identification performance is evaluated by the normalized
mean-square error (nMSE). For the identification of the numer-
ator polynomials of for , the
corresponding nMSE is defined by

(26)

where denotes the estimate of the coefficient vector of
in the -th trial and the minimization with respect to is to elim-
inate the scalar ambiguity. Similarly, the corresponding nMSE
for the denominator polynomial is defined by

(27)

where is the true coefficient vector of and denotes the
-th estimate of . It is noted that there exist no scalar ambiguity
for the identification of since it is a monic polynomial.

Identification performances of the numerator polynomials and
the denominator polynomial are evaluated separately.
Next, three examples will be given to demonstrate the

performances of the proposed algorithm: (1) the transfer func-
tions have the same denominator and have a
common factor in their numerators; (2) the transfer functions

have different denominators; (3) there exists
discrepancy between the real transfer functions and the desired
transfer functions.
Case 1: The involved transfer functions of an output-

switching system with are defined as follows

It can be observed that all transfer functions share a common
factor , and and are reducible. By
setting , it can be verified that sufficient
conditions in Theorem 3 are satisfied.
Fig. 4 shows the identification results obtained by the pro-

posed identification method. The left part of Fig. 4 is obtained
when the number of observation samples is set to 3600 and the
right part is obtained when . It can be observed from
the left part that accurate identification results can be obtained
when the SNR is high enough. The results on the right part imply
that the estimates of multiple transfer functions approach their
true values when the number of observation samples tends to
infinity.
From Fig. 4, we can find that the identification performances

at low SNRs, especially when , are not satisfac-
tory. The reason is that the proposed identification method is
a two-stage method so that the estimation error in the first stage
may propagate or be amplified in the second stage. In addition,
the coefficient matrix of the numerator polynomial matrix
is estimated by , where is obtained by the subspace-based
method and are estimated by solving (19). The estimation er-
rors in different parts are multiplied, so the identification per-
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Fig. 5. Identification performance of the proposed algorithm.

formances of the numerator polynomials are worse than that of
the denominator polynomial.
Case 2: The involved transfer functions of an output-

switching system with are defined as follows

It can be observed that these two transfer functions have dif-
ferent denominators; however, they can be converted into the
transfer functions with the same denominator. By setting

, it can be verified that sufficient conditions in
Theorem 3 are satisfied. From Fig. 5, it can be observed that the
identification performances in this case are quite similar to that
inCase 1: both the numerator polynomials and the denominator
polynomial can be accurately estimated when the SNR is high
enough and the available observation samples are adequate.
Case 3: The transfer functions and other simulation settings

are the same as in Case 2. Here, are called desired
transfer functions, which have infinitely long coefficient se-
quences. And the FIR filters are called real transfer
functions, which are constructed by the truncated coefficient
sequences of . In the simulation, the system outputs
are generated according to the real transfer functions, while
the desired transfer functions are to be estimated based on
the available system outputs. The aim of this case is to show
the identification performance with respect to the discrepancy
between the real transfer function and the desired transfer
functions.
Since the coefficients of decrease exponentially,

we obtain the truncated coefficient sequences by keeping the
first few coefficients. The discrepancy is described by the
number of preserved coefficients in the simulation. It is obvious
that the discrepancy is smaller when the number of truncated
coefficients becomes larger. Fig. 6 shows the identification
performance with respect to the discrepancy between the
transfer functions. It can be found that the nMSE curves decay
along with the decrease of the discrepancy. As a matter of
fact, the discrepancy between transfer functions can be cast as

Fig. 6. Identification performance of the proposed algorithm with respect to
the discrepancy between transfer functions.

measurement noises; thus, the identification performance with
respect to the discrepancy is similar to that with respect to the
signal noise ratio.

V. CONCLUSION

In this paper, a blind identification algorithm has been
proposed for output-switching systems using a new over-sam-
pling strategy. Under the provided identification framework,
sufficient identifiability conditions have been given and the se-
lection of over-sampling rates has been investigated, where it is
shown that the over-sampling rates have to be mutually coprime
to the number of channels involved in the output-switching
system. Due to the linearly dependent complex exponential
basis, the equivalent output-switching system with modula-
tion at the output cannot be properly identified by traditional
subspace-based methods. However, by taking into account
of the redundancy information which is introduced by the
over-sampling operation, it has been resolved by the proposed
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method. Numerical simulations have been carried out to show
the performances of the proposed algorithm.
It is well known that the coprime condition is necessary for

the blind identification of an SIMO system. However, as it is
shown in this paper, by holding the system input while adding
a switching operator (or modulations) at the output, the co-
prime condition on multiple transfer functions may not be nec-
essary. Thus, the proposed algorithm has many promising appli-
cations. In our future works, we will investigate how to estimate
the orders of multiple IIR transfer functions, and develop ro-
bust identification methods with respect to the channel order
overestimation.

APPENDIX A
PROOF OF THEOREM 1

When , the matrix is a fat
matrix. The -transform of the input vector in (7) is written
by

where . It can be established that

. . .

... (28)

If and have a common divisor, according
to the result in Lemma 4, several elements in the set

are identical. It implies that there
exists a non-zero polynomial vector
of degree [26] such that

...

(29)

The -transform of the vector in (11) is written
by . When

or , it can be found
that the elements in the vector are linearly dependent.
Thus, the matrix is row-rank deficient and the necessity
has been proven.
When and are mutually coprime, all elements

in are distinct. By Theorem 1
in [18], the signal has sufficient richness when

. Then, it can be verified that
there exists no nontrivial polynomial vector of order less than

to make the equality (29) hold. Thus, the matrix has
full row rank and the sufficiency has been proven.

APPENDIX B
PROOF OF THEOREM 2

By taking into account of , (18)
can be equivalently written in -domain as follows:

...

...

(30)

Suppose that is another solution satisfying
the above equation and the conditions (a–b) in the theorem. De-
note . We can then get that

...

... (31)

Denote by the entries of the matrix . It follows
that

(32)

If the condition (b) is satisfied, the polynomial (or )
cannot be absorbed by (or . Since and
are mutually coprime, all polynomials
are distinct. If is a zero of , then
are all zeros of or the left side of (32).
Since and are mutually coprime, all elements in

are different. In addition, has a
sufficiently large order, it can be inferred that
and one element in have the same
zeros, namely only one element in is non-zero
valued. In addition, is a common factor of both
sides of (32). Thus, we can obtain the following results:
a) when , i.e., the matrix is diagonal;
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b) and are identical with
a scalar ambiguity ;

c) and are the same.
Further, it follows from (31) that all diagonal entries of the ma-
trix have the same value. Thus, the theorem is proven.
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