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Abstract—The deluge of networked data motivates the develop-
ment of algorithms for computation- and communication-efficient
information processing. In this context, three data-adaptive cen-
soring strategies are introduced to considerably reduce the com-
putation and communication overhead of decentralized recursive
least-squares solvers. The first relies on alternating minimization
and the stochastic Newton iteration to minimize a network-wide
cost, which discards observations with small innovations. In the re-
sultant algorithm, each node performs local data-adaptive censor-
ing to reduce computations while exchanging its local estimate with
neighbors so as to consent on a network-wide solution. The com-
munication cost is further reduced by the second strategy, which
prevents a node from transmitting its local estimate to neighbors
when the innovation it induces to incoming data is minimal. In the
third strategy, not only transmitting, but also receiving estimates
from neighbors is prohibited when data-adaptive censoring is in
effect. For all strategies, a simple criterion is provided for select-
ing the threshold of innovation to reach a prescribed average data
reduction. The novel censoring-based (C)D-RLS algorithms are
proved convergent to the optimal argument in the mean-root devi-
ation sense. Numerical experiments validate the effectiveness of the
proposed algorithms in reducing computation and communication
overhead.

Index Terms—Decentralized estimation, networks, recursive
least-squares (RLS), data-adaptive censoring.

I. INTRODUCTION

IN OUR big data era, various networks generate massive
amounts of streaming data. Examples include wireless sen-

sor networks, where a large number of inexpensive sensors co-
operate to monitor, e.g., the environment [21], [22], or data
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centers, where a group of servers collaboratively handles dy-
namic user requests [24]. Since a single node has limited com-
putational resources, decentralized information processing is
preferable as the network size scales up [6], [8]. In this paper,
we focus on a decentralized linear regression setup, and de-
velop computation- and communication-efficient decentralized
recursive least-squares (D-RLS) algorithms.

The main tool we adopt to reduce computation and commu-
nication costs is data-adaptive censoring, which leverages the
redundancy present especially in big data. Upon receiving an
observation, nodes determine whether it is informative or not.
Less informative observations are discarded, while messages
among neighboring nodes are exchanged only when necessary.
We propose three censoring-based (C)D-RLS algorithms that
can achieve estimation accuracy comparable to D-RLS with-
out censoring, while significantly reducing the computation and
communication overhead.

A. Related Works

The merits of RLS algorithms in solving centralized linear re-
gression problems are well recognized [11], [25]. When stream-
ing observations that depend linearly on a set of unknown param-
eters become available, RLS yields the least-squares parameter
estimates online. RLS reduces the computational burden of find-
ing a batch estimate per iteration, and can even allow for tracking
time-varying parameters. The computational cost can be further
reduced by data-adaptive censoring [4], where less informative
data are discarded. On the other hand, decentralized versions
of RLS without censoring have been advocated to solve linear
regression tasks over networks [15]. In D-RLS, a node updates
its estimate that is common to the entire network by fusing its
local observations with the local estimates of its neighbors. As
time evolves, all local estimates consent on the centralized RLS
solution. This paper builds on both [4] and [15] by developing
censoring-based decentralized RLS algorithms, thus catering to
efficient online linear regression over large-scale networks.

Different from our in-network setting where operation is fully
decentralized and nodes are only able to communicate with their
neighbors, most of the existing distributed censoring algorithms
apply to star topology networks that rely on a fusion center
[2], [9], [10], [19], [23]. Their basic idea is that each node
transmits data to the fusion center for further processing only
when its local likelihood ratio exceeds a threshold [23]; see
also [9] where communication constraints are also taken into
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account. Information fusion over fading channels is considered
in [10]. Practical issues such as joint dependence of sensor
decision rules, randomization of decision strategies as well as
partially known distributions are reported in [2], while [19] also
explores quantization jointly with censoring.

Other than the star topology studied in the aforementioned
works, [20] investigates censoring for a tree structure. If a node’s
local likelihood ratio exceeds a threshold, its local data is sent to
its parent node for fusion. A fully decentralized setting is con-
sidered in [3], where each node determines whether to transmit
its local estimate to its neighbors by comparing the local esti-
mate with the weighted average of its neighbors. Nevertheless,
[3] aims at mitigating only the communication cost, while the
present work also considers reduction of the computational cost
across the network. Furthermore, the censoring-based decentral-
ized linear regression algorithm in [13] deals with optimal full-
complexity estimation when observations are partially known
or corrupted. This is different from our context, where cen-
soring is deliberately introduced to reduce computational and
communication costs for decentralized linear regression.

B. Our Contributions and Organization

The present paper introduces three data-adaptive online
censoring strategies for decentralized linear regression. The re-
sultant CD-RLS algorithms incur low computational and com-
munication costs, and are thus attractive for large-scale network
applications requiring decentralized solvers of linear regres-
sions. Unlike most related works that specifically target wireless
sensor networks (WSNs), the proposed algorithms may be used
in a broader context of decentralized linear regression using
multiple computing platforms. Of particular interest are cases
where a regression dataset is not available at a single machine,
but it is distributed over a network of computing agents that are
interested in accurately estimating the regression coefficients in
an efficient manner.

In Section II, we formulate the decentralized online linear
regression problem (Section II-A), and recast the D-RLS in [15]
into a new form (Section II-B) that prompts the development of
three censoring strategies (Section II-C). Section III develops
the first censoring strategy (Section III-A), analyzes all three
censoring strategies (Section III-B), and discusses how to set the
censoring thresholds (Section III-C). Numerical experiments in
Section IV demonstrate the effectiveness of the novel CD-RLS
algorithms.

Notation: Lower (upper) case boldface letters denote col-
umn vectors (matrices). (·)T , || · ||, || · ||2 and E[·] stand for
transpose, 2-norm, induced matrix 2-norm and expectation,
respectively. Symbols tr(X), λmin(X) and λmax(X) are used
for the trace, minimum eigenvalue and maximal eigenvalue
of matrix X, respectively. Kronecker product is denoted by
⊗ and the uniform distribution over [a, b] by U(a, b), and the
Gaussian probability distribution function (pdf) with mean μ
and variance σ2 by N (μ, σ2). The standardized Gaussian pdf
is φ(t) = (1/

√
2π)exp(−t2/2), and its the associated com-

plementary cumulative distribution function is represented by
Q(z) :=

∫ +∞
z φ(t)dt.

II. CONTEXT AND ALGORITHMS

This section outlines the online linear regression setup over
networks, and takes a fresh look at the D-RLS algorithm. Three
strategies are then developed using data-adaptive censoring to
reduce the computational and communication costs of D-RLS.

A. Problem Statement

Consider a bidirectionally connected network with J nodes,
described by a graph G := {V, E}, where V is the set of nodes
with cardinality |V| = J , and E denotes the set of edges. Each
node j only communicates with its one-hop neighbors, collected
in the set Nj ⊂ V . The decentralized network is deployed to
estimate a real vector s0 ∈ Rp . Per time slot t = 1, 2, . . ., node
j receives a real scalar observation xj (t) involving the wanted s0
with a regression row hT

j (t), so that xj (t) = hT
j (t)s0 + εj (t),

with εj (t) ∼ N (0, σ2
j ).

Our goal is to devise efficient decentralized online algorithms
to solve the following exponentially-weighted least-squares
(EWLS) problem

ŝew ls(t) := arg min
s

1
2

t∑

r=1

J∑

j=1

λt−r [xj (r) − hT
j (r)s]2 (1)

where ŝew ls(t) is the EWLS estimate at slot t, and λ ∈ (0, 1]
is a forgetting factor that de-emphasizes the importance of past
measurements, and thus enables tracking of a non-stationary
process. When λ = 1, (1) boils down to a standard decentralized
online least-squares estimate.

B. D-RLS Revisited

The D-RLS algorithm of [15] solves (1) as follows. Per time
slot t, node j receives xj (t) and hT

j (t) and uses them to update
the per-node inverse p × p covariance matrix as

Φ−1
j (t) = λ−1Φ−1

j (t − 1)

− λ−1Φ−1
j (t − 1)hj (t)hT

j (t)Φ−1
j (t − 1)

λ + hT
j (t)Φ−1

j (t − 1)hj (t)
(2)

along with the per-node p × 1 cross-covariance vector as

ψj (t) = λψj (t − 1) + hj (t)xj (t). (3)

Using Φ−1
j (t) andψj (t), node j then updates its local parameter

estimate using

sj (t) = Φ−1
j (t)

⎡

⎣ψj (t) − 1
2

∑

j ′∈Nj

(
vj ′

j (t − 1) − vj
j ′(t − 1)

)
⎤

⎦

(4)

where vj ′
j (t − 1) denotes the Lagrange multiplier of node j

corresponding to its neighbor j′ at slot t − 1, that captures the
accumulated differences of neighboring estimates, recursively
obtained as (ρ > 0 is a step-size)

vj ′
j (t − 1) = vj ′

j (t − 2) + ρ
[
sj (t − 1) − sj ′(t − 1)

]
. (5)
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Next, we develop an equivalent novel form of D-RLS recur-
sions (2)–(5) that is convenient for our incorporation of data-
adaptive censoring. Detailed derivation of the equivalence can
be found in Appendix B. The inverse covariance matrix is up-
dated as in (2). However, the update of sj (t) in (4) is replaced
by

sj (t) = sj (t − 1) + Φ−1
j (t)hj (t)

[
xj (t) − hT

j (t)sj (t − 1)
]

− ρΦ−1
j (t)δj (t − 1) (6)

where δj (t) stands for a Lagrange multiplier conveying
network-wide information that is updated as

δj (t) = δj (t − 1) +
∑

j ′∈Nj

[sj (t) − sj ′(t)]

− λ
∑

j ′∈Nj

[sj (t − 1) − sj ′(t − 1)]. (7)

Observe that δj (t) stores the weighted sum of differences be-
tween the local estimate of node j, and all estimates of its neigh-
bors. Interestingly, if the network is disconnected and the nodes
are isolated, then δj (t) = 0 so long as δj (0) = 0, and the update
of sj (t) in (6) basically boils down to the centralized RLS one
[11], [25]. That is, the current estimate is modified from its pre-
vious value using the prediction error xj (t) − hT

j (t)sj (t − 1),
which is known as the incoming data innovation. If on the other
hand the network is connected, nodes can leverage estimates
of their neighbors (captured by δj (t)), which provide new in-
formation from the network other than its own observations
{xj (t)}. The term ρΦ−1

j (t)δj (t − 1) can be viewed as a Lapla-
cian smoothing regularizer, which encourages all nodes of the
graph to reach consensus on their estimates.

Remark 1: In D-RLS, (2) incurs computational complex-
ity O(p2), since calculating the products Φ−1

j (t − 1)hj (t)
and Φ−1

j (t − 1)ψj (t) requires O(p2) multiplications. Simi-
larly, (6) incurs computational complexity O(p2), that is dom-
inated by the matrix-vector multiplications Φ−1

j (t)hj (t) and
Φ−1

j (t)δj (t − 1). The cost of carrying out (7) is relatively mi-
nor. Regarding communication cost per slot t, node j needs to
transmit its local estimate sj (t) to its neighbors and receive es-
timates sj ′(t) from all neighbors j′ ∈ Nj . The computational
burden of D-RLS recursions (2)–(5) is comparable to that of
(2), (6) and (7), with the cost of (4) being the same as what
(6) requires. Meanwhile, the original form requires neighboring
nodes j and j′ to exchange vj (t) and vj ′(t) in addition to sj (t)
and sj ′(t), which doubles the communication cost relative to (6)
and (7).

C. Censoring-Based D-RLS Strategies

The D-RLS algorithm has well documented merits for
decentralized online linear regression [15]. However, its compu-
tational and communication costs per iteration are fixed, regard-
less of whether observations and/or the estimates from neigh-
boring nodes are informative or not. This fact motivates our
idea of permeating benefits of data-adaptive censoring to decen-
tralized RLS, through three novel censoring-based (C)D-RLS

Algorithm 1: CD-RLS-1.

1: Initialize δj (0), {sj (0)}J
j=1 and {Φ−1

j (0)}J
j=1

2: for t = 1, 2, . . . do
3: All j ∈ V:
4: if |xj (t) − hT

j (t)sj (t − 1)| ≤ τσj (t) then
5: update Φ−1

j (t) using (9)
6: update sj (t) using (10)
7: else
8: update Φ−1

j (t) using (2)
9: update sj (t) using (6)

10: end if
11: transmit sj (t) to and receive sj ′(t) from all j′ ∈ Nj

12: compute δj (t) using (7)
13: end for

strategies. They are different from the RLS algorithms in [4],
where the focus is on centralized online linear regression.

Our first censoring strategy (CD-RLS-1) can be intuitively
motivated as follows. If a given datum (xj (t),hj (t)) is not in-
formative enough, we do not have to use it since its contribution
to the local estimate of node j, as well as to those of all network
nodes, is limited. With {τσj (t)} specifying proper thresholds to
be discussed later, this intuition can be realized using a censoring
indicator variable

cj (t) :=

{
0, if |xj (t) − hT

j (t)sj (t − 1)| ≤ τσj (t)

1, if |xj (t) − hT
j (t)sj (t − 1)| > τσj (t).

(8)

If the absolute value of the innovation is less than τσj (t), then
(xj (t),hj (t)) is censored; otherwise (xj (t),hj (t)) is used.
Section III-C will provide rules for selecting the threshold τ
along with the local noise variance σ2

j (t), whose computations
are lightweight. If data censoring is in effect, we simply throw
away the current datum by letting hj (t) = 0 in (2), to obtain

Φ−1
j (t) = λ−1Φ−1

j (t − 1). (9)

Likewise, letting xj (t) = 0 and hj (t) = 0 in (6), yields

sj (t) = sj (t − 1) − ρΦ−1
j (t)δj (t − 1). (10)

CD-RLS-1 is summarized in Algorithm 1. If censoring is in
effect, computation cost per node and per slot is a fraction 2/7 of
the D-RLS in (4) and (7) without censoring. To recognize why,
observe that the scalar-matrix multiplication λ−1Φ−1

j (t − 1) in
(9) is not necessary as the update of Φ−1

j (t) can be merged to
wherever it is needed, e.g., in (10) and the next slot. In addition,
carrying out the O(p2) multiplications to obtain Φ−1

j (t)hj (t) is
no longer necessary, while the O(p2) multiplications required
to obtain Φ−1

j (t)δj (t − 1) remain the same.
The first censoring strategy still requires nodes to communi-

cate with neighbors per time slot; hence, the communication cost
remains the same. Reducing this communication cost, motivates
our second censoring strategy (CD-RLS-2), where each node
does not perform extra computations relative to CD-RLS-1,
but only receives neighboring estimates if its current datum
is censored. The intuition behind this strategy is that if a datum
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Algorithm 2: CD-RLS-2.

1: Initialize δj (0), {sj (0)}J
j=1 and {Φ−1

j (0)}J
j=1

2: for t = 1, 2, . . . do
3: All j ∈ V:
4: if |xj (t) − hT

j (t)sj (t − 1)| ≤ τσj (t) then
5: receives sj ′(t) from all j′ ∈ Nj

6: else
7: set sj ′(t − 1) as recently received ones from all

j′ ∈ Nj

8: update Φ−1
j (t) using (2)

9: update sj (t) using (6)
10: transmit sj (t) to and receive sj ′(t) from all

j′ ∈ Nj

11: compute δj (t) using (7)
12: end if
13: end for

Algorithm 3: CD-RLS-3.

1: Initialize δj (0), {sj (0)}J
j=1 and {Φ−1

j (0)}J
j=1

2: for t = 1, 2, . . . do
3: All j ∈ V:
4: if |xj (t) − hT

j (t)sj (t − 1)| ≤ τσj (t) then
5: stay idle
6: else
7: set sj ′(t − 1) as recently received ones from all

j′ ∈ Nj

8: update Φ−1
j (t) using (2)

9: update sj (t) using (6)
10: transmit sj (t) to and receive sj ′(t) from all

j′ ∈ Nj

11: compute δj (t) using (7)
12: end if
13: if do not receive from any j′ ∈ Nj for dmax time then
14: receive sj ′(t)
15: end if
16: end for

is censored, then very likely the current local estimate is
sufficiently accurate, and the node does not need to account
for estimates from its neighbors. Estimates from neighbors, are
only stored for future usage. Likewise, neighbors in Nj do not
need node j’s current estimate either, because they have already
received a very similar estimate. CD-RLS-2 is summarized in
Algorithm 2.

The third censoring strategy (CD-RLS-3) given by
Algorithm 3 is more aggressive than the second one. If a node
has its datum censored at a certain slot, then it neither transmits
to nor receives from its neighbors, and in that sense it remains
“isolated” from the rest of the network in this slot. Apparently,
we should not allow any node to be forever isolated. To this end,
we can force each node to receive the local estimate from any of
its neighbors at least once every dmax slots, which upper bounds
the delay of information exchange to dmax . Interestingly, the en-
suing section will prove convergence of all three strategies to

the optimal argument in the mean-square deviation sense under
mild conditions.

III. DEVELOPMENT AND PERFORMANCE ANALYSIS

This section starts with a criterion-based development of CD-
RLS-1. Convergence analysis of all three censoring strategies
will follow, before developing practical means of setting the
censoring threshold τσj (t).

A. Derivation of Censoring-Based D-RLS-1

Consider the following truncated quadratic cost that is similar
to the one used in the censoring-based but centralized RLS [4]

fj,t(s) :=
{
0, |xj (t) − hT

j (t)s| ≤ τσj (t)
1
2 [xj (t)−hT

j (t)s]2− 1
2 τ 2σj (t)2 , |xj (t) − hT

j (t)s| > τσj (t)
(11)

which is convex, but non-differentiable on {s : |xj (t) −
hT

j (t)s| = τσj (t)}. Using (11) to replace the quadratic loss
[xj (τ) − hT

j (τ)s]2 in (1), our CD-RLS-1 criterion is

min
s

t∑

r=1

J∑

j=1

λt−r fj,r (s). (12)

To solve (12) in a decentralized manner, we introduce a local
estimate sj per node j, along with auxiliary vectors z̄j ′

j and z̃j ′
j

per edge (j, j′). By constraining all local estimates of neigh-
bors to consent, we arrive at the following equivalent separable
convex program per slot t

min
{sj }j ∈V

t∑

r=1

J∑

j=1

λt−r fj,r (sj ) (13)

s.t. sj = z̄j ′
j , sj ′ = z̃j ′

j , z̄j ′
j = z̃j ′

j , j ∈ V, j′ ∈ Nj .

Next, we employ alternating minimization and the stochastic
Newton iteration to derive our first censoring-based solver of
(13). To this end, consider the Lagrangian of (13) that is given
by

L(s, z,v,u) =
∑

j∈V

t∑

r=1

λt−r fj,r (sj )

+
J∑

j=1

∑

j ′∈Nj

[
(vj ′

j )T (sj − z̄j ′
j ) + (uj ′

j )T (sj ′ − z̃j ′
j )
]

(14)

where s := {sj}j∈V and z := {z̄j ′
j , z̃j ′

j }j ′∈Nj

j∈V are primal vari-

ables, while v := {vj ′
j ∈ Rp}j ′∈Nj

j∈V and u := {uj ′
j ∈ Rp}j ′∈Nj

j∈V
are dual variables. Consider also the augmented Lagrangian of
(13), namely

Lρ(s, z,v,u) = L(s, z,u,v)

+
ρ

2

J∑

j=1

∑

j ′∈Nj

[||sj − z̄j ′
j ||2 + ||sj ′ − z̃j ′

j ||2
]

(15)
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where ρ is a positive regularization scale. Note that the con-
straints on z are not dualized, but they are collected in the set
Cz := {z|z̄j ′

j = z̃j ′
j , j ∈ V, j′ ∈ Nj , j 
= j′}.

To minimize (13) per slot t > 0, we rely on alternating min-
imization [27] in an online manner, which entails an iterative
procedure consisting of three steps.

[S1] Local estimate updates:

s(t) = arg min
s

L(s, z(t − 1),v(t − 1),u(t − 1))

[S2] Auxiliary variable updates:

z(t) = arg min
z∈Cz

Lρ(s(t), z,v(t − 1),u(t − 1))

[S3] Multiplier updates:

vj ′
j (t) = vj ′

j (t − 1) + ρ
[
sj (t) − z̄j ′

j (t)
]

uj ′
j (t) = uj ′

j (t − 1) + ρ
[
sj ′(t) − z̃j ′

j (t)
]
.

Observe that [S2] is a linearly constrained quadratic program,
for which if vj ′

j (t − 1) + uj ′
j (t − 1) = 0, we always have

sj ′(t) + sj (t) = z̃j ′
j (t) + z̄j ′

j (t) and z̃j ′
j (t) = z̄j ′

j (t).

Therefore, the initial values of vj ′
j and uj ′

j in [S3] are selected

to satisfy vj ′
j (0) + uj ′

j (0) = 0 (the simplest choice is vj ′
j (0) =

uj ′
j (0) = 0). It then holds for t ≥ 0 that

vj ′
j (t) + uj ′

j (t) = 0.

Using the latter to eliminate uj ′
j in [S3], we obtain

vj ′
j (t) = vj ′

j (t − 1) +
ρ

2
[
sj (t) − z̄j ′

j (t) − sj ′(t) + z̃j ′
j (t)
]

= vj ′
j (t − 1) +

ρ

2
[
sj (t) − sj ′(t)

]
(16)

where the first equality comes from subtracting the two lines
in [S3], and the second equality is due to z̃j ′

j (t) = z̄j ′
j (t). The

auxiliary variables z̃j ′
j and z̄j ′

j can be also eliminated. When vj ′
j

is initialized by vj ′
j (0) = 0, summing up both sides of (16) from

r = 1 to r = t, we arrive, after telescopic cancellation, at

vj ′
j (t) =

ρ

2

t∑

r=1

[
sj (r) − sj ′(r)

]
. (17)

Moving on to [S1], observe that it can be split into J per-node
subproblems

sj (t) = arg min
sj

t∑

r=1

λt−r fj,r (sj )

+
∑

j ′∈Nj

[vj ′
j (t − 1) − vj

j ′(t − 1)]T sj .

Before solving (11) with the stochastic Newton iteration [1],
eliminate vj ′

j using (17) to obtain

sj (t) = arg min
sj

t∑

r=1

λt−r fj,r (sj )

+ ρ
t−1∑

r=1

∑

j ′∈Nj

[
sj (r) − sj ′(r)

]T sj

which after manipulating the double sum yields

sj (t) = arg min
sj

t∑

r=1

λt−r fj,r (sj )

+
t∑

r=1

λt−r ρ
∑

j ′∈Nj

[

sj (r − 1) − sj ′(r − 1)

+ (1 − λ)
r−1∑

ξ=1

(
sj (ξ − 1) − sj ′(ξ − 1)

)
]T

sj .

If the update in (7) is initialized with δj (0) = 0, summing up
both sides from ξ = 1 to ξ = r − 1, we find after telescopic
cancellation

δj (r − 1) =
∑

j ′∈Nj

[

sj (r − 1) − sj ′(r − 1)

+ (1 − λ)
r−1∑

ξ=1

(
sj (ξ − 1) − sj ′(ξ − 1)

)
]

. (18)

Thus, optimization of sj (t) reduces to

sj (t) = arg min
sj

t∑

r=1

λt−r gj,r (sj ) (19)

where the instantaneous cost per slot t is

gj,t(sj ) := fj,t(sj ) + ρδT
j (t − 1)sj . (20)

The stochastic gradient of the latter is given by

∇gj,t(sj (t − 1))

= −cj (t)
[(

xj (t) − hj (t)sj (t − 1)
)
hj (t)

]
+ ρδj (t − 1).

In the stochastic Newton method, the Hessian matrix is given
by

Mj (t) = E[∇2gj,t(sj (t − 1))] = E[cj (t)hj (t)hT
j (t)]

where the second equality comes from (11) and (8). A reason-
able approximation of the expectation is provided by sample
averaging. However, presence of λ 
= 1 affects attenuation of
regressors, which leads to

Mj (t) =
1
t

t∑

r=1

λt−r cj (r)hj (r)hT
j (r)

= λ
t − 1

t
Mj (t − 1) +

1
t
cj (t)hj (t)hT

j (t).
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Applying the matrix inversion lemma, we obtain

M−1
j (t) =

t

t − 1

[

λ−1M−1
j (t − 1) (21)

− cj (t)
λ−1M−1

j (t − 1)hj (t)hT
j (t)M−1

j (t − 1)

(t − 1)λ − hT (t)M−1
j (t − 1)hj (t)

]

and after adopting a diminishing step size 1/t, the stochastic
Newton update becomes

sj (t) = sj (t − 1) − 1
t
M−1

j (t)∇gj,t(sj (t − 1)).

For rational convenience, let Φ−1
j (t) := M−1

j (t)/t, and rewrite
(21) as (cf. (2))

Φ−1
j (t) = λ−1Φ−1

j (t − 1) (22)

− cj (t)
λ−1Φ−1

j (t − 1)hj (t)hT
j (t)Φ−1

j (t − 1)

λ + hT
j (t)Φ−1

j (t − 1)hj (t)
.

Substituting ∇gj,t(sj (t − 1)) and Φ−1
j (t) into the stochastic

Netwon iteration yields (cf. (6))

sj (t) = sj (t − 1)+ cj (t)Φ−1
j (t)hj (t)

[
xj (t) −hT

j (t)sj (t −1)
]

− ρΦ−1
j (t)δj (t − 1)

which completes the development of CD-RLS-1.

B. Convergence analysis

Here we establish convergence of all three novel strategies
for λ = 1. With λ < 1, the EWLS estimator can even adapt
to time-varying parameter vectors, but analyzing its tracking
performance goes beyond the scope of this paper. For the time-
invariant case (λ = 1), we will rely on the following assumption.

(as1) Observations obey the linear model xj (t) = hj (t)s0 +
εj (t), where εj (t) ∼ N (0, σ2

j ) is correlated across j and t.
Rows hT

j (t) are uniformly bounded and independent of εj (t).
Covariance matrices Rhj

:= E[hj (t)hT
j (t)]  0p×p are time-

invariant and positive definite. Process {cj (t)hj (t)hT
j (t)} is

mean ergodic, while {εj (t)} and {cj (t)} are uncorrelated.
Eigenvalues of Φj (t)/t, which approximate the true positive
definite Hessian matrices E[cj (t)hj (t)hT

j (t)], are bounded be-
low by a positive constant when t is large enough.

We will assess convergence of our iterative algorithms using
the squared mean-root deviation (SMRD) metric, defined as

SMRD(t) :=

⎧
⎪⎨

⎪⎩
E

⎡

⎢
⎣

⎛

⎝
J∑

j=1

||sj (t) − s0 ||2
⎞

⎠

1
2

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

2

. (23)

Letting ej (t) := sj (t) − s0 ∈ Rp denote the estimation error
of node j and e(t) := [eT

1 (t), . . . , eT
J (t)]T ∈ RJ p the estima-

tion error across all nodes, one can see that SMRD(t) =
{E[‖e(t)‖]}2 . Observe that SMRD(t) is a lower-bound ap-
proximation of the mean-square deviation (MSD) metric
MSD(t) := E[‖e(t)‖2 ] [14], [26], since by Jensen’s inequal-
ity {E[‖e(t)‖]}2 ≤ E[‖e(t)‖2 ].

Under (as1), convergence of CD-RLS-1 and CD-RLS-2 is
asserted as follows; see Appendix B for the proof.

Theorem 1: For CD-RLS-1 and CD-RLS-2 Algorithms 1
and 2, set σj (t) = σj and Φ−1

j (0) = γIp per node j. Let μ :=
min{λmin(Rhj

), j ∈ V}, and suppose 0 < ρ < 1/(γλmax(L))
for CD-RLS-1 and correspondingly 0 < ρ < ρ0 for CD-RLS-2,
while L is the network Laplacian and the constant ρ0 depends
on λmax(L), γ, τ, μ, and the upper bound of hj (t). Under (as1),
there exists t0 > 0 for which it holds for t > t0 that

⎧
⎪⎨

⎪⎩
E

⎡

⎢
⎣

⎛

⎝
J∑

j=1

||sj (t) − s0 ||2
⎞

⎠

1
2

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

2

≤
J∑

j=1

γ−1 ||sj (0) − s0 ||2 + γt0σ
2
j tr(Rhj

)
2Q(τ)μt

+
γσ2

j λmax(R−1
hj

)tr(Rhj
) ln(t)

4Q2(τ)μt
. (24)

Theorem 1 establishes that the SMRD in (23) converges to
zero at a rate O(ln(t)/t). The constant of the convergence rate
is related to Rhj

through λmax(R−1
hj

), tr(Rhj
) and μ; the noise

covariance σ2
j , and the threshold τ through Q(τ). Theorem 1

also indicates the impact of the initial states (determined by
γ and sj (0)), which disappears at a faster rate of O(1/t). To
guarantee convergence, the step size ρ must be small enough.

The proof for CD-RLS-3 is more challenging. Because a
node does not receive any information from its neighbors when
censoring is in effect, it has to rely on outdated neighboring
estimates when the incoming datum is not censored. This delay
in percolating information may cause computational instabil-
ity. For this reason, we will impose an additional constraint to
guarantee that all local estimates do not grow unbounded. In
practice, this can be realized by truncating local estimates when
they exceed a certain threshold.

(as2) Local estimates {sj (t)}J
j=1 are uniformly bounded∀t ≥

0.
Convergence of CD-RLS-3 is then asserted as follows. Sim-

ilar to CD-RLS-1 and CD-RLS-2, the SMRD of CD-RLS-3
converges to zero with rate O(ln(t)/t), as stated in the follow-
ing theorem. The proof is omitted due to space limitations, but
can be found in the arxiv version [28].

Theorem 2: For CD-RLS-3 given by Algorithms 3, set
σj (t) = σj and Φ−1

j (−1) = γIp per node j. Under (as1) and
(as2) with 0 < ρ < ρ0 as in Theorem 1, there exists t0 > 0 for
which it holds ∀t > t0 , that
⎧
⎪⎨

⎪⎩
E

⎡

⎢
⎣

⎛

⎝
J∑

j=1

||sj (t) − s0 ||2
⎞

⎠

1
2

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

2

≤ a + b ln(t)
t

(25)

where a and b are positive constants that depend on the upper
bounds of hj (t) and sj (t), parameters ρ and τ , the covariance
Rhj

(t), the Laplacian matrix L, and t0 .
Although the bounds asserted by Theorems 1 and 2 could be

loose, they demonstrate that lim supt→∞ SMRD(t) = 0, which
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TABLE I
AVERAGE PER STEP PER NODE COMMUNICATION AND COMPUTATIONAL

COSTS, GIVEN THE AVERAGE CENSORING RATIO π∗

establishes that the decentralized estimates converge to the
ground truth asymptotically.

C. Threshold Setting and Variance Estimation

The threshold τ influences considerably the performance
of all CD-RLS algorithms. Its value trades off estimation
accuracy for computation and communication overhead. We
provide a simple criterion for setting τ using the average
censoring ratio π∗, which is defined as the number of censored
data over the total number of data [19]. The goal is to
choose τ so that the actual censoring ratio approaches π∗

as t goes to infinity – since we are dealing with streaming
big data, such an asymptotic property is certainly relevant.
When t is large enough, s is very close to s0 ; thus, the
innovation xj (t) − hT

j (t)sj (t − 1) ≈ xj (t) − hT
j (t)s0 =

εj (t) ∼ N (0, σ2
j ). As a consequence, Pr(cj (t) = 0) = Pr

(|xj (t) − hT
j (t)sj (t − 1)| ≤ τσj ) ≈ Pr(|εj (t)| ≤τσj ) = Pr

(|εj (t)/σj | ≤ τ) = 1 − 2Q(τ), where the last equality
holds because εj (t)/σj ∼ N (0, 1). Therefore, π∗ = limt→∞
1
t

∑t
τ =0 E[cj (τ)] ≈ 1 − 2Q(τ), which implies that

τ = Q−1((1 − π∗)/2) .

Given the average censoring ratio π∗, Table I compares the
average per step per node communication and computational
costs of D-RLS and the proposed CD-RLS algorithms. We as-
sume that transmitting or receiving a p-dimensional local es-
timate vector to or from a neighboring node incurs a cost of
p. Thus, for D-RLS and CD-RLS-1, the average communica-
tion costs are both 2p|E|/J . In CD-RLS-2, a node does not
transmit to its neighbors when it censors a datum, which leads
to an average communication cost of 2p|E|(1 − π∗)/J . CD-
RLS-3 avoids communication over a link as long as one of the
two end nodes censors a datum, and hence reduces the cost to
2p|E|(1 − π∗)2/J . As discussed in Section II-C, the computa-
tional costs of CD-RLS-1 for the non-censoring and censoring
cases are O(7p2/2) and O(p2), respectively. For the censor-
ing case, CD-RLS-2 and CD-RLS-3 reduce their computational
costs to O(p), and are more computationally efficient.

If the variances {σ2
j } were known, one could simply

choose σj (t) = σj . However, σj in practice is often un-
known. In this case, we consider the running average
σ2

j (t + 1) ≈ t−1∑t+1
τ =1 [xj (τ) − hT

j (τ)s0 ]2 = (t − 1)σ2
j (t)/t

+ [xj (t + 1) − hT
j (t + 1)s0 ]2/t, which suggests the recursive

variance estimate

σ2
j (t + 1) = (t −1)σ2

j (t)/t +[xj (t +1) − hT
j (t + 1)sj (t)]2/t.

Fig. 1. The network topology used in the numerical experiments.

IV. NUMERICAL EXPERIMENTS

This section provides numerical results to validate the ef-
fectiveness of our novel censoring strategies. We simulate a
network of J = 15 nodes, which are uniformly randomly de-
ployed over a 1 × 1 square. Two nodes within communication
range 0.3 are deemed as being neighbors. The resultant network
topology is depicted in Fig. 1. We compare six algorithms:
the centralized adaptive censoring (AC)-RLS that runs in every
node independently, the distributed diffusion least mean-square
(Diffusion-LMS) algorithm [5], [16], D-RLS without censoring
[17], and the three censoring-based D-RLS algorithms, namely
CD-RLS-1, CD-RLS-2 and CD-RLS-3. All algorithms are eval-
uated on two data sets, one synthetic and one real. The empirical
SMRD is used as performance metric.

For the synthetic data set, the unknown s0 is p-dimensional
with p = 4. The setting is the one in [17], where WSN-based
decentralized power spectrum estimation is sought for a signal
modeled as an autoregressive process. In this context, consider
an auxiliary sequence rj (t) that evolves according to rj (t) =
(1 − q)βj rj (t − 1) +

√
qωj (t). Starting from rj (t), the row

hT
j (t) is formed by taking the next p observations, namely

hT
j (t) = [rj (t + p − 1); . . . ; rj (t)]. Parameters are selected as

q = 0.5, βj ∼ U(0, 1), and also uniformly distributed driving
white noise ωj (t) ∼ U(−√

3σωj
,
√

3σwj
) with σ2

ωj
∼ U(0, 2).

Observation of node j is subject to additive white Gaussian
noise, with covariance σ2

j = 10−3αj , where αj ∼ U(0, 1). The
true signal vector is s0 = 1p , for which λ = 1 is set for all
algorithms. For D-RLS, CD-RLS-1, CD-RLS-2 and CD-RLS-
3, the step size ρ = 0.01 and Φ−1

j (0) = γIp where γ = 30,
leading to fastest convergence of D-RLS. Regarding the four
censoring-based algorithms AC-RLS, CD-RLS-1, CD-RLS-2
and CD-RLS-3, we set the average censoring ratio to π∗ = 0.6,
which is approached using τ = Q−1((1 − π∗)/2) ≈ 0.84. The
variances σ2

j are estimated in an online manner as described in
Section III-C. AC-RLS uses Φ−1

j (0) = γIp , where γ = 105

leads to the fastest convergence. Diffusion-LMS uses the
nearest-neighbor diffusion matrix and 1.5/

√
t step size, which

is tuned to obtain fastest convergence. For all curves obtained by
running the algorithms, the ensemble averages are approximated
via sample averaging over 100 Monte Carlo runs.
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Fig. 2. SMRD of the six algorithms versus number of iterations.

Fig. 2 depicts the SMRD versus the number of iterations. Not
surprisingly, since D-RLS does not censor data, its convergence
rate with respect to the number of iterations is the fastest. Among
the three proposed CD-RLS algorithms, CD-RLS-2 and CD-
RLS-3 are slower than CD-RLS-1, because the former two incur
smaller communication cost than the latter. Though CD-RLS-3
adopts a more aggressive censoring strategy than CD-RLS-2, its
convergence does not degrade as confirmed by Fig. 2. AC-RLS
is the slowest among all except for Diffusion-LMS, because it
is run at all nodes independently, without sharing information
over the network. Even though the SMRD of Diffusion-LMS
vanishes as t → ∞ (with rate 1/t), its finite-sample SMRD de-
cays slower than our CD-RLS schemes for which SMRD also
vanishes as t → ∞ (with rate upper bounded by ln(t)/t). This
is analogous to centralized LMS that for finite samples exhibits
SMRD decaying slower than that of centralized RLS. Note that
due to the non-differentiable cost function (11), Diffusion-LMS
is unable to achieve a linear convergence rate as in the differen-
tiable case [5], [18]. We shall not compare with Diffusion-LMS
in the rest of the numerical experiments.

The merits of censoring are further appreciated when one
considers computational costs. Recall that the target average
censoring ratio is π∗ = 0.6, meaning that 3/5 of the data are
discarded (actual values are 0.6320 for AC-RLS, 0.6292 for
CD-RLS-1, 0.6277 for CD-RLS-2, and 0.6237 for CD-RLS-3,
averaged over 100 runs). As confirmed by Fig. 3, the three
CD-RLS algorithms consume considerably less computational
resources relative to D-RLS that does not censor data. Indeed,
whenever a datum is censored, CD-RLS-1 only requires 2/7
of the computations relative to D-RLS, while CD-RLS-2 and
CD-RLS-3 incur minimal computational overhead. Although
AC-RLS is the most computationally efficient algorithm at the
beginning, absence of collaboration undermines its performance
in steady state.

Regarding the amount of data exchanged to communicate lo-
cal estimates in a unicast mode, CD-RLS-1 is the worst because
nodes need to transmit their local estimate to neighbors, no mat-
ter whether local data are censored or not. Fig. 4 corroborates
that CD-RLS-2 and CD-RLS-3 show significant improvement
over D-RLS, demonstrating their potential for reducing both

Fig. 3. SMRD of the five algorithms versus computational cost, defined as
the number of multiplications.

Fig. 4. SMRD of the four decentralized algorithms versus amount of data
transmission in the unicast mode.

communication and computation costs in solving decentralized
linear regression problems over large-scale networks.

We further numerically quantify the savings of computation
and communication that the three censoring-based D-RLS al-
gorithms enjoy over RLS without censoring. We set the target
SMRD to 0.015 and plot the computational and communication
costs required to reach it. According to Fig. 5, the computa-
tional costs of the three censoring-based algorithms decrease to
about half of that of D-RLS as the censoring ratio grows to 0.7,
while CD-RLS-2 outperforms the other two. Though CD-RLS-2
uses more iterations (hence more data) to achieve the target
SMRD than CD-RLS-1 (see Fig. 2), it requires less computation
when a datum is censored. On the other hand, CD-RLS-3 uses
more iterations to achieve the target SMRD than CD-RLS-2,
and hence it incurs more computational cost. The saving of CD-
RLS-3 over CD-RLS-2 is mainly in the communication cost. In
Fig. 6, the communication cost of CD-RLS-2 and CD-RLS-3
decreases as the censoring ratio grows, but that of CD-RLS-1
increases and is larger than that of D-RLS when the censoring
ratio exceeds 0.5. CD-RLS-3 exhibits best performance in terms
of communication cost.
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Fig. 5. Computational cost of the four decentralized algorithms for variable
censoring ratios when target SMRD is 0.015.

Fig. 6. Amount of data transmission of the four decentralized algorithms for
variable censoring ratios when target SMRD is 0.015.

Fig. 7. SMRD after 500 iterations of the four censoring algorithms for variable
censoring ratios.

Next, we vary π and evaluate its impact on SMRD, as shown
in Fig. 7. The SMRD here is computed after 500 iterations. When
π is close to 0.5, meaning about 1/2 of the data is censored, the
three proposed CD-RLS algorithms are still able to reach SMRD
of 10−4 , which is the limit of D-RLS without censoring. Among

Fig. 8. SMRD of the four censoring algorithms versus the censoring ratio on
a real data set of protein tertiary structures.

Fig. 9. First entries in the vector estimates of the four algorithms versus
number of iterations when λ = 0.95.

the three algorithms, CD-RLS-1 exhibits the best SMRD curve,
but its computation and communication costs are the highest.
AC-RLS does not perform well especially for low censoring
ratios due to the lack of network-wide collaboration. CD-RLS-
2 and CD-RLS-3 perform comparably in this experiment.

The effectiveness of the novel censoring-based strategies is
further assessed on a real data set of protein tertiary structures
[12]. The premise here is that a given dataset is not available
at a single location, but it is distributed over a network whose
nodes are interested in obtaining accurate regression coefficients
while suppressing the communication and computational over-
head. Again, the graph in Fig. 1 is used to model the network
of regression-performing agents. The number of control vari-
ables is p = 9. The first 45,720 (out of 45,730) observations are
normalized and divided evenly into J = 15 parts, one per node.
For CD-RLS-1, CD-RLS-2 and CD-RLS-3, we set ρ = 0.05
and Φ−1

j (0) = 5Ip , while for AC-RLS we choose γ = 10. The
ground truth vector s0 is estimated by solving a batch least-
squares problem on the entire data set. Similar to what we
deduced from Fig. 7 in the synthetic data set, the novel CD-
RLS algorithms outperform AC-RLS in terms of SMRD, as one
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varies the average censoring ratio from 15% to nearly 100% in
Fig. 8.

When λ < 1, the three censoring-based strategies are also
able to track time-varying signals well. Note that to track the
signal dynamics in this case, the censoring ratio cannot be too
large. We use the same setting of the synthetic data but change
the true s0 such that its ith element is β̃i sin(3πt/500) when
t ≤ 1000/3, and remains constant after t = 1000/3. The mag-
nitudes β̃i are i.i.d. and follow U(0, 1). The parameters of the
four decentralized algorithms are the same as those in the pre-
vious synthetic experiments, except that the censoring ratio is
0.3 when the censoring strategies are applied. Fig. 9 depicts
the evolution of the first entries in the vector estimates of the
four algorithms. They show similar tracking performance, but
the censoring-based algorithms incur lower communication and
computation costs over D-RLS.

V. CONCLUDING REMARKS

This paper introduced three data-adaptive censoring strate-
gies that significantly reduce the computation and communica-
tion costs of the RLS algorithm over large-scale networks. The
basic idea behind these strategies is to avoid inefficient computa-
tion and communication when the local observations and/or the
neighboring messages are not informative. We proved conver-
gence of the resulting algorithms in the mean-square deviation
sense. Numerical experiments validated the merits of the novel
schemes.

The notion of identifying and discarding less informative
observations can be widely used in various large-scale online
machine learning tasks including nonlinear regression, matrix
completion, clustering and classification, to name a few. These
constitute our future research directions.

APPENDIX A
EQUIVALENT FORM OF D-RLS

Here we prove that D-RLS recursions (2)–(5) are equivalent
to (2), (6) and (7). It follows from (4) that

Φj (t)sj (t) − λΦj (t − 1)sj (t − 1)

=

⎡

⎣ψj (t) − 1
2

∑

j ′∈Nj

(vj ′
j (t − 1) − vj

j ′(t − 1))

⎤

⎦

− λ

⎡

⎣ψj (t − 1) − 1
2

∑

j ′∈Nj

(vj ′
j (t − 2) − vj

j ′(t − 2))

⎤

⎦ .

(26)

Applying the matrix inversion lemma to (2) yields

Φj (t) = λΦj (t − 1) + hj (t)hT
j (t). (27)

Substituting ψj (t) − λψj (t − 1) = hj (t)xj (t) from (3) and
λΦj (t − 1) = Φj (t) − hj (t)hT

j (t) from (27) into (26), leads
to

Φj (t)
[
sj (t) − sj (t − 1)

]
= hj (t)

[
xj (t) − hT

j (t)sj (t − 1)
]

− 1
2

∑

j ′∈Nj

(vj ′
j (t − 1) − λvj ′

j (t − 2))

+
1
2

∑

j ′∈Nj

(vj
j ′(t − 1) − λvj

j ′(t − 2)). (28)

Next, we will show that if δ(t) is defined as

δ(t) :=
1
2ρ

∑

j ′∈Nj

(vj ′
j (t) − λvj ′

j (t − 1))

− 1
2ρ

∑

j ′∈Nj

(vj
j ′(t) − λvj

j ′(t − 1)) (29)

then its update is exactly (7). This can be done by taking the
difference between slots t and t − 1 for (29), and substituting
the update of vj ′

j in (5). Due to (29), it follows that (28) is
equivalent to

Φj (t)
[
sj (t) − sj (t − 1)

]
= hj (t)

[
xj (t) − hT

j (t)sj (t − 1)
]

− ρδ(t − 1). (30)

Left multiplying (30) with Φ−1
j (t), yields the update of sj in

(6), and completes the proof.

APPENDIX B
PROOF OF THEOREM 1

Proof: We need the following lemma in [7, Chapter 7,
Theorem 4].

Lemma 1: Let X,X1 ,X2 , ... be random variables on some
probability space. If Xn → X in probability and Pr(|Xn | ≤
k) = 1 for all n and some k, then Xn → X in rth mean for all
r ≥ 1.

Starting with CD-RLS-1, the proof proceeds in five stages.
Stage 1: We first investigate the spectral properties of Φj (t)

when t is sufficiently large. Letting λ = 1 and applying the
matrix inversion lemma to the censoring form (2), we have

Φj (t) = Φj (t − 1) + cj (t)hj (t)hT
j (t). (31)

Summing up from r = 1 to r = t and using the telescopic can-
cellation, (31) yields

Φj (t) =
t∑

r=1

cj (r)hj (r)hT
j (r) + γ−1Ip . (32)

Thanks to the strong law of large numbers, Φj (t)/t converges
to E[cj (t)hj (t)hT

j (t)] almost surely as t → ∞. Observe that

E[cj (t)hj (t)hT
j (t)]

= E
[
hj (t)hT

j (t)E[cj (t)|hj (t), sj (t − 1)]
]

= E[hj (t)hT
j (t) Pr(cj (t) = 1|hj (t), sj (t − 1))].

= E

[

hj (t)hT
j (t)

(

1 −
∫ τ +σ−1

j [hT
j (t)(sj (t−1)−s0 )]

−τ +σ−1
j [hT

j (t)(sj (t−1)−s0 )]
φ(x)dx

)]

.

(33)
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Observing the integral in (33), we know that

1 > 1 −
∫ τ +σ−1

j [hT
j (t)(sj (t−1)−s0 )]

−τ +σ−1
j [hT

j (t)(sj (t−1)−s0 )]
φ(x)dx

≥ 1 −
∫ τ

−τ

φ(x)dx = 2Q(τ) (34)

where the event set that the second inequality strictly holds
(namely, “≥” becomes “>”) is with nonzero measure. Thus,
substituting (34) into (33) yields

E[cj (t)hj (t)hT
j (t)] ≺ E[hj (t)hT

j (t)] = Rhj

and

E[cj (t)hj (t)hT
j (t)]  2Q(τ)E[hj (t)hT

j (t)] = 2Q(τ)Rhj
.

SinceΦj (t)/t converges to E[cj (t)hj (t)hT
j (t)] almost surely

as t → ∞ and hj (t) is uniformly bounded such that Φj (t)/t
is also bounded (cf. (32)), we have E[‖Φj (t)/t‖2 ] converges
to E[‖cj (t)hj (t)hT

j (t)‖2 ] as t → ∞ by Lemma 1. Therefore,
2Q(τ)Rhj

≺ E[cj (t)hj (t)hT
j (t)] ≺ Rhj

implies that there ex-
ists t1 > 0, for which it holds ∀t ≥ t1 that

2Q(τ)‖Rhj
‖2 < E[‖Φj (t)/t‖2 ] < ‖Rhj

‖2

and consequently the expected maximum eigenvalue of Φj (t)
satisfies

2Q(τ)λmax(Rhj
)t < E[λmax(Φj (t))] < λmax(Rhj

)t. (35)

Observe that tΦ−1
j (t) converges to

{
E[cj (t)hj (t)hT

j (t)]
}−1

almost surely as t → ∞ due to the convergence of Φj (t)/t to
E[cj (t)hj (t)hT

j (t)]. Since eigenvalues of Φj (t)/t are bounded
below by a positive constant when t is large enough, there exists
t2 > 0 such that tΦ−1

j (t) is bounded ∀t ≥ t2 . Following the
same analysis to obtain (35), it holds ∀t ≥ t2 that

λmax(R−1
hj

)/t < E[λmax(Φ−1
j (t))] < λmax(R−1

hj
)/(2Q(τ)t).

(36)

Letting t0 := max(t1 , t2), (35) and (36) hold ∀t ≥ t0 .
Stage 2: Rewrite the update of sj as

sj (t) = sj (t − 1) + cj (t)Φ−1
j (t)hj (t)

[
xj (t) − hT

j (t)sj (t − 1)
]

− ρΦ−1
j (t)δj (t − 1).

Note also that for λ = 1, the update of δj is equivalent to (cf.
(18))

δj (t − 1) =
∑

j ′∈Nj

[
sj (t − 1) − sj ′(t − 1)

]
.

Letting ej (t) := sj (t) − s0 , the estimation error obeys the
recursion

ej (t)= ej (t −1) + cj (t)Φ−1
j (t)hj (t)[xj (t) −hT

j (t)sj (t −1)]

− ρΦ−1
j (t)

∑

j ′∈Nj

[
ej (t − 1) − ej ′(t − 1)

]
.

Substituting xj (t) = hj (t)s0 + εj (t) to eliminate sj (t − 1), we
obtain

ej (t) = ej (t − 1) − cj (t)Φ−1
j (t)hj (t)hT

j (t)ej (t − 1)

+ cj (t)Φ−1
j (t)hj (t)εj (t)

− ρΦ−1
j (t)

∑

j ′∈Nj

[
ej (t − 1) − ej ′(t − 1)

]
. (37)

Left multiplying (37) with Φj (t) yields

Φj (t)ej (t)

= Φj (t)ej (t − 1) − cj (t)hj (t)hT
j (t)ej (t − 1)

+ cj (t)hj (t)εj (t) − ρ
∑

j ′∈Nj

[
ej (t − 1) − ej ′(t − 1)

]

= Φj (t − 1)ej (t − 1)

+ cj (t)hj (t)εj (t) − ρ
∑

j ′∈Nj

[
ej (t − 1) − ej ′(t − 1)

]
.

(38)

Our convergence analysis result will rely on a matrix
form of (38) that accounts for all nodes j. Define vec-
tors e(t) := [eT

1 (t), . . . , eT
J (t)]T ∈ RJ p , ε(t) := [εT

1 (t), . . . ,
εT
J (t)]T ∈ RJ , as well as block-diagonal matrices Φ(t) :=

diag({Φj (t)}) ∈ RJ p×J p , C(t) := diag({cj (t)}) ∈ RJ×J ,
and H(t) := diag({hj (t)}) ∈ RJ p×J . Then (38) can be written
in matrix form as

Φ(t)e(t)

=
[
Φ(t − 1) − ρL ⊗ Ip

]
e(t − 1) + H(t)C(t)ε(t) (39)

which after left multiplication with Φ− 1
2 (t) yields

Φ
1
2 (t)e(t) = Φ− 1

2 (t)
[
Φ(t − 1) − ρL ⊗ Ip

]
e(t − 1)

+ Φ− 1
2 (t)H(t)C(t)ε(t). (40)

From (40), we have (⊗ denotes Kronecker product)

E[eT (t)Φ(t)e(t)]

= E[eT (t − 1)(Φ(t − 1) − ρL ⊗ Ip)T Φ−1(t)

× (Φ(t − 1) − ρL ⊗ Ip)e(t − 1)]

+ 2E[eT (t −1)(Φ(t −1) − ρL ⊗ Ip)T Φ−1(t)H(t)C(t)ε(t)]

+ E[εT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ε(t)].

Since C(t) and ε(t) are irrelevant under (as1), the second term
on the right hand side is zero; hence,

E[eT (t)Φ(t)e(t)]

= E[eT (t − 1)(Φ(t − 1) − ρL ⊗ Ip)T Φ−1(t)

× (Φ(t − 1) − ρL ⊗ Ip)e(t − 1)]

+ E[εT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ε(t)]. (41)

Stage 3: Consider the first term on the right hand side of (41).
Since L is positive semi-definite, we can find a matrix U =
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(L ⊗ Ip)
1
2 such that L ⊗ Ip = UT U. By the matrix inversion

lemma, it holds that

(Φ(t − 1) − ρL ⊗ Ip)−1

= (Φ(t − 1) − ρUT U)−1

= Φ−1(t − 1) + ρΦ−1(t − 1)UT

× (IJ p − ρUΦ−1(t − 1)UT )−1UΦ−1(t − 1). (42)

For λ = 1, it follows from (2) that Φ−1(t − 1) − Φ−1(t) �
0J p . Since Φ−1(0) = γIJ p , it holds that Φ−1(t − 1) � γIJ p

for all t ≥ 1, and consequently

IJ p −ρUΦ−1(t − 1)UT �IJ p − ργUUT = IJ p −ργL ⊗ Ip .

If 0 < ρ < 1/(γλmax(L)), then for all t ≥ 1 it follows that

IJ p − ρUΦ−1(t − 1)UT � 0J p .

This implies that the second term of (42) is positive definite.
Thus, we have

Φ−1(t) � Φ−1(t − 1) � (Φ(t − 1) − ρL ⊗ Ip)−1 (43)

and hence, the first term on the right hand side of (41) is bounded
by

E[eT (t − 1)(Φ(t − 1) − ρL ⊗ Ip)T Φ−1(t)

× (Φ(t − 1) − ρL ⊗ Ip)e(t − 1)]

≤ E[eT (t − 1)(Φ(t − 1) − ρL ⊗ Ip)T e(t − 1)]

≤ E[eT (t − 1)Φ(t − 1)T e(t − 1)]. (44)

Stage 4: Now consider the second term on the right hand side
of (41). Manipulating the expectation yields

E[εT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ε(t)]

= E[tr(εT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ε(t))]

= E[tr(CT (t)HT (t)Φ−1(t)H(t)C(t)ε(t)εT (t))]

= E[tr(CT (t)HT (t)Φ−1(t)H(t)C(t)diag({σ2
j })].

where diag({σ2
j }) ∈ RJ×J is a diagonal matrix constructed

with {σ2
j }J

j=1 on its diagonal. Expanding the matrix multiplica-
tions and noting that cj (t) ≤ 1, we obtain

E[εT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ε(t)]

≤
J∑

j=1

σ2
j E[hT

j (t)Φ−1
j (t)hj (t)].

Because Φ−1
j (t − 1) � Φ−1

j (t) due to (22), we further have

E[εT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ε(t)]

≤
J∑

j=1

σ2
j E[hT

j (t)Φ−1
j (t − 1)hj (t)]

≤
J∑

j=1

σ2
j E[λmax(Φ−1

j (t − 1))‖hj (t)‖2 ]. (45)

Since Φ−1
j (t − 1) and hj (t) are independent, it holds ∀t > t0

that

E[λmax(Φ−1
j (t − 1))‖hj (t)‖2 ]

= E[λmax(Φ−1
j (t − 1))]E[‖hj (t)‖2 ]

<
λmax(R−1

hj
)

2Q(τ)(t − 1)
tr(Rhj

). (46)

The inequality is due to (36) that shows E[λmax(Φ−1
j (t))] <

λmax(R−1
hj

)/(2Q(τ)t), ∀t ≥ t0 and the fact E[‖hj (t)‖2 ] =
tr(E[hj (t)hT

j (t)]) = tr(Rhj
). Using (46) allows one to deduce

from (45) that

E[εT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ε(t)]

≤ 1
2Q(τ)(t − 1)

J∑

j=1

σ2
j λmax(R−1

hj
)tr(Rhj

) (47)

holds ∀t > t0 .
For t ≤ t0 , we have Φ−1

j (t) � Φ−1
j (0) = γIp because to

(43), and thus

J∑

j=1

σ2
j E[hT

j (t)Φ−1
j (t)hj (t)]

≤
J∑

j=1

γσ2
j E[hT

j (t)hj (t)] = γ

J∑

j=1

σ2
j tr(Rhj

).

Therefore, for t ≤ t0 (45) yields

E[εT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ε(t)]

≤ γ
J∑

j=1

σ2
j tr(Rhj

). (48)

Stage 5: Substituting (44), (47) and (48) into (41) implies for
t > t0 that

E[eT (t)Φ(t)e(t)]

≤ E[eT (t − 1)Φ(t − 1)e(t − 1)]

+
1

2Q(τ)(t − 1)

J∑

j=1

σ2
j λmax(R−1

hj
)tr(Rhj

) (49)

while for t ≤ t0

E[eT (t)Φ(t)e(t)]

≤ E[eT (t − 1)Φ(t − 1)e(t − 1)] + γ
J∑

j=1

σ2
j tr(Rhj

). (50)

Summing (49) from r = t0 + 1 to r = t and (50) from r = 1
to r = t0 , applying telescopic cancellation, and noticing that
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Φ(0) = γ−1IJ p , yields for t > t0

E[eT (t)Φ(t)e(t)] (51)

≤ γ−1 ||e(0)||2 +

(

γt0 +
t∑

r=t0 +1

λmax(R−1
hj

)

2Q(τ)(t − 1)

)

×
J∑

j=1

σ2
j tr(Rhj

)

≤ γ−1 ||e(0)||2 +

(

γt0 +
λmax(R−1

hj
)

2Q(τ)
ln(t)

)
J∑

j=1

σ2
j tr(Rhj

).

On the other hand, it holds

E[eT (t)Φ(t)e(t)] ≥ E[‖e(t)‖2/λmax(Φ−1(t))]

≥ E[‖e(t)‖]2/E[λmax(Φ−1(t))]

where the last line is due to Cauchy-Schwarz inequality

E[‖e(t)‖2/λmax(Φ−1(t))]E[λmax(Φ−1(t))]

= E[
(
‖e(t)‖/λmax(Φ−1(t))

1
2

)2
]E[
(
λmax(Φ−1(t))

1
2

)2
]

≥ E[‖e(t)‖]2 .
From (36), E[λmax(Φ−1

j (t))] < λmax(R−1
hj

)/(2Q(τ)t) =
1/(λmin(Rhj

)2Q(τ)t) holds asymptotically. Definining
μ := min{λmin(Rhj

), j ∈ V}, we establish that

2Q(τ)μtE[||e(t)||2 ] ≤ E[eT (t)Φ(t)e(t)], t > t0 . (52)

Combining (51) and (52) implies

2Q(τ)μtE[||e(t)||]2

≤ γ−1 ||e(0)||2 + (γt0 +
λmax(R−1

hj
)

2Q(τ)
ln(t))

J∑

j=1

σ2
j tr(Rhj

).

(53)

Finally, with ||e(t)||2 :=
∑J

j=1 ||ej (t)||2 =
∑J

j=1 ||sj (t) −
s0 ||2 this leads to (24), which completes the proof of CD-RLS-1.

Consider next CD-RLS-2. Stage 1 of the proof remains the
same, while for Stage 2, ej (t − 1) − ej ′(t − 1) is replaced by
cj (t)
[
ej (t − 1) − ej ′(t − 1)

]
in (38) to arrive at

Φj (t)ej (t) (54)

= Φj (t − 1)ej (t − 1) − cj (t)hj (t)hT
j (t)ej (t − 1)

+ cj (t)hj (t)εj (t) − ρ
∑

j ′∈Nj

cj (t)
[
ej (t − 1) − ej ′(t − 1)

]
.

Its matrix form (41) can be expressed as

E[eT (t)Φ(t)e(t)]

= E[eT (t − 1)(Φ(t − 1) − ρ(C(t)L) ⊗ Ip)T Φ−1(t)

× (Φ(t − 1) − ρ(C(t)L) ⊗ Ip)e(t − 1)]

+ E[εT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ε(t)]. (55)

Observe that the right hand sides of (41) and (55) are only
different in their first terms. Similar to Stage 3 (cf. (44)), we
need to show that the first term satisfies

E[eT (t − 1)(Φ(t − 1) − ρ(C(t)L) ⊗ Ip)T Φ−1(t)

× (Φ(t − 1) − ρ(C(t)L) ⊗ Ip)e(t − 1)]

≤ E[eT (t − 1)Φ(t − 1)e(t − 1)]. (56)

Substituting the update (22) with λ = 1 into (56), it suffices to
prove that

E[eT (t − 1)C(t) ⊗ IpH(t)HT (t)

× (IJ + HT (t)Φ−1(t − 1)H(t))−1 ⊗ Ipe(t − 1)]

≥ ρE[eT (t − 1)We(t − 1)] (57)

where

W := W1 + WT
1 − W2 − (LC(t)) ⊗ Ip − (C(t)L) ⊗ Ip

+ ρL ⊗ IpΦ−1(t − 1)(C(t)L) ⊗ Ip

W1 := C(t) ⊗ IpH(t)HT (t)Φ−1(t − 1)

× ((IJ + HT (t)Φ−1(t − 1)H(t))−1L) ⊗ Ip

W2 := (LC(t)) ⊗ IpΦ−1(t − 1)H(t)HT (t)Φ−1(t − 1)

× ((IJ + HT (t)Φ−1(t − 1)H(t))−1L) ⊗ Ip .

For the left hand side of (57), use the lower bound of the con-
ditional expectation 2Q(τ) ≤ E[cj (t)|hj (t), sj (t − 1)] to elim-
inate C(t), and arrive at

E[eT (t − 1)C(t) ⊗ IpH(t)HT (t)

× (IJ + HT (t)Φ−1(t − 1)H(t))−1 ⊗ Ipe(t − 1)]

≥ 2Q(τ)E[eT (t − 1)H(t)HT (t)

× (IJ + HT (t)Φ−1(t − 1)H(t))−1 ⊗ Ipe(t − 1)]. (58)

By (43), it holds that Φ−1(t − 1) � Φ−1(0) = γIJ p , and thus
[
IJ + HT (t)Φ−1(t − 1)H(t)

]−1 � [IJ + γHT (t)H(t)
]−1

.

By assumption {hj (t)} are uniformly bounded. If
hT

j (t)hj (t) ≤ K for all j = 1, . . . , J , we find

[
IJ + HT (t)Φ−1(t − 1)H(t)

]−1 � 1
1 + γK2 IJ . (59)

Substituting (59) into (58), we obtain a lower bound for the left
hand side of (57) given by

E[eT (t − 1)C(t) ⊗ IpH(t)HT (t)

× (IJ + HT (t)Φ−1(t − 1)H(t))−1 ⊗ Ipe(t − 1)]

≥ 2Q(τ)
1 + γK2 E[eT (t − 1)H(t)HT (t)e(t − 1)]

=
2Q(τ)

1 + γK2 E[eT (t − 1)diag{Rhj
}e(t − 1)]

≥ 2Q(τ)μ
1 + γK2 E[||e(t − 1)||2 ]. (60)



WANG et al.: DECENTRALIZED RLS WITH DATA-ADAPTIVE CENSORING FOR REGRESSIONS OVER LARGE-SCALE NETWORKS 1647

As for the right hand side of (57), it is upper bounded by

ρE[eT (t − 1)We(t − 1)]

≤ ρE[(2||W1 ||2 + ||W2 ||2 + 2||L||2
+ ρ||L||22 ||Φ−1(t − 1)||2)||e(t − 1)||2 ] (61)

where we used that all the diagonal elements cj (t) of C(t) are
within the range [0, 1] while ||W1 ||2 is upper bounded by

||W1 ||2 ≤ ||C(t)||2 ||H(t)||22 ||Φ−1(t − 1)||2
× ||(IJ + HT (t)Φ−1(t − 1)H(t))−1 ||2 ||L||2 .

Noticing that ||C(t)||2 ≤ 1, ||H(t)||22 ≤ K2 by assumption,
||Φ−1(t − 1)||2 ≤ ||Φ−1(0)||2 = γ, ||(IJ + HT (t)Φ−1(t − 1)
H(t))−1 ||2 ≤ 1 and ||L||2 ≤ λmax(L), we find that

||W1 ||2 ≤ γλmax(L)K2 .

Similarly, ||W2 ||2 is upper bounded by

||W2 ||2 ≤ γ2λmax(L)2K2 .

Therefore, (61) reduces to

ρE[eT (t − 1)We(t − 1)]

≤ ρ(2γλmax(L)K2 + γ2λmax(L)2K2 + 2λmax(L)

+ ργλmax(L)2)E[||e(t − 1)||2 ]. (62)

Considering a positive constant

ρ0 :=

√
2Q(τ)μ

γλmax(L)2(1 + γK2)
+ (

γK2

2
+

γK2 + 1
γλmax(L)

)2

−
(

γK2

2
+

γK2 + 1
γλmax(L)

)

and combining (60) with (62), we see that if ρ is chosen within
[0, ρ0 ], then (57) holds for all t ≥ 1; and so does (56).

Following Stages 4 and 5 in the proof for CD-RLS-1, we can
show that (24) holds almost surely for CD-RLS-2 ∀t > t0 . This
completes the proof of the entire theorem. �
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