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Abstract—This paper proposes, on the basis of a rigorous math-
ematical formulation, a general framework that is able to define a
large class of nonlinear system identifiers. This framework exploits
all those relationships that intrinsically characterize a limited set
of realizations, obtained by an ensemble of output signals and their
parameterized inputs, by means of the separation property of the
Karhunen–Loève transform. The generality and the flexibility of
the approximating mappings (ranging from traditional approxi-
mation techniques to multiresolution decompositions and neural
networks) allow the design of a large number of distinct identifiers
each displaying a number of properties such as linearity with re-
spect to the parameters, noise rejection, low computational com-
plexity of the approximation procedure. Exhaustive experimenta-
tion on specific case studies reports high identification performance
for four distinct identifiers based on polynomials, splines, wavelets
and radial basis functions. Several comparisons show how these
identifiers almost always have higher performance than that ob-
tained by current best practices, as well as very good accuracy,
optimal noise rejection, and fast algorithmic elaboration. As an
example of a real application, the identification of a voice commu-
nication channel, comprising a digital enhanced cordless telecom-
munications (DECT) cordless phone for wireless communications
and a telephone line, is reported and discussed.

Index Terms—Hilbert space, Karhunen–Loève transform
(KLT), nonlinear approximation, nonlinear mapping, nonlinear
system identification, radial basis functions (RBF), statistical
signal processing, wavelet approximation.
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I. INTRODUCTION

N ONLINEAR system identification (NSI) is one of the key
issues in the modeling of signals generated by artificial

systems and natural phenomena. The reason for the great in-
terest in this field [1] is closely related to the intrinsic nonlinear
nature of real phenomena, making the linear hypothesis simply
an approximation of real behavior. As applicative examples, we
can recall (to mention just a few), the following: i) neuroscience
[2] where the pioneering works of Marmarelis et al. [3], [4]
have had a decisive impact on the study of neuronal activation
generated by perceptive stimuli; ii) the automatic control sector,
where the milestone developed by Lee and Schetzen [5] opened
new research directions and effective applications [6]; iii) com-
munications that inspired Lee [7] and where the identification
techniques have been used to model channels with high dis-
tortions [8], nonlinear amplifiers in the transmission stage [9],
pass-band nonlinear channels [10], channel equalizations [11],
[12], echo-cancellations in GSM receivers [13], and pre-distor-
tion modeling of radio frequency (RF) amplifiers [14]; iv) image
processing, thanks to the works of Ramponi et al. in the fields
of edge extraction [15], image enhancement [16], and prediction
of TV images [17], and of Thurnhofer et al. in the field of edge
enhancement [18]; and v) signal processing where there are
well-known applications in echo-cancellation and active noise
control both in mono-channel [19] and multichannel settings
[20], [21], and in the traditional problem of the electrodynamic
loudspeaker [22].

On the basis of the above considerations, let us classify the
current state of the art according to the milestones that have
been developed since 1965, when Lee and Schetzen [5] pub-
lished their decisive technique. In agreement with the above
statement, it is possible to state that a first trend was gener-
ated by the above-mentioned Lee–Schetzen method that iden-
tifies the Volterra kernels of nonlinear systems stimulated by
random input with assigned statistics [5], [23]. During recent
decades, a large number of different approaches and techniques,
also known as polynomial signal processing, have been devel-
oped, among which the recent works by Carini et al. [24], [25]
are worth noting. A second trend was stimulated by, on the one
hand, the works of Billings et al. [26]–[29], that proposed an ex-
tension of the linear formulation of systems commonly adopted

1053-587X/$25.00 © 2009 IEEE



TURCHETTI et al.: NONLINEAR SYSTEM IDENTIFICATION 537

in control theory to the nonlinear case, giving rise to the devel-
opment of the widespread nonlinear auto-regressive moving-av-
erage with exogenous input (NARMAX) model, and, on the
other hand, by the works of Narendra et al. [30], where recur-
rent neural networks are seen as nonlinear dynamical networks,
in which nonlinearity is implemented by means of static multi-
layer networks in the feedback loop. This approach has deter-
mined a dichotomic relationship between identification and the
learning process and has led to important contributions [31],
[32] on both real-time and adaptive identification techniques.
In this context, it is necessary to remember the intrinsic re-
lationship between identification and regularization which has
been extensively studied by Poggio et al. [33]. The above-men-
tioned trends have determined the development of suitable al-
gorithms that are closely related to the adaptive filter theory
[34], and are usually based on iterative refinement for finding
the optimal values of model parameters such as the least mean
square (LMS), recursive least square (RLS), normalized least
mean square (NLMS), affine projection (AP), and filtered-X
affine projection algorithms [24]. These algorithms have high
computational efficiency, but identification has satisfactory re-
sults mainly for mildly nonlinear systems with a low number of
parameters, and for the low-order kernels of the Volterra series
(VSs) [35].

Recent decades of advanced research studies in signal pro-
cessing and automatic control have not yet solved the main lim-
itations affecting the above-mentioned approaches. These limi-
tations can be divided into the following five categories:

1) the well-known algorithmic complexity which limits the
application to the first orders of VSs, with high depen-
dence and great sensitivity with respect to the fading
memory, and the signal length (this aspect prevents, on
the one hand, their application to all those systems and
natural phenomena where it is not possible to select a
priori only the first VS orders, and on the other hand, their
engineering in embedded systems with low capabilities of
memory and elaboration power);

2) the need for an a priori knowledge of the system fea-
tures and/or the mathematical properties that commonly af-
fect the mathematical modeling, and thus the identification
technique that has to be used, such as the well-known dis-
tinction between time-variant and time-invariant systems;

3) the need for an a priori knowledge of the model order, in
order to prevent the well-known effects of under- or over-
parameterizations, which has also determined the develop-
ment of a large number of statistical methodologies that are
able to select the optimal model order, based on Akaike’s
information criterion [36], Rissanen’s minimum descrip-
tion length criterion [37], and Hannan–Quinn’s criterion
[38];

4) the absence of an effective criterion that allows us to es-
tablish which systems and/or physical phenomena can be
identified with a specific technique based only on the pro-
cessing of realization ensembles;

5) the dearth of general frameworks that are able to define
large classes of identification algorithms.

These limitations have affected the development of new iden-
tification techniques, and they are known as the current open
problems of NSI.

The great interest in the intrinsic properties of nonlinear sys-
tems and the absence of a rigorous closed-form formulation of
these problems represent the starting points for the formaliza-
tion and development of specific approaches and suitable frame-
works, following the decisive contributions that these kinds of
methodologies have generated in other contexts [39]. Moreover,
these properties are one of the main principles behind the devel-
opment of new probabilistic characterization on limited ensem-
bles of realizations, as clearly stated in [40].

This paper presents, on the basis of a rigorous mathematical
formulation, an effective framework for NSI that is able to
define a large class of nonlinear system identifiers. Method-
ologically, we define a general theory based on a stochastic
setting where the nonlinear systems analyzed generate nonde-
terministic signals, i.e., stochastic processes (SPs), from given
initial conditions and random parameters of input signals.
Based on this premise, the abovementioned geometrical rela-
tionships are then extracted in these Hilbert spaces by means of
the Karhunen–Loève transform (KLT), thanks to its separability
property. The KLT permits a large class of approximating map-
pings to be defined on specific input domains, and thus allows
matching system identification algorithms to be developed.
This framework1 allows the best identification to be achieved,
with a fixed rank on a chosen ensemble of realizations, for all
the systems which show geometrical relationships in Hilbert
spaces and with no constraints in terms of model kind and/or
order. The generality and the flexibility of approximating
mappings, ranging from traditional approximation theory to
multiresolution decompositions and neural networks, allow the
design of a large number of distinct identifiers covering a broad
spectrum of properties, such as linearity with respect to the
parameters, noise rejection, and computational complexity of
the approximation procedure. Moreover, this class of identifiers
does not require an a priori knowledge of system features or
distinctions between time-variant and time-invariant systems,
and, unlike other techniques, model selection criteria are not
needed.

Exhaustive experimentation based on four distinct identifiers,
obtained using polynomial basis functions , splines

, wavelets , and radial basis functions
, was performed on specific case studies showing

high identification performance, also in case of limited ensem-
bles of realizations. Several comparisons with the LMS, RLS,
and NLMS algorithms demonstrate the good identification
performance of the proposed approach. It is also worth noting
that comparisons with NARMAX modeling show that better
results can be achieved in most of the cases studied, both with
or without additional output noise, with an excellent tradeoff
between superimposed noise and accuracy obtained. More-
over, computational requirements are lower than that of LMS,
NLMS, and RLS algorithms, and of the NARMAX identifier.

1A patent application of the proposed framework has been deposited [41] by
Gianfelici and Turchetti according to the Italian patent law.
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As an example of a real application, the identification of a
voice communication channel comprising a digital enhanced
cordless telecommunications (DECT) cordless phone for wire-
less communications and a telephone line, is reported and
discussed.

This paper is organized as follows. Section II proposes the
KLT-based identification framework for nonlinear systems.
In Section III some identification algorithms are presented.
Section IV reports the experimental results while Section V
gives some exhaustive comparisons with the state of the art.
Section VI discusses the application to a physical system, and
Section VII concludes the work.

II. KLT-BASED IDENTIFICATION FRAMEWORK

In this paper we will consider discrete-time nonlinear dynam-
ical systems that can be described by the following relation:

(1)

where represents the input, with the notation
meaning that ranges in the interval is the output,

is the vector of the initial conditions, and is a functional
that describes the input/output relationship in the time interval

.
In order to gain simplicity in the notation, we assume and
are both one-dimensional, the extension to the general case

being straightforward. The identification of (1) requires the
system must be stimulated by a set of input signals so
that the corresponding ’s, which vary within a set , can be
measured at the output. The more the space used for exciting
the system is wide the more the identification so obtained is
close to a complete description of the system. Unfortunately
an exhaustive stimulation of the system is in general impracti-
cable. Nevertheless, in most of application problems a complete
description of the system is not required, since it suffices to
restrict the input space to the subset of signals actually
occurring in the problem under observation.

The identification of systems can thus be more effective if
the input signal is regarded as a stochastic process , and the
vector of the initial conditions is also reckoned as a vector
random variable . As a consequence also the output is an SP

.
Throughout this paper, boldface letters are used to denote

random variables (RVs) and SPs, non-boldface letters are used
for deterministic quantities and for SP realizations, lowercase
upright letters are used to denote vectors, and capital upright
letters are used to denote matrices.

In addition let us consider is spanned by the signals ,
where is a vector of RVs that parame-
terize the process , and the function is assumed to be
known.

Correspondingly, varies within a subset so that
(1) establishes a transformation between SPs given by

(2)

where all the parameters related to both the input process and the
initial conditions can be collected in a single vector defined as

. As the expression for is substituted in (2),
the system output becomes a function of the time and vector

alone, and it is no more explicitly depending on the variable
, so we can simple write instead of (2). This

assumption is equivalent, in some cases, to restricting the input
space only to a certain class of signals. A trivial example is the
class of multicomponent sinusoidal signals represented by

(3)

In this case assuming the th sinusoidal component has a fixed
amplitude and a random frequency , then it results

(4)

In some cases, even if this assumption is not true, the partial
description of the system so obtained suffices for the applica-
tion purposes. An approach of this kind is used, for instance,
in the speech production modeling, in which the excitation is
represented by a multicomponent sinusoidal signal of arbitrary
amplitudes, frequencies, and phases [42].

Nevertheless, it is worth noting that, in general, given a class
of signals , if is a Hilbert space, they always can be
represented by the discrete Karhunen–Loève transform (DKLT)
[43], also called canonical representation, which is defined by

(5)

where are orthonormal functions and
. As a consequence the subset is spanned by the signals

given by (5) with and this proves
that the assumption is a general representation of the
input space.

As previously mentioned, for the sake of notational sim-
plicity, in the rest of this paper we will refer to the input
parameters and to the initial conditions together, as to
vector . For example, if we consider a simple dynamical
system composed of a pendulum with a sinusoidal forcing
term of random frequency , as in (3) with , the initial
conditions will be , where is the displacement
angle, and the input parameter vector will contain just .
Hence, will contain all the non-time
varying parameters on which the system output depends.

With the above considerations in mind, in order to tackle
the identification problem, as the output is a stochastic
process depending on the random parameter vector , and be-
longing to a Hilbert space, it can be represented by the DKLT
as follows:

(6)

where are orthonormal functions, and
. It is worth noting that the KLT is the most efficient rep-

resentation of the SP if the expansion is truncated to use fewer
than orthonormal basis functions, and is exact if .
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The transformation (6) and its inverse can be written in matrix
form as

(7)

where, denoting with the th component of the vector in
brackets, is defined as ,
with its realizations , and is defined as

, with .
is the reduced orthogonal matrix whose th

element is so that
its columns are the eigenvectors as obtained from the eigenvalue
equation

(8)

where is the autocorrelation matrix of that is
estimated as

(9)

and is the diagonal matrix with (non-null) eigen-
values on the diagonal. The mean-square error of the approxi-
mation (5) is equal to the sum of the residual eigenvalues, i.e.,

, and thus the optimal choice of depends on the
desired degree of accuracy and on the eigenvalue spectrum.

The main benefit of this representation is related to the sepa-
ration property of KLT. On the basis of this property, the output
of the system can be expressed, as a linear combination of prod-
ucts of a function of alone and a function of alone, as it
is clear from (6). Since the functions are determined by
means of , which can be estimated by the realizations of

, the system identification reduces to modeling the functions
. As is a function of , the terms

describe on the space spanned by the columns of the curves
, which all together characterize the SP .

Under wide conditions, these curves show a smooth behavior
so that they can be reconstructed from an ensemble of points ex-
tracted by the described approach to perform the identification.
Since is a no-memory input–output mapping, it can be ap-
proximated by a given vector function

(10)

where is a nonlinear operator and is a matrix,
of parameters per eigenfunction, to be estimated.

On the basis of these results, a general framework can be de-
fined that allows the use of any of the many known function
approximation techniques to obtain a model for the operator

, representing the starting point for the formalization and de-
velopment of a large class of distinct identifiers. Indeed, it can
be noted that (7) defines an isomorphism, that is, a one-to-one
linear transformation from the space of onto the space of

that preserves the inner product. In fact, it results

(11)

being a unitary matrix. This property is important to ensure
that reducing the error in approximating consequently re-
duces the error in approximating .

This aspect allows a great flexibility in the definition of the
approximation techniques that can be used to finalize the iden-
tification framework, as these techniques need only focus on the
minimization of the error . Their appli-
cation naturally leads to the definition of various different al-
gorithms within this framework. These algorithms can be clas-
sified according to several properties, such as linearity with re-
spect to the parameters, the number of parameters that have to
be estimated, i.e., the dimension of W, noise rejection, and the
computational complexity of the estimation procedure.

Promising algorithms with optimal identification capabilities
and covering a broad spectrum of the aforementioned properties
can be designed using: i) traditional polynomial-based approx-
imation techniques, ii) multiresolution decompositions, and iii)
neural networks (NNs). Among these, neural networks are also
particularly suitable to face this problem due to their ability
to approximate complex nonlinear mappings directly from the
input samples [44]. Earlier works have demonstrated that mul-
tilayer perceptrons (MLPs) [45]–[47] and radial basis function
(RBF) networks [48] possess this property with reference to
some classes of functions. These results show that NNs of these
kinds are capable of approximating, arbitrarily well, any func-
tion belonging to these classes, with the degree of accuracy de-
pending on the learning algorithm and the number of neurons
available.

Without detriment to generality, four examples of identifiers
originating from the proposed framework will be given in the
following section.

III. IDENTIFICATION ALGORITHMS

With the above considerations in mind, it can be stated that
once the structure of the functional has been defined,
the identification of the nonlinear system is equivalent to the
estimation of the matrix W from an ensemble of the system’s
input-output pairs.

In order to derive several different identification algorithms,
it is necessary to relate the stochastic setting (that allowed the
development of the general theory) to the available ensemble
of realizations. Methodologically, let us then refer to these
realizations of as being the dimension of
vector , and to the corresponding realizations of as

, with . Both can be put in matrix form as
and , where

and . A currently used estimation
of the autocorrelation matrix is given by

(12)

where , and its spectral representation is

(13)
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Fig. 1. Pseudocode of the KLT-based identification framework.

where is the matrix of eigen-
vectors and the matrix of eigenvalues, where now,
because of the approximation (12), .

By projecting all the realizations onto the basis U, we ob-
tain the KLT representation

(14)

and, in matrix form

(15)

where .
Once these projections have been obtained, the problem of

approximating by a given function corresponds to
find the parameters W that make the following approximation:

(16)

hold.
The estimation algorithm is particularly simple if is

a linear function of W, namely

(17)

with being an -dimensional vector of suitable functions.
By sampling these functions in correspondence of the re-
alizations of the parameterized input values and initial condi-
tions vector, , we obtain the matrix

and the estimation
problem reduces to estimating W so that

(18)

Different choices of the nonlinear functions will there-
fore lead to the design of distinct identifiers. Their mathematical
treatment and the exact form which the resulting matrix G as-
sumes in their context will be presented in the following, while
the main flow of the identification procedure is shown in pseu-
docode form in Fig. 1, which invokes one of the interpolation
techniques that will be described later and that are here gener-
ically denoted by the symbols and .
Here, SVD was used to implement KLT, as to the best of the
authors’ knowledge, it is one of the most efficient techniques to
implement it.

A. Polynomial Approximation-Based Identifier—

The first identification algorithm, called , is defined
by means of an approximating mapping based on a traditional
approximation technique—the polynomial interpolation. Due to
the well-known approximating properties of polynomials, they
might represent a suitable choice as basis functions to model
the nonlinearity in the identification problem, if the number of
oscillations of the function , and therefore the polynomial
degree, is not too large. Therefore, a polynomial basis of max-
imum degree for the function in (17) has been adopted,
that is

(19)

Here, powers of vectors are assumed to be defined as the iterated
application of the Kronecker product to the vector itself

(20)

where the Kronecker product of two generic vectors
and is a vector with

.
The matrix can easily be determined

by solving the overdetermined linear system with the
least mean square approach, that in this case corresponds to the
back-propagation algorithm. To that end, minimizing the mean
square error for the th component

with

(21)

where and yields the following
equation:

(22)

which reduces to

(23)

Finally the weights are estimated by solving the linear ma-
trix (23), as detailed in the pseudocode shown in Fig. 2, where,
for the sake of simplicity, the code is only reported for the case of
a scalar variable x, as will be for the other two linear-in-the-pa-
rameters interpolators that follows.

B. Spline Approximation-Based Identifier—

The second identification algorithm, called , is
defined by means of an approximating mapping based on
another traditional approximation technique—the splines. This
linear-in-the-parameter identifier is an extension of ,
able to capture more complicated dynamics without incurring
in the numerical instabilities of high-order polynomials. In fact,
B-splines [49] proved to be very well suited to fit the smooth
curves shown in the Hilbert space by the nonlinear systems we
considered. For the sake of notational simplicity, we limit here
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Fig. 2. Pseudocode of the polynomial interpolation technique ��� .

the definition of to the case of a one-dimensional RV
.
Starting from the framework introduced by (17), let us as-

sume that, without detriment to generality, the realizations
are ordered, so that . The spline-based mapping
can then be obtained by letting

(24)

where is the th-order B-spline (e.g., for a cubic
B-spline) defined over the knot sequence and
that is zero for and , defined by the recurrent
formula:

(25)

for , and

elsewhere
(26)

Thus the weight matrix W, being the matrix G completely de-
fined by the sampling of the B-splines on the available realiza-
tions of , can then be determined exactly as for the polynomial
case by solving the linear system , or, that is the same,
by applying (21)–(23), as detailed in the pseudocode shown in
Fig. 3.

C. Wavelet Approximation-Based Identifier—

The third identification algorithm, called , is de-
fined by means of an approximating mapping based on multires-
olution decompositions. This linear-in-the-parameter identifier
is based on wavelets that bring the advantage of tunable regular-
ization and denoising parameters, and also allow regularization
and denoising to be performed simultaneously [50] in the same
coefficient space. This allows the identifier to be defined as fol-
lows, where again for the sake of simplicity the mathematical
formulation has been restricted to the case of a one-dimensional
RV .

Let be an orthonormal dis-
crete wavelet transformation matrix for vectors of dimension

, ordered so that the th row contains a scaled and shifted

Fig. 3. Pseudocode of the spline-based interpolation technique ��� .

version of the mother wavelet at scale . is a power of two
and must be large enough for the approximation

to be reasonably accurate for ,
with and appropriate bounds such
that . Let then the matrix defined in
(18) be the “sampled” version of , sampled in correspondence
to the values of ,

(27)

so that the approximation problem (18) can be restated as the
problem of determining the coefficients in the following in-
verse wavelet transform:

(28)

where is the th column of matrix . The
problem (28) is clearly underdetermined ( must usually
be much greater than for the sampling to be sufficiently
accurate), so that a regularization criterion can be used to select
the best solution.

As shown in [50], regularization can easily be performed
in the wavelet domain by considering functions belonging
to Sobolev spaces [51], [52]. These are spaces in which the
definition of the norm also involves the derivatives of the
functions up to a certain order, so that functions associated to
smaller norms can be deemed to be “smoother.” The norm of a
function in a Sobolev space also corresponds to the Euclidean
norm of its wavelet coefficients after suitable scaling, hence the
usefulness of a wavelet representation for regularization.

Let be a scaling matrix

(29)

where is a regularization parameter, with higher values cor-
responding to smoother functions, and the op-
erator is used to denote an matrix with the speci-
fied elements on the main diagonal. The Sobolev norm then
equals the Euclidean norm of , and regularization cor-
responds to minimizing this quantity, that is, the interpolation
problem reduces to a simple weighted least-squares problem.
To solve it, it is enough to solve the system (28) by means of
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Fig. 4. Pseudocode of the wavelet-based interpolation technique ��� .

the Moore-Penrose pseudo-inverse of the
matrix , since the Moore–Penrose pseudoinverse is
the transformation that gives the minimum-norm solution to an
underdetermined system, thus obtaining

(30)

where and . If the data are noisy,
this formulation of also allows denoising to be
easily performed on the coefficients by simple thresholding
techniques.

A summary of the steps involved by this algorithm is shown
in pseudocode form in Fig. 4.

D. RBF Approximation-Based Identifier—

The fourth identification algorithm, called , is de-
fined by means of an approximating mapping based on neural
networks. This nonlinear-in-the-parameter identifier is based on
radial basis function networks [53], so that the th component
of the functional defined in (10) can be put in the fol-
lowing form:

(31)

for , and where is the number of neurons in the
RBF network and is the dimension of vector . The param-
eters , and

, with , are vectors or
matrices of weights. These weights, since the output of a feed-
forward RBF network can be viewed as the superposition of
many bell-shaped basis functions, actually define the shape and

Fig. 5. Pseudocode of the RBF-based interpolation technique ��� .

position of the basis functions used to build the network: con-
tains the heights, the coordinate of the centers along the th
dimension of the space of the ’s realizations and controls
the width of these functions, their radius at half height being ex-
actly for the th RBF.

These parameters amount to a total of
weights to be estimated, and that can be included in our frame-
work by defining , with

. Of course, since
RBFs are able to approximate any function arbitrarily well, as
in any neural network training endeavour, overfitting must be
avoided. To regularize the network output, the number of neu-
rons must then be chosen appropriately, and constraints on their
parameters must carefully be applied, possibly with the usage
of cross-validation techniques.

Fig. 5 only sketches a pseudocode for this identification algo-
rithm, since any neural network package would certainly pos-
sess function approximation primitives, such as “rbf train” and
“rbf sim”, used to train and to simulate a neural network, re-
spectively, and readily adaptable to the context at hand.

Being a nonlinear mapping, learning the proper weight
matrix W is usually computationally much more expensive
than solving the corresponding linear problems that ensue
from the previous approaches, but the neural network-based
approximations allow for greater flexibility in the choice of the
number of free parameters and scale more gracefully when
increases, thus posing themselves as an interesting option in
many circumstances.

IV. EXPERIMENTAL RESULTS

Nonlinear systems are very common in nature and form a
large class of time-variant and time-invariant systems. Many
natural phenomena that generate signals, images, and biometric
information belong to this class.

Before digging into too much detail, an overview of the kind
of systems being considered may be helpful. To this end, let us
consider a few quite commonly encountered forced differential
equations, such as Duffing’s [54] and Narendra’s [30], as will
be detailed in the following Sections IV-A to IV-C. From them,
a number of output realizations were computed. For simplicity,
only a single input parameter was varied, and the initial con-
ditions held constant, so that , and the projections of their
outputs on several eigenvectors, as functions of the parameter-
ized input, are reported in Fig. 6, which shows points along the
curves , for . Black dots represent projections
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Fig. 6. Projections of the output signals of three forced differential equations
onto their first nine eigenvectors � ���� � � � � � ���, plotted versus the param-
eter ��� characterizing the input domain. Black dots are the projections from the
training set, red circles from the testing set. The results for the (a) synthetic
system 1 (Section IV-A), (b) synthetic system 2 (Section IV-B), and (c) syn-
thetic system 3 (Section IV-C), are shown.

from the training set, consisting of 500 realizations, while red
circles come from the 2000 realizations of the testing set.

Fig. 7. Identification of the synthetic system 1 (� � ��� � � ���).
(a), (c), and (e) show the identification results for the noiseless case, and
(b), (d), and (f) show the results for the corresponding noisy cases.

In the remaining of this section some experimental results
on nonlinear system identification, using our approach, are pre-
sented. Several examples with noiseless and noisy output signals
are considered and presented in the first three parts into which
this section is methodologically divided.

A. Synthetic System 1

The first example of a system to be identified is described by
the difference equation:

(32)
with , where are constant
parameters, and is a random variable. (32) is the discrete-time
version of the well-known Duffing equation with

being an RV uniformly
distributed in the interval with mean , and
the initial conditions being .

The ability of the proposed framework to represent nonlinear
input-output mappings is proved by the results in Fig. 7, which
compares the output of the modeled system, identified with
the four algorithms mentioned previously, to the output of the
original system, both for the noiseless case and with additive
white Gaussian noise at a 25 dB SNR. The experiment was
performed with a training of realizations of length
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, using three randomly chosen realizations of the
RV , namely [Fig. 7(a) and (b)],
[Fig. 7(c) and (d)], and [Fig. 7(e) and (f)]. The
approximation was limited to the first eigenvectors,
which proved to be enough to get a relative approximation error
better than 100 dB. The results can be deemed to be excellent
with all the employed function approximation techniques, and
the noise rejection capability also proved to be very good.
For the algorithm we used a 6-level decomposition
with Daubechies’ DB8 wavelets, employing the interpolation
technique for nonuniformly sampled data [50] with an adaptive
soft-thresholding denoising based on Stein’s unbiased risk
estimate. The used polynomial interpolators of order

. For the we used an RBF network with 15 or
40 neurons (for the noisy and noiseless case, respectively), and
the made use of a cubic spline. The results appeared
to be excellent for all the four algorithms of the proposed
framework.

Finally, it can be noted that the identification error slowly in-
creases towards the end of the fixed interval . This
phenomenon does not usually occur in time-domain adaptive
filter-based identification techniques, and it is due to the in-
creasing variance of the system output with time, being the ini-
tial conditions fixed to the assigned value.

B. Synthetic System 2

The second example is more complex. The system to be iden-
tified is governed by difference equation proposed by Narendra
et al. in [30]:

(33)

where

(34)

(35)

with , and where is an RV uniformly distributed
in the interval with , and the initial condi-
tions are .

Fig. 8 shows the identification capabilities of the proposed
framework for this system, with , and

, comparing several trajectories of (33) with those of
the approximating model. It reports three cases, selected as
in the previous example, showing that the dynamics of the
approximating signals are very close to those of the system to
be identified, even when the signals are corrupted by noise. The

, and algorithms
were implemented exactly as per the previous example. Also
in this case no perceivable difference in the performance of the
four techniques could be observed, as all of them provided an
excellent modeling capability.

C. Synthetic System 3

The third example of system to be identified is described by
the difference equation also proposed by Narendra et al. in [30]:

(36)

Fig. 8. Identification of the synthetic system 2 (� � ��� � � ���).
(a), (c), and (e) show the identification results for the noiseless case, and
(b), (d), and (f) show the results for the corresponding noisy cases.

with

(37)

where , and is an RV uniformly distributed in the
interval with , and the initial conditions
are .

Fig. 9 shows the identification results, also in this case with
, and the same algorithms and

parameters as those used in Section IV-A.
The approximated dynamics follow the signals generated

by (36) quite accurately. The initial transitions, and the micro
and macro dynamics of signals are generally captured by this
method. No clear advantage of any technique over the others
used in the proposed framework can be noted for this example.

V. COMPARISON WITH THE STATE OF THE ART

In order to clearly show the effectiveness of our framework,
several comparisons with current best practices were con-
sidered. In this analysis, adaptive filtering-based approaches
[34], [35], such as the LMS, RLS, and NLMS algorithms, and
NARMAX models employing polynomial nonlinearities were
taken into account. Methodologically, the performance evalu-
ation was divided into two categories: identification accuracy
and processing times.
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Fig. 9. Identification of the synthetic system 3 (� � ��� � � ���).
(a), (c), and (e) show the identification results for the noiseless case, and
(b), (d), and (f) show the results for the corresponding noisy cases.

The identification accuracy of the proposed approach was as-
sessed by comparing its results with those of a number of other
techniques.

Table I shows the median of the relative mean square errors,
where the relative mean square error of a signal is defined as
the ratio between the mean square error (MSE) and the signal
power. The results are obtained by different identification tech-
niques, for signal lengths ranging from 120 to 480 samples,
and training set sizes ranging from 10 to 50 realizations.

The adaptive filters were used to train a model of the fol-
lowing type:

(38)

where and are polynomials of degree and , respec-
tively, and are the filter parameters to be adapted.
The predictor orders and used in the LMS, RLS, and
NLMS algorithms were set to the real model orders (second
order for the output signal, i.e., , and first order for
the input signal, i.e., ), and the polynomial coefficients
inside of the functions and were fixed at those values
resulting from the training of the NARMAX model, reported
next. Ideally, one might want the adaptive filter to also adapt the
coefficients inside of the polynomials, but in our experiments

this almost invariably led to instable filters, hence our choice of
sticking them to a known good solution. The polynomial order
used were also selected to obtain the best possible results, while
ensuring the stability of the adapted filter, and were and

for the synthetic system 1, and for the
synthetic system 2, and and for the synthetic
system 3. The step sizes used for adaptation were
for LMS and for NLMS, while the forgetting factor for
RLS was and the parameter was set to 0.0001. The
filters were adapted by presenting to them epochs of
the training set, except for the RLS case, which, having a con-
vergence rate much faster than that of the other two techniques,
needed only adaptation epochs to reach convergence.

Similar results are reported in Table II, where the median rel-
ative MSE at different output signal-to-noise ratios is compared
for a fixed value of and different values of .

Additionally, the proposed framework was tested against the
NARMAX algorithm. According to Billings’ original formula-
tion [26, p. 1015], a model of a nonlinear system can be written
as

(39)

where and are the auto-regressive and moving-average
model orders, respectively, and is a nonlinear function to be
estimated.

It is worth noting that the proposed framework is based on
substantially different principles than NARMAX models, so
that a number of assumptions had to be made to compare the
results. In fact, our framework is based on a spectral represen-
tation and not on a recursive modeling in the time domain; it
only uses a parameterized value of the input and not the actual
input samples; NARMAX in its original formulation can not
be applied to nonstationary systems while this limitation is
intrinsically absent in our framework; as model order selec-
tion criteria are not needed at all in our approach whilst they
play a fundamental role for the identification performance of
NARMAX.

Different techniques have been employed to estimate the
function after the development of NARMAX. In this work,
we found that good results can be obtained with polynomials
of appropriate order. Their coefficient was trained using data
arranged in Toeplitz matrices according to the structure man-
dated by (39).

The NARMAX identifier was applied to all the proposed ex-
amples with the model order fixed to the real order of the exam-
ples, i.e., and , and a polynomial order ranging
from 3 to 12 according to the specific example, with and without
additional white Gaussian noise with SNRs between 0 dB and
50 dB. The results of the comparison are reported in Tables I
and II for the noiseless and noisy cases, respectively.

In all these tests we used our framework complemented with a
simple spline-based function approximator , and de-
spite its simplicity it was able to almost always outperform the
other techniques in the moderately noisy conditions. In noiseless
conditions, the synthetic system 1, which exhibits a simple poly-
nomial nonlinearity, was unsurprisingly best modeled by the
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TABLE I
PERFORMANCE COMPARISON OF VARIOUS IDENTIFIERS APPLIED TO NOISELESS NSI FOR THE THREE SYNTHETIC NONLINEAR

SYSTEMS CONSIDERED AS EXAMPLES AND AS A FUNCTION OF � AND � , VERSUS ONE OF THE ALGORITHMS OF THE

PROPOSED FRAMEWORK ���� �. VALUES ARE RELATIVE MSES EXPRESSED IN DECIBEL

TABLE II
PERFORMANCE COMPARISON OF VARIOUS IDENTIFIERS APPLIED TO NOISY NSI FOR THE THREE SYNTHETIC NONLINEAR SYSTEMS CONSIDERED

AS EXAMPLES AND AS A FUNCTION OF � WITH � � ��	, VERSUS ONE OF THE ALGORITHMS OF THE PROPOSED FRAMEWORK ���� �.
VALUES ARE RELATIVE MSES EXPRESSED IN DECIBELS

NARMAX identifier, which employs a polynomial model that
is clearly able to exactly match these test signals. But moving
to more complex nonlinearities, as those displayed by synthetic
systems 2 and 3, the advantage of the proposed techniques be-
comes more evident.

The performance of the proposed approach with interpolation
techniques such as and , other
than spline approximation , are reported in Table III.
Extensive simulations were performed, and the performance,
evaluated in terms of the relative MSE expressed in decibel, sta-
tistically analyzed over a fixed testing set of 2000 realizations
and averaged over different choices of training sets. The iden-
tification was deemed to be successful when the root MSE was
less than a half of the signal root mean square amplitude, that
is, the threshold performance used to define the yield of the re-
ported techniques was fixed at 6 dB. , and are the
first three quartiles of the distribution of the relative MSE ex-
pressed in decibel, that is, the values at which the cumulative
distribution function equals 0.25, 0.50, and 0.75, respectively.

IQR, the interquartile range, is – , and gives a measure of
the variability of the performance around the median . Re-
sults above the yield threshold have been excluded from the sta-
tistics. In order to improve readability, the best results have been
highlighted in bold, while the worst are in italics.

From the data, it is apparent that the simplest technique,
, also provides the worst results. It only gets the best

values for very small training sets, but this is accompanied
by low yield values. On the contrary, never wins in
terms of median values, but invariably shows the highest yields,
as a consequence of the regularization it alone performs, and
provides reasonably good s. and have
similar performance, and often the best, in terms of , with

usually providing higher yields.
Comparisons of the processing times, with respect to adaptive

filter-based approaches and NARMAX identifiers, are shown in
Figs. 10 and 11. The simulation results were obtained with sev-
eral signal lengths and training set sizes. The results show that
the identification times of our approach are significantly lower
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TABLE III
PERFORMANCE OF THE PROPOSED FRAMEWORK WITH DIFFERENT APPROXIMATION TECHNIQUES AS A FUNCTION OF � , WITH � � ���. VALUES FOR

YIELD ARE NORMALIZED TO 1, ALL THE OTHERS ARE RELATIVE MSES EXPRESSED IN DECIBELS. RBF STANDS FOR 40-NEURON ��� , SPL FOR

CUBIC SPLINE ��� , PLY FOR TWELFTH-ORDER ��� , AND WLT FOR ��� USING DAUBECHIES’ DB8 WAVELETS

Fig. 10. Elaboration times of the proposed identification framework, along
with the LMS, RLS, NLMS, and NARMAX algorithms as functions of the
signal length �, for a fixed � � ��.

than that of the other algorithms. Indeed, our approach has a
computation time that is almost proportional to (or , the
two being closely related), since it employs block algorithms
that operate on the signals as a whole and not on a per-sample
basis. The algorithms used for the adaptive filters need to per-
form a number of iterations proportional to the number of sam-
ples in the training set, so have computation times proportional
to . For the adaptive filters, the number of epochs used to
train them also plays a fundamental role in determining their
computation time. The amount of training actually performed
was chosen so as to ensure the convergence of the adapted fil-
ters in most of our tests. Ensuring convergence in all the tests
would have implied unreasonably long computational times for
LMS, NLMS, and RLS. Also the NARMAX identifier, despite
being based on somewhat different premises, showed compu-
tation times roughly proportional to , with being the
amount of sample points available for its training.

VI. APPLICATION TO A PHYSICAL SYSTEM

In this section, an application of the proposed technique for
the identification of a real nonlinear system is presented. As

Fig. 11. Elaboration times of the proposed identification framework, along
with the LMS, RLS, NLMS, and NARMAX algorithms as functions of the
training set size � , for a fixed � � ���.

an example we consider a voice communication channel over
a telephone system, since microphone distortions and overall
system nonlinearities are known to be a major cause of perfor-
mance degradation in tasks such as speech or speaker recogni-
tion [55], [56]. As reported in these studies, the availability of
an accurate nonlinear model of the system would help the de-
velopment of appropriate compensation techniques.

The system studied is a voice communication channel com-
prising a DECT cordless phone, a telephone line, and the in-
terface circuitry needed to operate the system, as depicted in
Fig. 12.

The test signals used are made up of a sequence of fixed fre-
quency sine waves, each 1 s long and with a random ampli-
tude, for an overall duration of 1 h. In order to probe the system
under different conditions within the telephone passband three
different frequencies of 500 Hz, 1 kHz, and 2 kHz were used.

The excitation signals were generated by a computer system,
used to control the experiment, and reproduced by a high-quality
loudspeaker with the gain adjusted so that the mean output am-
plitude matched the loudness of the typical human voice. A
cordless handset was placed in front of the loudspeaker, in a
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Fig. 12. Sketch of setup used for the telephone system identification
experiment.

Fig. 13. Projections of the 1 kHz telephone test set over the first eigenvector.
The solid lines are the fitted model.

reverberating room with a level of background noise typical of
working environments, so as to match as closely as possible the
typical operating conditions of the mobile handset.

The output of the DECT phone was then conveyed back to the
computer by means of a subscriber-line interface circuit (SLIC),
used to generate the power and signaling levels on the telephone
line and to separate the audio to and from the telephone line, and
was then digitized with a sampling rate of 48 kHz with a 16-bit
per sample resolution.

A 10 ms window for each recorded wave in the sequence was
extracted after about 950 ms from the beginning of the wave it-
self, so that transient effects, room reverberation, and automatic
gain control (AGC) in the phone could be considered stable. The
population considered was thus composed of 3600 signals of
480 samples each, and was divided into a training set and a test
set of equal sizes.

The results of the experiment for a frequency of 1 kHz are
reported in Figs. 13–15. The variables used for the parameteri-
zation are the wave amplitude, uniformly distributed in the nor-
malized range , and the AGC gain level. In fact, as can
be seen from Fig. 13, which shows the projection of the test set
over the first eigenvector, the operation of the telephone AGC is
immediately apparent, with nine easily distinguishable discrete
gain levels. Although the nonlinearity shown by each curve in
Fig. 13 is not very pronounced, the effectiveness of the identi-
fication method in this case is mostly related to its capability in
modeling the amplitude quantization effect, as clearly appears
by projecting the output realizations over the eigenvectors.

Since the eigenvalue spectrum rapidly converges to the noise
plateau, as shown in Fig. 14, only the projections onto the first

Fig. 14. Eigenvalue spectrum for the 1 kHz telephone experiment.

Fig. 15. Projections of the 1 kHz telephone test set over the first four eigen-
vectors. The solid lines are the polynomial model fitted on the corresponding
training set. From left to right results for three different values of the AGC gain
are shown.

Fig. 16. Portion of a measured signal and its corresponding synthesized
version.

four eigenvectors were considered for the modeling, i.e., was
set to 4.

A separate model for each gain level was thus extracted,
leading to a family of curves like those shown in Fig. 15 where
the projection of the test set onto the first four eigenvectors, as
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well as the polynomial model extracted from the training set,
are plotted for a few gain levels of the telephone AGC.

The overall modeling result is shown in Fig. 16, which dis-
plays a portion of a recorded signal together with the signal re-
built using the extracted model. The relative MSE averaged over
the whole test set was only 31.7 dB.

VII. CONCLUSION

This paper presents an innovative identification framework
that allows designing a number of distinct identifiers for non-
linear systems, which generate geometrical relationships in the
Hilbert space. The identifiers resulting from this framework are
based on approximating mappings of the complete set of the
trajectories with a limited ensemble of realizations. Exhaustive
experimentation shows the effectiveness of the proposed tech-
nique with both noise and noiseless output signals. Several com-
parisons with the state of the art show how this framework al-
most always has a higher identification accuracy than the current
best practices and excellent elaboration times. Finally, it is worth
noting that, unlike other techniques, an a priori knowledge (or
the use of estimation criteria) for the system order and/or its
mathematical properties is not needed thus making the proposed
technique one of the current best practices in this field.
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