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Abstract—In this paper, we propose a family of low-complexity
adaptive filtering algorithms based on dichotomous coordinate de-
scent (DCD) iterations for identification of sparse systems. The
proposed algorithms are appealing for practical designs as they op-
erate at the bit level, resulting in stable hardware implementations.
We introduce a general approach for developing adaptive filters
with different penalties and specify it for exponential and sliding
window RLS. We then propose low-complexity DCD-based RLS
adaptive filters with the lasso, ridge-regression, elastic net, and
penalties that attract sparsity. We also propose a simple recursive
reweighting of the penalties and incorporate the reweighting into
the proposed adaptive algorithms to further improve the perfor-
mance. For general regressors, the proposed algorithms have a
complexity of operations per sample, where is the filter
length. For transversal adaptive filters, the algorithms require only

operations per sample. A unique feature of the proposed
algorithms is that they are well suited for implementation in fi-
nite precision, e.g., on FPGAs. We demonstrate by simulation that
the proposed algorithms have performance close to the oracle RLS
performance.

Index Terms—Adaptive filter, dichotomous coordinate descent
(DCD), DCD algorithm, FPGA, penalty function, reweighting,
RLS, sparse representation.

I. INTRODUCTION

T HERE is significant interest in developing adaptive fil-
tering algorithms that can deal with sparse recovery prob-

lems (see [1]–[6] and references therein). They are often asso-
ciated with adaptive identification of linear systems with sparse
impulse responses [7]–[11], but can also be useful for other ap-
plications. Sparse adaptive filters often solve least squares (LS)
optimization problems with sparsity-attracting penalties. E.g.,
adaptive algorithms in [1], [2], [5] use different techniques for
solving LS problems with the -norm (lasso [12]) penalty. In
[5], [13], an approximation to the -norm penalty is used.
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There is also interest in real-time implementation of sparse
recovery techniques, particularly on FPGAs [14]–[18]. How-
ever, many algorithms capable of providing a high recovery
performance are not well suited to such implementation due
to high complexity and high numerical-precision requirements
[18]. Therefore, only a few (nonadaptive) algorithms that
mostly belong to the greedy family have been implemented in
hardware on FPGAs [14], [16]–[19].
The coordinate descent (CD) search has an inherent property

of having low complexity when used for sparse recovery [12],
[20]–[23]. The CD search is used in [1] for sparse RLS adap-
tive filtering. The dichotomous CD (DCD) search is especially
well suited to real-time implementation, e.g., using FPGAs
[24]–[27], and it was intensively used for adaptive filtering
[24], [27]–[30]. In [24], a general approach was proposed for
developing RLS adaptive filters with exponential and sliding
windows; when combined with DCD iterations, it resulted in
algorithms with a performance close to the RLS performance
and yet having as low complexity as operations per
sample. Since the algorithms do not directly propagate the
inverse of the regressor autocorrelation matrix, they are stable
and well suited to implementation in finite precision [29], [31].
However, this approach has only been exploited in application
to purely-RLS adaptive filters [24] or RLS with diagonal
loading [29]; that is, algorithms based on the standard LS cost
function with at most quadratic regularization. In this paper,
we extend these results to include sparsity-promoting penalties,
thereby obtaining fast, stable, and low-cost adaptive filters
suitable for hardware implementation.
When dealing with sparse recovery, a priori information

on the support can significantly improve the recovery perfor-
mance. If the support is perfectly known, an algorithm achieves
the so-called oracle performance. However, such knowledge
is most often unavailable. Techniques have been previously
proposed for estimating and further refining the information on
the support in a set of reweighting iterations and incorporating
these estimates in the cost function in the form of a weight
vector for the penalty [32]–[35]. The penalty reweighting has
also been used in sparse adaptive filtering [4], [36]. Propor-
tionate adaptive filters are also based on reweighting and they
demonstrate improved performance when identifying sparse
systems [37]. We also take advantage of reweighting techniques
to improve the performance of our algorithms.
The contributions of this paper are as follows:
1. We present a general framework for developing adaptive
filtering algorithms with different LS criteria and different
penalty functions, in particular, sparsity-attracting penal-
ties, such as lasso, elastic net, and penalties.

2. We specify this framework for the exponential and rect-
angular sliding windows. These two adaptive filter struc-
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tures have previously been proposed for the RLS algorithm
without regularization [24] and the exponential RLS with
-regularization [29]. Here we extend these schemes to

arbitrary separable penalty functions.
3. We propose a simple and yet efficient reweighting recur-
sion for updating penalties in adaptive filtering.

4. We propose the use of DCD iterations for solving the LS
problems with penalties and arrive at a universal DCD-
solver that can efficiently exploit a solution found for the
previous sample as a warm-start for the current sample.
As a result, we arrive at numerically stable adaptive filters
with as low complexity as operations per sample
for general regressors and operations per sample for
(transversal) regressors with time-shifted structure.

5. We investigate the proposed algorithms by simulation and
present results that show that the algorithms outperform
advanced sparse adaptive algorithms and perform close to
the oracle RLS algorithm.

The paper is organized as follows. Section II presents the
adaptive filtering setup. In Section III, we present the general
framework for developing adaptive filters with different penalty
functions and describe exponential and sliding window cases.
In Section IV, we describe the DCD algorithm for solving LS
problems with penalties. Section V introduces the ridge-regres-
sion, lasso, modified lasso, elastic-net, and penalty functions.
Section VI presents simulation results and Section VII gives
conclusions.
Notations: We use capital and small bold fonts to denote

matrices and vectors, respectively; e.g., is a matrix and a
vector. Elements of the matrix and vector are denoted as
and , respectively.We also denote: the th column of

, Hermitian transpose of identity matrix;
matrix with zero entries; and are -length

vectors of zeros and ones, respectively; and , the real
and imaginary part of a complex number, respectively; de-
notes the complex conjugate.

II. REGULARIZED ADAPTIVE FILTERING SETUP

We will consider adaptive filters with the task of finding a
complex-valued vector that, at every time instant
, minimizes the cost function

(1)

The first term in (1) is the LS error of the solution and the
second term is a penalty function that incorporates a priori in-
formation on the true solution. These two terms will be different
for different scenarios. E.g., if the true solution is sparse, wemay
want to use the second term in the form
for some positive .
Let complex-valued and be an regressor

vector and desired signal, respectively, at time instant . We
denote

and (2)

the matrix of the regressor data and vector of the de-
sired signal, respectively. In many adaptive filtering scenarios,

the first term of the cost function in (1) can be expressed in the
following form [2], [4]:

(3)

where is an matrix. We define
and obtain

which can be represented as

(4)

where
and .

As the first term in (4) does not depend on the unknown vector
, we will obtain the same result if minimizing the cost

function

(5)

There are two important cases of the matrix . The first
one is when an exponential window is used for computing the
matrix and vector , similarly to what is done in the
classical RLS algorithm [38], [39]. In this case, we have

(6)

where is the forgetting factor, . The other one is
when a sliding window is used, in which case we have

(7)

where is the length of the sliding window.

III. FRAMEWORK FOR DEVELOPING ADAPTIVE FILTERS
WITH GENERAL PENALTY FUNCTIONS

We are dealing with a sequence of optimization problems de-
scribed as

(8)

We can use a straightforward approach for solving this sequence
of problems by treating each of them independently. This, how-
ever, would result in high complexity. Instead, we want to solve
the -th optimization problem using as much information from
the -th solution as possible to reduce the complexity.
Let at time instant a system of equations
be approximately solved and the approximate solution be .
Denote

(9)

a residual vector for this solution. The notation indicates
that the residual vector in (9) corresponds to the system matrix

and the right-hand vector at time instant , whereas
the solution corresponds to the system
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at time instant . In iterative methods, such as line search
methods [40], the residual vector is often avail-
able. We introduce the following notation:

(10)

Note that the last line in (10) shows the increment of the -th
solution, which we want to find, with respect to the solution
obtained for the -th problem.
For solving the -th problem, it is possible to use the
-th solution as a warm-start. In order to exploit the previous

solution as a warm-start, it turns out that we also
need to obtain a new residual vector, taking into account the
variation of the matrix and vector (see Section IV
and Table III). More specifically, we need the following residual
vector

(11)

Using the notation from (10), we can rewrite (11) as

and obtain

(12)

If computation in (12) can be done with low complexity, we
would obtain a good warm-start for solving the -th problem,
for which we need to find .
Thus, we need to transform the cost function in (5) in another

cost function that should be minimized at instant :

(13)

As a result, we will obtain an (approximate) solution
to (13), and the final solution to (5) will be given by

. The cost function in (13) can be obtained
from

(14)

that follows from (5) and (10). We assume that is fixed
and consider the cost function in (14) as a function of .
The first term in (14) can be written as

(15)

(16)

Note that the two terms in (15) do not depend on and
therefore they can be excluded from the minimization of the
cost function over . The term in (16), using (11), can be
expressed as . Therefore, for the cost
function in (13) we obtain

(17)

where is given by (12).
We now show how in (12) can be computed with

low complexity in two important cases, the exponential window
and sliding window, and present two general structures for de-
veloping adaptive filters. Although this is similar to the deriva-
tion in [24], for completeness we briefly show the derivation
here.

A. Adaptive Filters With Exponential Window

In the case of the exponential window, we have the following
recursions for updating the matrix and vector [38],
[39]:

(18)

(19)

With these recursions, we have

(20)

(21)

From (20) and using (9), we obtain

(22)

where is the adaptive filter output at
time instant . Using (12), (21), and (22), we obtain

(23)

where .
With zero initialization of the solution, i.e., and

, from (9) we obtain . The matrix
is initialized as , where is a small number.
In the case of general (unstructured) regressors, the com-

plexity of updating the matrix is operations per
time instant. For shift-structured regressors

, where is a discrete-time signal,
updating is simplified. The lower-right
block of can be obtained by copying the upper-left

block of . The only part of the matrix
that should be updated is the first row and first column. Due to
the Hermitian symmetry of the matrix, it is enough to calculate
the first column. The updating for the exponential window is
then given by

(24)

As a result, for transversal adaptive filters, the complexity is re-
duced down to operations per time instant. Note that fast
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TABLE I
ADAPTIVE FILTERS WITH EXPONENTIAL WINDOW

RLS transversal adaptive filtering algorithms, such as the fixed
order and lattice algorithms, also have the complexity op-
erations per time instant [39].
An adaptive filter with exponential window can be imple-

mented as shown in Table I, which also shows the complexity
of the algorithm steps in terms of real-valued multiplications
and additions. The complexity of step 5 depends on the method
used for solving the optimization problem, which we present in
Section IV; we denote the number of multiplications and
the number of additions required by the method. Note that the
complexity of calculating is involved in step 5. The com-
plexity of updating the weight vector at step 6 depends
on the reweighting method, which is discussed in Section V;

and are numbers of multiplications and additions,
respectively, in the method. E.g., the DCD- algorithm intro-
duced below does not require reweighting, thus and

.

B. Adaptive Filters With Sliding Window

In the case of the sliding window, the matrix and vector
can be recursively updated as

(25)

and

(26)

To find the vector , we notice that

(27)

an2d

(28)

where . From (27) and (28), we
obtain

(29)

where .

TABLE II
ADAPTIVE FILTERS WITH SLIDING WINDOW

For shift-structured input data and the sliding window, we
obtain the following recursion for updating the matrix :

(30)

Again, for arbitrary regressors, the complexity is , and,
for regressors with the time-shifted structure, the complexity
is reduced to operations per time instant. Adaptive fil-
ters with the sliding window can be summarized as shown in
Table II.
The complexity of exponential window algorithms is lower

than the complexity of sliding window algorithms [24]. How-
ever, for some applications, the finite memory of slidingwindow
adaptive filters can be attractive.

IV. DCD ALGORITHM FOR LS OPTIMIZATION WITH PENALTY

We now consider minimization of the cost function given by
(17). Omitting the time index and denoting
and , the function can be rewritten as

(31)

In order to minimize it, we use a low-complexity version of
CD algorithm, the DCD algorithm. In standard CD, at every
iteration, only the -th element of the solution vector may
be updated as , where is a complex-valued
scalar and is the -th column of the identity matrix . The
update should only be done if the cost function is reduced, i.e.,
if

After some algebra, we obtain

(32)

When using DCD iterations, elements of the solution vector are
represented in a fixed-point format with bits within
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an amplitude interval may be chosen as
. However, the choice is not

very critical as soon as is chosen as a power-of-two number.
This allows multiplications and divisions in the DCD algorithm
to be replaced by bit-shift operations; see discussion on the
choice of in [25]. The DCD iterations start updating the
most significant bits of the solution, proceeding towards less
significant bits. This is controlled by a step-size that
starts with and is reduced as for less significant
bits.
In CD iterations, there can be different strategies for selecting

coordinates for updates. The most often used are cyclic and
leading [24] (also called greedy [41]) selections. We will con-
centrate on this second option.
As the solution vector is complex-valued, we need to consider

four possible directions on the complex plane for updating every
coordinate: and , where . For every ,
there are four values by which a coordinate can be updated:

.
In the leading DCD iterations, we need to compute for

all and and find the minimum

(33)

This will provide us with both the coordinate to update and
direction in which the update should be done. The minimum
is given by

(34)

If , then the iteration is successful, that is the -th
element of the solution and the residual vector are updated.
Note that the update in line 5 of Table I
and in line 7 of Table II is incorporated in the DCD algorithm.
If , no update is necessary and the step size is halved

. The procedure is then repeated until the desired pre-
cision (number of bits in the solution) is obtained, or until the
maximum number of successful iterations is met. This way, the
complexity of the algorithm can be controlled. The DCD algo-
rithm is shown in Table III. Here, is the number of bits used
for representation of entries in the solution vector and is
the limit to the number of the successful iterations. The param-
eter defines the accuracy of the fixed-point representation,
whereas the parameter limits the complexity.
The complexity of the DCD algorithm has twomain contribu-

tions. The first contribution is due to updating the residual vector
in the successful iterations (step 6). In general, this would in-

volve real multiplications and real additions. However,
choosing as a power-of-two number and taking into account
the structure of vector , it follows that this step does not require
multiplications and it only requires real additions. The other
contribution is due to computing the penalty function at step 2
and finding the maximum at step 3. Without the penalty term,
i.e., for purely LS optimization, the minimization at step 3 be-
comes especially simple [25]:

(35)

TABLE III
DCD ALGORITHM FOR LS OPTIMIZATION WITH PENALTY

For finding the minimum, we only need to compare magnitudes
of the real and imaginary parts of with ; this costs
only two real-valued additions. However, in the general case,
complexity of this part significantly depends on the penalty used
and may contribute heavily to the whole algorithm complexity.
We present the penalty functions and corresponding complexity
in the next section.
It is important to note that, even though the DCD-RLS is a

fast algorithm, with complexity, it is very stable even in
finite-precision arithmetic, since the algorithm does not update

as other fast versions of RLS [38].

V. PENALTY FUNCTIONS

We will consider the lasso, modified lasso, ridge-regression,
elastic net, and penalty functions. All the penalties are sepa-
rable, i.e., they can be represented in the form

The separability makes the implementation of the adaptive fil-
ters with coordinate descent iterations especially simple.

A. Elastic-Net, Lasso and Ridge-Regression Penalties

The elastic-net penalty is given by [42]

(36)

where is a regularization parameter. This penalty is a
compromise between the ridge-regression penalty and
the lasso penalty [12]. The complexity of using such
penalty is approximately the sum of complexities for the lasso
and ridge-regression penalties. More detailed analysis shows
that this is additions, multiplications and square
root operations.
For the ridge regression, the regularization parameter is

often chosen related to the noise variance. This is a very useful
regularization as it can make finite-precision implementation
of adaptive filters stable. The classical RLS algorithm does
have such a regularization that, however, quickly decays in
time with the time constant defined by the forgetting factor :

and, consequently, as . This
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is one of the causes of instability of classical RLS adaptive
filters when implemented in finite precision. Note that this
regularization can be equally incorporated into the filters either
using the function or using the diagonal loading of the
matrix with the parameter : . The
latter, however, may require redesigning the general algorithm
structures in Tables I and II [29]. We will be using the general
scheme of introducing the penalty (regularization) via the
function . In Appendix II, we show that the complexity
of using the ridge regression penalty is only real-valued
additions and real-valued multiplications.
With the lasso penalty, the adaptive filter solves the basis pur-

suit denoising [43] at every time instant . The lasso penalty in
one DCD iteration (see steps 2 to 5 in Table III) can be computed
using additions, multiplications, and square-root
operations (see Appendix I). This is a significant computational
load (compared to additions for updating the residual vector
in the DCD iteration at step 6). To reduce the complexity, wewill
also be using the modified lasso penalty as described below.
The penalties can be generalized using a weight vector :

(37)

If in (37) is very high and for within the true support
of the unknown vector, and for outside the support,
we arrive at an LS oracle algorithm providing the best LS solu-
tion. We will be using the performance of the oracle RLS adap-
tive filter as a benchmark when analyzing the proposed adaptive
filters.
Of course, in practice, the true support is usually unknown. A

practical algorithm for choosing the weights is discussed next.
The weight vector can be updated in reweighting iterations [33],
[44]. We will be using the following updating mechanism. At
every time instant , a weight support is identified using
the thresholding operation:

(38)

where is an adjusted parameter. Starting from ,
the weight vector is updated using the recursion:

(39)

where is another adjusted parameter, defining the
memory of the recursion, and

(40)

Other recursions can also be used for updating the weight vector,
e.g., see [4], [36]. The proposed weight updating recursion is
simple for practical implementation. It does not use division
operations that are often involved in reweighting. Moreover,
choosing as a power-of-two number, all multiplications are
replaced by bit-shifts that are simple for hardware implemen-
tation. For algorithms that automatically adjust , the reader is
referred to [45], [46].
The modified lasso penalty is given by [2]

(41)

It can also be generalized by introducing the weighting:

(42)

In this case, for computation of additions and
multiplications are required, which is about twice fewer than for
the lasso penalty. Besides, most of the operations are additions.
What is also important for practical implementation is that the
modified lasso penalty does not require square root operations
(as does the lasso penalty), that are more complicated for imple-
mentation than multiplications and additions.

B. Penalty

The penalty is given by

(43)

This penalty results in a non-convex optimization problem that
is NP-hard. When using CD iterations for solving this problem,
there is no guarantee that we will arrive at the optimal solu-
tion. However, as can be seen from the numerical results in
Section VI below, this penalty function provides high perfor-
mance, close to the oracle performance. Besides, this is the sim-
plest function for computing and is very well suited to imple-
mentation on hardware design platforms such as FPGAs.
From (43), we have

(44)

where, as explained below,

(45)

The first equality implies that the -th element is currently
within the support, but after the update it will be
removed from the support, i.e., the support size will decrease
by one, thus . The second equality implies that the
element is currently outside the support, but after the update it
will enter the support, i.e., the support will increase by one, thus

. The third equality implies that the element is within
the support and after the update it will still stay in the support,
i.e., the support size does not change and thus .
Note that the equalities in (45) are exactly achievable when

using DCD iterations as they use the fixed-point representation
of the vector and the values 0 and are within the feasible
set of the solution. This would be more difficult to achieve with
other versions of CD iterations or non-CD iterations that are not
based on fixed-point representation of the solution.
It is seen that all operations for computing are logical

( can be identified by checking that the bit corre-
sponding to the step-size in the word representing is set)
which is very well suited to FPGA design. Apart from the log-
ical operations, for computing real-valued additions
are necessary. Thus this penalty allows especially simple imple-
mentation of the whole DCD algorithm as the algorithm now is
multiplication-free.

VI. NUMERICAL RESULTS AND COMPLEXITY ANALYSIS

In this section, we present results of computer simulations.
We compare theMean Square Deviation (MSD) performance of



3204 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 12, JUNE 15, 2013

the proposed algorithms against the classical RLS algorithm, or-
acle RLS algorithm, and advanced sparse adaptive filters. Only
scenarios with the time-shifted structure of input data, corre-
sponding to transversal adaptive filters, are considered. We con-
sider two cases of the input data: random signals and a speech
signal.
The random input signals are generated as

(46)

where is the additive zero-mean complex-valued Gaussian
random noise with variance ; two cases are considered:

(low-noise case) and (high-noise case). The vector
contains zero-mean

complex-valued Gaussian random numbers of unit variance. In
each simulation trial, new realizations of the input signal, im-
pulse response , and noise are generated. The impulse re-
sponse is kept constant in the first half of each trial and
then abruptly changed at the beginning of the second half. The
change is in both positions and values of the non-zero taps. Po-
sitions of the nonzero elements in are chosen randomly.
In most of our simulations, we use and . When
investigating the MSD performance against the sparsity level,
varies from to . The nonzero elements

of are generated as independent complex-valued Gaussian
zero-mean random numbers of unit variance and then is
normalized to have unity norm. The MSD in a simulation trial
is calculated as

(47)

where

(48)

The MSDs obtained in 100 trials are averaged and plotted
against the time index .
Parameters of the proposed algorithms are chosen as follows.

DCD parameters are set to and , whereas
varies. The regularization parameter for every time instant is
computed as [47], [48]

where and are elements of the vector from
(19) and (26) for the exponential and sliding window adaptive
filters, respectively. If , we arrive at the LS optimization.
For the lasso penalty without reweighting, the choice of is
limited to the interval ; if , no new element
could enter the support and the solution is a zero vector [48]. The
choice of is defined by the noise variance . The higher is
the noise variance the closer should be to unity and typically
is chosen proportional to [1], [49]. For the ridge-regression

penalty without reweighting, the regularization parameter is
typically chosen proportional to . In the adaptive algorithms
with reweighting, the optimal choice of is more complicated
and investigated below by simulation.

A. Performance of the Exponential-Window DCD-Lasso
Algorithm

Fig. 1 presents the MSD performance of the exponen-
tial-window DCD-lasso algorithm against the limit to the

Fig. 1. MSD performance of the exponential-window DCD-lasso adaptive
filter for different values of . Parameters of the scenario:

. Parameters of the algorithms:
(no reweighting), .

number of successful DCD iterations. With a large , the
DCD-lasso algorithm provides a faster initial convergence and
a lower steady-state MSD than the classical RLS algorithm.
However, in practice, the initial convergence is not the most
important feature. More important is the reaction of the adap-
tive filter to the variation of the impulse response to
be estimated. This is characterized by the second part of the
curves for after the abrupt change of the impulse
response. We can see that one successful update
is already enough to outperform the classical RLS algorithm.
Below, we will only show the performance curves for .
Note however that even for small , the initial convergence
speed of the DCD-lasso algorithm in not much slower than
that of RLS. This observation remains valid for all the other
simulations presented here.
Fig. 2 shows the MSD performance of the DCD-lasso adap-

tive filter with different values of the regularization parameter
. It is seen that, when compared to the DCD adaptive filter

without regularization, the use of the lasso penalty allows signif-
icant reduction in the steady-state MSD as well as speeding-up
the convergence after the abrupt change of the impulse response
of the identified system. The adaptive DCD-lasso algorithm also
outperforms the classical RLS algorithm. It is seen that there is
an optimal value of the regularization parameter ; at

we obtain the lowest steady-state MSD. Note that the re-
sults in Fig. 2 are obtained for , i.e., for the lowest
complexity of the DCD-lasso algorithm. Thus, with the lasso
penalty, we need only one DCD iteration per sample in order to,
in this scenario, achieve performance better than that of the clas-
sical RLS algorithm. However, even for the optimum value of
, there is a gap between the DCD-lasso performance and the

performance of the oracle RLS algorithm; in this case, the dif-
ference in the steady-state MSD is about 6 dB. Fig. 3 shows that
increasing does not improve the steady-state performance.
Fig. 3 studies the dependence of the steady-state MSD perfor-

mance of the exponential-windowDCD-lasso algorithm against
the regularization parameter . This graph shows that indeed
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Fig. 2. MSD performance of the exponential-window DCD-lasso adaptive
filter for different values of the regularization parameter . Parameters of
the scenario: . Parameters of the algorithms:

(no reweighting),
.

Fig. 3. Steady-state MSD performance of the exponential-window DCD-lasso
algorithm against the regularization parameter after 500 input samples. Pa-
rameters of the scenario: . Parameters of the
algorithms: .

the MSD achieves a minimum at . When is re-
duced, the performance approaches that of the DCD adaptive
algorithm without penalty, which is close to that of the classical
RLS algorithm. However, when is increased too much, the
performance starts to deteriorate and becomes significantly in-
ferior to that of the classical RLS algorithm. This is due to the
fact that a large prevents new elements entering the support
of the solution. At , any element entering the support
would increase the cost function, and therefore the optimal so-
lution will be zero, implying that theMSDwill be 0 dB. It is seen
that the increase in does not improve much the steady-state
performance of the DCD-lasso algorithm; thus, in this case, only

DCD iteration per sample is enough for the high perfor-
mance. However, there is a gap of about 6 dB between the best

Fig. 4. MSD performance of the exponential-windowDCD-lasso algorithm for
different values of the reweighting parameter . Parameters of the scenario:

. Parameters of the algorithms:
.

DCD-lasso MSD performance and the oracle RLS performance
(see Fig. 3) that cannot be improved with the pure lasso penalty.
Fig. 3 also shows the performance of the DCD-lasso algo-

rithm with the reweighting described by equations (38), (39),
and (40). It can be seen that the reweighting greatly improves
the performance which now closely approaches the oracle per-
formance. It also significantly widens the range of values for
which the algorithm shows high performance and outperforms
the classical RLS algorithm. This fact is useful in practice as it
allows more freedom in choosing the regularization parameter.
Fig. 4 demonstrates that not only the steady-state perfor-

mance is improved due to the reweighting, but the convergence
speed also increases and the transition MSD curve becomes
close to that of the oracle RLS algorithm. This figure also shows
how the performance varies with the reweighting step size .
Clearly, reducing , the time constant of the reweighting re-
cursion increases and it takes longer to achieve the steady-state
performance, which is however the same for all the values of
. We have found that, in most cases, choosing in the

interval resulted in good performance. This choice
is not affected by other parameters of the algorithm.
Fig. 5 shows the MSD performance of the exponen-

tial-window DCD-lasso algorithm for different sparsity levels
. The parameters of the algorithm for each are adjusted

to guarantee the best performance with a minimum . It
can be seen that, as increases, the steady-state MSD and
the convergence time also increase. However, for all , the
DCD-lasso algorithm provides a steady-state MSD close to that
of the oracle RLS. Since in one DCD iteration only one element
of the solution vector can be updated, higher values of
require a higher to approach the oracle RLS performance.
Smaller than that shown in Fig. 5 result in (not shown here)
a slower convergence speed, but the steady-state MSD reached
after the convergence will still be close to that of the oracle
RLS. Note that the forgetting factor chosen for our
simulation is considered to be very low; typically, is chosen
to satisfy [39], i.e., in our case, it should be

. The small is a worst case situation for assessment
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Fig. 5. MSD performance of the exponential-window DCD-lasso algorithm
with reweighting for different levels of sparsity . Parameters of the scenario:

. Parameters of the algorithms:
.

of our algorithms as the convergence speed depends on ,
i.e., with higher the DCD based algorithms require smaller

to match the oracle performance. For sparser systems (e.g.,
), the regularization parameter can be chosen higher

(e.g., ); for a constant , a smaller results in
somewhat slower convergence.
Fig. 6 compares the performance of the exponential-window

DCD adaptive filtering with the lasso and modified lasso penal-
ties. It is seen that themodified lasso penalty results in somewhat
inferior performance compared to the lasso penalty. Note that
the small reweighting forgetting factor slows down
the convergence of both the algorithms, but the steady-state
MSD reached by the algorithms is the same as for the higher
. Taking into account that the difference in the performance

of the two algorithms is small and that, with the modified lasso
penalty, the complexity of the algorithm is reduced, it can be a
good candidate for implementation.

B. Performance of the Sliding-Window DCD-Lasso Algorithm

We now investigate the behavior of the adaptive DCD-lasso
algorithm with the sliding window. The length of the sliding
window is chosen equal to tomake the steady-state
MSD performance of the sliding window RLS algorithm close
to that of the earlier considered exponential window RLS algo-
rithm. Comparing the convergence of the two RLS algorithms, it
is seen that the sliding window provides a faster convergence to
the steady-state (compare Figs. 4 and 7); the convergence time
for the sliding window version is about twice smaller. The fact
that sliding-window adaptive algorithms are not often consid-
ered in the literature and used in practice is probably due to the
fact that until recently there was not computationally efficient
implementation of such algorithms [24].
Fig. 7 shows that the DCD-lasso algorithm with reweighting

and the sliding window approaches the steady-state MSD of the
oracle sliding-window RLS algorithm and significantly outper-
forms the sliding-window RLS algorithm. However, the transi-
tion part of the MSD curve for is almost twice longer
than that of the oracle RLS. This can be reduced by using extra

Fig. 6. MSD performance of the exponential-window algorithms with lasso
and modified lasso penalty functions for different reweighting parameters .
Parameters of the scenario: . Parameters of the
algorithms:

.

Fig. 7. MSD performance of the sliding-window DCD-lasso algorithm. Pa-
rameters of the scenario: . Parameters of the
algorithms: .

DCD iterations. With , the convergence time is only
30% longer than that of the oracle RLS.

C. Performance of the Exponential-Window DCD-Ridge
Algorithm

We now investigate the performance of the exponen-
tial-window DCD adaptive filter with the ridge-regression
penalty. Fig. 8 presents simulation results for the case of a
low noise variance, (as was the case in the previous
simulation scenarios). With , the DCD-ridge algorithm
is equivalent to the DCD-RLS algorithm with no penalty. When
increases , without the reweighting ,

the steady-state MSD increases, i.e., the regularization makes
the MSD performance worse. However, the reweighting greatly
improves the performance and, with and ,
the MSD performance is very close to that of the oracle RLS.
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Fig. 8. MSD performance of the exponential-window DCD-ridge algorithm
for different regularization and reweighting parameters. Parameters of
the scenario: . Parameters of the algorithms:

.

Thus, the use of the ridge-regression penalty, similarly to the
lasso penalty (see Fig. 7), together with the reweighting has
allowed achieving a close-to-oracle performance. Note that the
ridge-regression penalty, as we mentioned before, is equivalent
to applying regularization (diagonal loading) to and as
such is useful to avoid numerical instability. What is surprising
is that, with the use of reweighting, this penalty also turns out
to provide good performance for sparse estimation.
Fig. 9 shows the MSD performance for the case of a sig-

nificantly higher noise variance, . It can be seen that,
without the reweighting, the performance cannot approach the
oracle RLS performance. However, with the reweighting, the
steady-state MSD is quite close to the oracle performance with
a gap of about 2 dB. The elastic-net penalty gives an extra op-
portunity to fill the gap. With the parameter , the
DCD-elastic algorithm has reduced this gap by about 0.5 dB,
but, more significantly, it reduced the convergence time.

D. Performance of the Exponential-Window DCD-
Algorithm

Fig. 10 shows the dependence of the steady-state MSD pro-
vided by the exponential-windowDCD- algorithm on the reg-
ularization parameter for different values of and . The
case implies that there is no reweighting, and it can be
seen that, for this penalty, the reweighting does not make any
impact on the performance. However, the threshold does in-
fluence the performance at low . The main conclusion here
is that the -penalty achieves the oracle performance. Recall
that, among the considered penalties, the -penalty results in
the simplest implementation of the DCD adaptive filter. Com-
bined with the good steady-state performance as indicated by
Fig. 10, this variant of the adaptive filter is very attractive for
practical implementation.
Fig. 11 shows the MSD performance of the exponen-

tial-window DCD- algorithm for different sparsity levels
. The parameters of the algorithm for each are adjusted

to guarantee the best performance with a minimum . The

Fig. 9. MSD performance of the exponential-window DCD-ridge and DCD-
elastic algorithms for different regularization and reweighting parame-
ters. Parameters of the scenario: . Parameters of
the algorithms: .

Fig. 10. Steady-state MSD performance of the exponential-window DCD-
algorithm against the regularization parameter after 500 input samples. Pa-
rameters of the scenario: . Parameters of the
algorithms: .

performance of the DCD- algorithm is close to that of the
oracle RLS algorithm for all , similarly to the performance
of the DCD-lasso algorithm (see Fig. 5). It is interesting that
for both the algorithms, the same number of DCD iterations is
required. The regularization parameter can vary considerably
without significant influence on the performance. E.g., for

, choosing in the interval between to
results in a steady-state MSD close to that of the oracle RLS.
Smaller somewhat increases the convergence time, which
however in all the cases remains smaller than 300 samples after
the change of the impulse response.
Fig. 12 compares the MSD performance of the exponential-

windowDCD adaptive filters with all the penalties. It is seen that
all the penalties allow achieving a performance close to that of
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Fig. 11. MSD performance of the exponential-windowDCD- algorithmwith
reweighting for different levels of sparsity . Parameters of the scenario:

. Parameters of the algorithms:
.

Fig. 12. Comparison of MSD performance of the exponential-window DCD
adaptive filters with all the penalties. Parameters of the scenario:

. Parameters of the algorithms:
(except for the DCD- algorithm

that does not use reweighting). Regularization parameters: (lasso
and modified lasso), (ridge), and (elastic net),

.

the oracle RLS. The ridge-regression penalty provides a slightly
slower convergence speed than the other penalties.

E. Performance of the Sliding-Window DCD- Algorithms

Fig. 13 compares the MSD performance of the sliding-
window DCD adaptive filters with all the penalties. The
window length is chosen to match the steady-state
performance of the sliding-window adaptive filters to the
exponential-window adaptive filters (Fig. 12). It is seen again
that all the penalties allow achieving a performance close to
that of the oracle RLS. Similarly to the exponential case, the
ridge-regression penalty provides a slightly worse performance
than the other penalties. It is also seen that both the families

Fig. 13. Comparison of MSD performance of the sliding-window DCD adap-
tive filters with all the penalties. Parameters of the scenario:

. Parameters of the algorithms:
(except for the DCD- algorithm that does not

use reweighting). Regularization parameters: (lasso and modified
lasso), (ridge), and (elastic net), .

of adaptive filters significantly outperform the classical RLS
algorithms.

F. Comparison With Other Sparse Adaptive Filtering
Algorithms

We now compare the proposed algorithms with other adap-
tive filtering algorithms. Note that the weight vector that we are
using relates to the power delay profile of the unknown system.
A similar idea of reweighting is exploited in proportionate adap-
tive filters for controlling step sizes involved in updating the
filter taps [37]. Therefore, for comparison we consider the -law
proportionate NLMS (MPNLMS) algorithm, which is an ad-
vanced version of the PNLMS algorithm, and the proportionate
affine projection algorithm (PAPA) [37]. In the literature, there
have also been proposed RLS-like sparse adaptive filtering al-
gorithms [1], [2], [5], [6]; for comparison, we will be using the
-RLS and -RLS algorithms from [5], the OSCD-TWL and

OSCD-TNWL algorithms from [1] and the SPARLS algorithm
from [2]. We will also be using the LMS algorithm from [13]
which is based on using an approximation to the penalty (the
same approximation is used in the -RLS algorithm [5]). For
all the algorithms, parameters have been adjusted to achieve the
best possible performance.
Fig. 14 compares the MSD performance of the algorithms for

a high level of noise, . It is seen that with the same
forgetting factor , the proposed DCD-lasso algo-
rithm without reweighting outperforms the -RLS algorithm
from [5], although both algorithms use the same lasso penalty.
This can be explained by the approximations used in [5] for
derivation of the -RLS algorithm (based on the assumption
that the impulse response estimates do not change significantly
from one sample to another). Reweighting significantly reduces
the steady-state MSD of the DCD-lasso algorithm without com-
promising the convergence speed. For the -RLS algorithm, to
achieve the same steady-state MSD, the forgetting factor has to
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Fig. 14. Comparison of MSD performance of different adaptive filters:
MPNLMS, PAPA, -RLS, and exponential-window DCD-lasso with and
without reweighting. Parameters of the scenario: .

Fig. 15. Comparison of MSD performance of different adaptive filters:
MPNLMS, PAPA, -RLS, and exponential-window DCD-lasso with and
without reweighting. Parameters of the scenario: .

be increased to , significantly slowing down the con-
vergence.
Similar behavior is observed for a lower level of noise,
(see Fig. 15). Here, the -RLS algorithm with

provides a steady-state MSD the same as that of the DCD-lasso
algorithm with reweighting and . It is seen that, to
achieve the same steady-state MSD level, the DCD-lasso algo-
rithm with reweighting converges faster than the -RLS algo-
rithm. Parameters of the MPNLMS and PAPA algorithms are
chosen to match the steady-state MSD of the DCD-lasso algo-
rithm without reweighting; as it is seen, the DCD-lasso algo-
rithm provides faster convergence.
Fig. 16 shows the MSD performance of the adaptive filters

with the same parameters as in Fig. 14 for a scenario where the
system impulse response varies in time according to the autore-
gressive model:

Fig. 16. Comparison of MSD performance of different adaptive filters:
MPNLMS, PAPA, -RLS, and exponential-window DCD-lasso with and
without reweighting for a system with an impulse response varying in time
according to the autoregressive model with . Parameters of the
scenario: .

where at and are generated as de-
scribed above, and is a vector whose elements are zero
outside of the support of and nonzero within the support.
Nonzero elements ( elements) of are independent zero-
mean complex-valued random Gaussian numbers of variance

that results in the variance of nonzero elements
in equal to . The parameter defines the speed of the

time variation; for the simulation results shown in Fig. 16,
we used . It is seen that, compared to the time-in-
variant impulse response (see Fig. 14), the steady-state MSD
of the adaptive algorithms increases; however, the DCD-lasso
algorithm still outperforms the other algorithms. It is seen that
the -RLS algorithm with experiences the largest
increase in the steady-state MSD. This is due to the large for-
getting factor , which corresponds to an efficient av-
erage time for computation of
and , comparing to the significantly smaller for

used in the other algorithms. The high provides
an excessive smoothing of the time variations and results in a
higher MSD.
Fig. 17 compares the OSCD-TWL and OSCD-TNWL algo-

rithms from [1], SPARLS algorithm from [2], and DCD-lasso
algorithm in a scenario with real-valued signals (note that the
OSCD-TWL and OSCD-TNWL algorithms are only available
for the case of real-valued signals [1]). When implementing the
DCD-lasso algorithm for the real-valued case, in the DCD al-
gorithm (see Table III), the step-size vector contains only two
elements, , and the index at step 3 takes the values

. The SPARLS algorithm approximately solves the
lasso problem with the modified penalty function. Parameters of
the SPARLS algorithm (see details in [2]) are tuned to provide
the oracle steady-state performance for and mini-
mize the convergence time. The OSCD-TWL algorithm approx-
imately solves the lasso problem using the coordinate descent
iterations with the exact line search (we use one iteration per
sample to match the DCD-lasso algorithm). The OSCD-TNWL
algorithm exploits reweighting with a specific weight function
(see more details in [1]). Parameters of the OSCD-TWL and
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Fig. 17. Comparison of MSD performance of different adaptive filters:
SPARLS, OSCD-TWL, OSCD-TNWL, and exponential-window DCD-lasso
with and without reweighting. Parameters of the scenario:

. Parameters of the DCD-lasso algorithm:
(for the

DCD-lasso algorithm with reweighting).

OSCD-TNWL algorithms are tuned to provide the best possible
performance for the forgetting factor . It is seen that
the DCD-lasso algorithm with reweighting shows faster con-
vergence than the SPARLS algorithm; besides, the DCD-lasso
algorithm has a lower complexity ( against for
the SPARLS algorithm). The OSCD-TWL and OSCD-TNWL
algorithms have a complexity comparable to that of the DCD-
lasso algorithm. However, as seen from Fig. 17, the perfor-
mance of OSCD-TWL and OSCD-TNWL algorithms is inferior
to that of the DCD-lasso algorithm and DCD-lasso algorithm
with reweighting, respectively.
The adaptive algorithms with the penalty (or its approx-

imation, in the case of the -RLS [5] and -LMS [13] algo-
rithms) show, as seen in Figs. 18 and 19, better performance than
the algorithms based on the penalty. In both the cases of high
and low noise levels, the proposed DCD- algorithm demon-
strates superior performance compared to the other algorithms.
Finally, Fig. 20 shows the MSD performance of the expo-

nential-windowDCD-lasso and DCD-ridge adaptive filters with
reweighting against that of the MPNLMS, PAPA, RLS and or-
acle RLS adaptive filters in a scenario with a speech signal
as the input to the adaptive filter. The filter length is
, whereas only filter taps are nonzero and gen-

erated as independent zero-mean real-valued random Gaussian
numbers of unit variance and then is normalized to have
unity norm. The impulse response is kept constant during
the first 2000 samples and then changed in both positions and
values of the nonzero taps. The proposed DCD based adaptive
filters with lasso and ridge penalties significantly outperform the
MPNLMS, PAPA, and RLS algorithms. The affine projection
order in the PAPA algorithm was set to 32, which is consid-
ered to be a high projection order [50] (typically, a projection
order 8 or lower is used) resulting in a high complexity; for
lower projection orders, the performance of the PAPA algorithm
quickly degrades. The other parameters of the algorithms are
chosen to guarantee the best performance. For the DCD-lasso al-
gorithm, the parameters are:

Fig. 18. Comparison of MSD performance of different adaptive filters:
-LMS, -RLS, and exponential-window DCD- . Parameters of the sce-

nario: .

Fig. 19. Comparison of MSD performance of different adaptive filters:
-LMS, -RLS, and exponential-window DCD- . Parameters of the sce-

nario: .

. It is seen that with increase in in
the DCD-lasso algorithm, the convergence speeds up; however,
the steady state performance (the tracking part of the curves)
is almost the same irrespectively of . Moreover, it is almost
the same as that of the oracle RLS algorithm. With ,
the DCD-lasso adaptive algorithm is only about twice slower in
convergence than the oracle RLS algorithm. For the DCD-ridge
algorithm, the parameters are:

. The DCD-ridge adaptive
algorithm with also significantly outperforms the
MPNLMS, PAPA, and RLS algorithms in the steady-state per-
formance. However, it is somewhat inferior to the DCD-lasso
algorithm in both the convergence speed and the steady-state
performance.

G. Complexity of Proposed Algorithms

Tables IV and V summarize numbers of real-valued addi-
tions, multiplications and square-root operations required for
implementation of the proposed adaptive filtering algorithms.
For computing the complexity of a particular adaptive filter with
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Fig. 20. MSD performance of MPNLMS, PAPA, exponential-window RLS,
oracle RLS, DCD-lasso and DCD-ridge adaptive filters with speech as the input
signal. Parameters of the scenario: . Speech
samples are obtained at a rate of 8 kHz and represented as 14-bit fixed-point
numbers; the maximum signal magnitude is equal to 16260 at time instant 9933.

TABLE IV
COMPLEXITY OF DIFFERENT STRUCTURES OF RLS ADAPTIVE FILTERS

TABLE V
COMPLEXITY OF FINDING THE LEADING ELEMENT IN

DCD ITERATIONS WITH DIFFERENT PENALTIES

a particular penalty function, we need to take the complexity in
Table IV for the structure of the filter (exponential or sliding
window, transversal or not) and add, for every DCD update, the
complexity for a specific penalty from Table V, plus ad-
ditions for step 6 of the DCD algorithm in Table III, and the
complexity of updating the weight vector . When using
the proposed reweighting method, described by (38) to (40), the
complexity of the weight update can be made as low as ad-
ditions for all the penalties except the penalty. For the latter
case, multiplications and additions are required. How-
ever, as is seen from the simulation results in Section VI, the
-DCD algorithm does not require the reweighting to achieve

a high performance. Thus, the transversal version of all the pro-
posed adaptive algorithms has a complexity of operations
per sample. E.g., for the DCD- transversal adaptive filter with
exponential window and without reweighting, we obtain
real-valued multiplications; the number of additions can vary.
In the worst-case scenario, when all successful updates are per-
formed at the least significant bit and the number of
successful updates is exactly equal to the upper limit , the
algorithm requires real-valued additions.

VII. CONCLUSION

In this paper, we have proposed a general approach for de-
veloping low complexity adaptive algorithms for identification
of sparse complex-valued systems and specified it for expo-
nential and sliding window RLS. The proposed algorithms are
based on DCD iterations. Using this approach, we have pro-
posed DCD-based RLS adaptive filters with the lasso, modi-
fied lasso, ridge-regression, elastic net, and penalties that at-
tract sparsity of signals. We have proposed a simple recursive
reweighting of the penalties to further improve the performance.
For general regressors, the proposed algorithms have a com-
plexity of operations per sample, where is the filter
length. For transversal adaptive filters, the algorithms have a
low complexity, of operations per sample. The core of
the proposed algorithms are DCD iterations that are known to
be very well suited to implementation on FPGA platforms as
was reported in [25], [51], [52]. Importantly, the proposed al-
gorithms structurally and in the number and type of operations
required are very close to the DCD-based RLS adaptive algo-
rithms proposed in [24]. As indicated in [29], [31], [53], [54],
the algorithms in [24] have been proved to be very well suited
to implementation on FPGA platforms, providing a low chip
area, high throughput, and numerical stability. Moreover, this
approach has also been used to make other adaptive filters well
suited to implementation on FPGAs [27], [55], [56]. Our pro-
posed algorithms differ from the algorithm in [24] only in the
computation of the penalty functions and reweighting, which do
not represent a significant challenge for hardware implementa-
tion. Therefore, the adaptive algorithms proposed in this paper
can be expected to be also well suited to implementation in fi-
nite precision, e.g., on FPGA platforms. We have demonstrated
by simulation that the proposed adaptive algorithms outperform
known advanced adaptive filtering algorithms in sparse identi-
fication scenarios and possess performance close to the oracle
RLS performance with perfect knowledge of the support.
An important problem not addressed in this paper is the devel-

opment of algorithms for online selection of the regularization
parameters; for this purpose, the approaches from [5] and [57]
can be used. Another important problem is the investigation of
the convergence of the proposed algorithms. These will be di-
rections for our further research.

APPENDIX I
COMPLEXITY OF COMPUTING THE LASSO PENALTY

We need to find the minimum:

(49)

where . For the lasso penalty,
we have

(50)

Then, a direct (naive) computation of would require
real operations, including additions, multiplications, and square
roots. We will show how this can be reduced based on the spe-
cific properties of the operations.
We will be doing computations separately in groups, each

one dealing with one ( -th) coordinate.
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First, we notice that is the same for all 4 terms within
the group, and therefore it is computed only once; this requires
2 multiplications (squaring), 1 addition, and 1 square root op-
eration. When computing , we also have as a by-pass
product.
We now notice that takes one of the four values:

and is a power-of-two number, thus multipli-
cations by are just bit-shifts. We need to compute
for all the four values of . For , we have

(51)

Similarly, for the other three values, we obtain

(52)

As is available, we only need 1 addition to compute
, 4 other additions, and 4 square root operations to obtain all

the four quantities in (51) and (52). To obtain the four values in
(50) for one , we also need 4 additions and 4 multiplications.
In total, computing (50) for all and results in additions,

multiplications, and square root operations.
For finding the maximum in (49), we take into account that

involves only selecting the real or imaginary part and
a bit-shift. Then, with available, we need additions
to find the maximum.
Thus, the use of the lasso penalty in the DCD algorithm

requires in total additions, multiplications, and
square root operations, or real-valued operations.

This is almost three times fewer than when using the direct
computations.

APPENDIX II
COMPLEXITY OF COMPUTING THE

RIDGE-REGRESSION PENALTY

For applying the DCD algorithm, we need to find the
minimum:

(53)

where, for the ridge-regression penalty, we have

(54)

This maximization is the main contribution to the algorithm
complexity. Although it has a complexity , i.e., linear in
the filter length , the factor multiplying can be quite large.
E.g., a direct (naive) implementation of (53) would require 21
real-valued operations for every and and, thus, the total com-
plexity would be real-valuedmultiplications and additions.
Below we show that this can be reduced down to as few as
real-valued operations.
We can write

where we use the fact that for any . Then (53) can
be rewritten as

(55)

where . Computation of the vector with
elements requires additions and multiplications. De-
noting , where , we can rewrite
(55) as

(56)

The operation requires searching for
; thus, computations in (56) require

additions, which together with computing results in
additions and multiplications.
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