
146 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 1, JANUARY 1, 2017

Network Newton Distributed Optimization Methods
Aryan Mokhtari, Qing Ling, and Alejandro Ribeiro

Abstract—We study the problem of minimizing a sum of con-
vex objective functions, where the components of the objective
are available at different nodes of a network and nodes are al-
lowed to only communicate with their neighbors. The use of
distributed gradient methods is a common approach to solve this
problem. Their popularity notwithstanding, these methods exhibit
slow convergence and a consequent large number of communica-
tions between nodes to approach the optimal argument because
they rely on first-order information only. This paper proposes the
network Newton (NN) method as a distributed algorithm that in-
corporates second-order information. This is done via distributed
implementation of approximations of a suitably chosen Newton
step. The approximations are obtained by truncation of the Newton
step’s Taylor expansion. This leads to a family of methods defined
by the number K of Taylor series terms kept in the approxima-
tion. When keeping K terms of the Taylor series, the method is
called NN-K and can be implemented through the aggregation of
information in K-hop neighborhoods. Convergence to a point close
to the optimal argument at a rate that is at least linear is proven
and the existence of a tradeoff between convergence time and the
distance to the optimal argument is shown. The numerical experi-
ments corroborate reductions in the number of iterations and the
communication cost that are necessary to achieve convergence rel-
ative to first-order alternatives.

Index Terms—Multi-agent network, distributed optimization,
Newton’s method.

I. INTRODUCTION

D ISTRIBUTED optimization algorithms are used to solve
the problem of minimizing a global cost function over a set

of nodes in situations where the objective function is defined as
a sum of local functions. To be more precise, consider a variable
x ∈ Rp and a connected network containing n agents each of
which has access to a local function fi : Rp → R. The agents
cooperate in minimizing the aggregate cost function f : Rp →
R taking values f(x) :=

∑n
i=1 fi(x). I.e., agents cooperate in

Manuscript received November 2, 2015; revised May 31, 2016; accepted July
26, 2016. Date of publication October 13, 2016; date of current version October
31, 2016. The associate editor coordinating the review of this manuscript and ap-
proving it for publication was Dr. Chong-Yung Chi. This work was supported in
part by the National Science Foundation under Award CAREER CCF-0952867,
in part by the Office of Naval Research under Contract ONR N00014-12-1-
0997, and in part by the National Natural Science Foundation of China under
Grant NSFC 61004137. This paper was presented in part at the 2014 48th Asilo-
mar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA,
November 2–5, 2014 and in part at the 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing, Brisbane, QLD, Australia, April
19–24, 2015. This paper expands the results and presents convergence proofs
that are referenced in [1] and [2].

A. Mokhtari and A. Ribeiro are with the Department of Electrical and Systems
Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
aryanm@seas.upenn.edu; aribeiro@seas.upenn.edu).

Q. Ling is with the Department of Automation, University of Science
and Technology of China, Hefei 230026, China (e-mail: qingling@mail.
ustc.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2016.2617829

solving the problem

x∗ := arg min
x∈Rp

f(x) = arg min
x∈Rp

n∑

i=1

fi(x). (1)

Problems of this form arise often in, e.g., decentralized control
systems [3], [4], wireless systems [5], [6], sensor networks [7]–
[9], and large scale machine learning [10]–[12].

There are different algorithms to solve (1) in a distributed
manner. The most popular choices are decentralized gradient
descent (DGD) [13]–[16], distributed implementations of the
alternating direction method of multipliers [7], [17]–[20], and
decentralized dual averaging [21], [22]. Although there are sub-
stantial differences between them, these methods can be generi-
cally abstracted as combinations of local descent steps followed
by variable exchanges and averaging of information among
neighbors. A feature common to all of these algorithms is the
slow convergence rate in ill-conditioned problems since they
operate on first order information only. This is not surprising
because gradient descent methods in centralized settings where
the aggregate function gradient is available at a single server
have the same difficulties in problems with skewed curvature
[see Chapter 9 of [23]].

This issue is addressed in centralized optimization by
Newton’s method that uses second order information to de-
termine a descent direction adapted to the objective’s curvature
[see Chapter 9 of [23]]. In general, second order methods are
not available in distributed settings because distributed approxi-
mations of Newton steps are difficult to devise. In the particular
case of flow optimization problems, these approximations are
possible when operating in the dual domain and have led to the
development of the accelerated dual descent methods [24], [25].
As would be expected, these methods result in large reductions
of convergence times.

Our goal is to develop approximate Newton’s methods to
solve (1) in distributed settings where agents have access to
their local functions only and exchange variables with neigh-
boring agents. We do so by introducing Network Newton (NN),
a method that relies on distributed approximations of Newton
steps for the global cost function f to accelerate convergence of
DGD. We begin the paper with an alternative formulation of (1)
and a brief discussion of DGD (Section II). We then introduce
a reinterpretation of DGD as an algorithm that utilizes gradient
descent to solve a penalized version of (1) in lieu of the orig-
inal optimization problem (Section II-A). This reinterpretation
explains convergence of DGD to a neighborhood of x∗. The vol-
ume of this neighborhood is given by the relative weight of the
penalty function and the original objective which is controlled
by a penalty coefficient.

If gradient descent on the penalized function finds an approx-
imate solution to the original problem, the same solution can
be found with a much smaller number of iterations by using
Newton’s method. Alas, distributed computation of Newton

1053-587X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

MOKHTARI et al.: NETWORK NEWTON DISTRIBUTED OPTIMIZATION METHODS 147

steps requires global communication between all nodes in the
network and is therefore impractical (Section III). To resolve this
issue we approximate the Newton step of the penalized objec-
tive function by truncating the Taylor series of the exact Newton
step (Section III-A). This approximation results in a family of
methods indexed by the number of terms of the Taylor expan-
sion that are kept in the approximation. The method that results
from keeping K of these terms is termed NN-K. A fundamental
observation here is that the Hessian of the penalized function has
a sparsity structure that is the same sparsity pattern of the graph.
Thus, when computing terms in the Hessian inverse expansion,
the first order term is as sparse as the graph, the second term
is as sparse as the two hop neighborhood, and, in general, the
k-th term is as sparse as the k-hop neighborhood of the graph.
Thus, implementation of the NN-K method requires aggregat-
ing information from K hops away. Increasing K makes NN-K
arbitrarily close to Newton’s method at the cost of increasing
the communication overhead of each iteration. We point out that
the same Taylor series is used in the development of the ADD
algorithms, but this is done to solve a network utility maximiza-
tion problem in the dual domain [24]. The Taylor expansion is
utilized here to solve a consensus optimization problem in the
primal domain.

Convergence of NN-K to the optimal argument of the penal-
ized objective is established (Section IV). We do so by establish-
ing several auxiliary bounds on the eigenvalues of the matrices
involved in the definition of the method (Propositions 1-3 and
Lemma 2). We show that a measure of the error between the
Hessian inverse approximation utilized by NN-K and the actual
inverse Hessian decays exponentially with the method index K.
This exponential decrease hints that using a small value of K
should suffice in practice. Convergence is formally claimed in
Theorem 1 that shows the convergence rate is at least linear.
It follows from this convergence analysis that larger penalty
coefficients result in faster convergence that comes at the cost
of increasing the distance between the optimal solutions of the
original and penalized objectives.

We also study the convergence rate of the NN method as an
approximation of Newton’s method (Section IV-A). We show
that for all iterations except the first few, a weighted gradient
norm associated with NN-K iterates follows a decreasing path
akin to the path that would be followed by Newton iterates
(Lemma 3). The only difference between these residual paths is
that the NN-K path contains a term that captures the error of
the Hessian inverse approximation. Leveraging this similarity,
it is possible to show that the rate of convergence is quadratic
in a specific interval whose length depends on the order K of
the selected network Newton method (Theorem 2). Existence
of this quadratic convergence phase explains why NN-K meth-
ods converge faster than DGD – as we observe in experiments.
It is also worth remarking that the error in the Hessian in-
verse approximation can be made arbitrarily small by increasing
the method’s order K and, as a consequence, the quadratic phase
can be made arbitrarily large.

We wrap up the paper with numerical analyses (Section V).
We first demonstrate the advantages of NN-K relative to
alternative primal and dual methods for the minimization of
a family of quadratic objective functions (Section V-A). Then,
we study the effect of objective function condition number and
show that the NN method outperforms first-order alternatives

significantly in ill-conditioned problems (Section V-B). Further,
we study the effect of network topology on the performance of
NN (Section V-C). Moreover, we compare the convergence rate
of NN in theory and practice to show the tightness of the bounds
in this paper (Section V-D). The paper closes with concluding
remarks (Section VI).

Notation. Vectors are written as x ∈ Rn and matrices as A ∈
Rn×n . The null space of matrix A is denoted by null(A) and
the span of a vector by span(x). We use ‖x‖ and ‖A‖ to denote
the Euclidean norm of vector x and matrix A, respectively. The
gradient of a function f(x) is denoted as∇f(x) and the Hessian
matrix is denoted as ∇2f(x). The i-th largest eigenvalue of
matrix A is denoted by μi(A).

II. DISTRIBUTED GRADIENT DESCENT

The network that connects the n agents is assumed connected,
symmetric, and specified by the neighborhoods Ni that contain
the list of nodes that can communicate with i for i = 1, . . . , n. In
problem (1) agent i has access to the local cost fi(x) and agents
cooperate to minimize the global cost f(x). This specification is
more naturally formulated by an alternative representation of (1)
in which node i selects a local decision vector xi ∈ Rp . Nodes
then try to achieve the minimum of their local objective func-
tions fi(xi), while keeping their variables equal to the variables
xj of neighbors j ∈ Ni . This alternative formulation can be
written as

{x∗
i }n

i=1 := arg min
{x i }n

i = 1

n∑

i=1

fi(xi),

s.t. xi = xj , for all i, j ∈ Ni . (2)

Since the network is connected, the constraints xi = xj for all
i and j ∈ Ni imply that (1) and (2) are equivalent and we have
x∗

i = x∗ for all i. This must be the case because for a connected
network the constraints xi = xj for all i and j ∈ Ni collapse the
feasible space of (2) to a hyperplane in which all local variables
are equal. When all variables are equal, the objectives in (1) and
(2) coincide and so do their optima.

DGD is an established distributed method to solve (2) which
relies on the introduction of nonnegative weights wij ≥ 0 that
are null if and only if j /∈ Ni ∪ {i} – the use of time varying
weights wij is common in DGD implementations but not done
here; see, e.g., [13]. Letting t ∈ N be a discrete time index and
α a given stepsize, DGD is defined by the recursion

xi,t+1 =
n∑

j=1

wijxj,t − α∇fi(xi,t), i = 1, . . . , n. (3)

Since wij = 0 when j 	= i and j /∈ Ni , it follows from (3) that
each agent i updates its variable xi by performing an average
over the estimates xj,t of its neighbors j ∈ Ni and its own
estimate xi,t , and descending through the negative local gradient
−∇fi(xi,t).

The weights in (3) cannot be arbitrary. To express conditions
on the set of allowable weights define the matrix W ∈ Rn×n

with entries wij . We require the weights to be symmetric, i.e.,
wij = wji for all i, j, and such that the weights of a given node
sum up to 1, i.e.,

∑n
j=1 wij = 1 for all i. If the weights sum up

to 1 we must have W1 = 1 which implies that I − W is rank

148 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 1, JANUARY 1, 2017

deficient. It is also customary to require the rank of I − W to
be exactly equal to n − 1 so that the null space of I − W is
null(I − W) = span(1). We therefore have the following three
restrictions on the matrix W,

WT = W, W1 = 1, null(I − W) = span(1). (4)

If the conditions in (4) are true, it is possible to show that (3)
approaches the solution of (1) in the sense that xi,t ≈ x∗ for
all i and large t, [13]. The accepted interpretation of why (3)
converges is that nodes are gradient descending towards their
local minima because of the term −α∇fi(xi,t) but also perform
an average of neighboring variables

∑n
j=1 wijxj,t . This latter

consensus operation drives the agents to agreement. In the fol-
lowing section we show that (3) can be alternatively interpreted
as a penalty method.

A. Penalty Method Interpretation

It is illuminating to define matrices and vectors so as to
rewrite (3) as a single equation. To do so define the vectors
y := [x1 ; . . . ;xn] and h(y) := [∇f1(x1); . . . ;∇fn (xn)]. Vec-
tor y ∈ Rnp concatenates the local vectors xi , and the vector
h(y) ∈ Rnp concatenates the gradients of the local functions
fi taken with respect to the local variable xi . Notice that h(y)
is not the gradient of f(x) and that a vector y with h(y) = 0
does not necessarily solve (1). To solve (1) we need to have
xi = xj for all i and j with

∑n
i=1 ∇fi(xi) = 0. In any event,

to rewrite (3) we also define the matrix Z := W ⊗ I ∈ Rnp×np

as the Kronecker product of the weight matrix W ∈ Rn×n and
the identity matrix I ∈ Rp×p . It is then ready to see that (3) is
equivalent to

yt+1 = Zyt − αh(yt) = yt −
[
(I − Z)yt + αh(yt)

]
, (5)

where in the second equality we added and subtracted yt and
regrouped terms. Inspection of (5) reveals that the DGD update
formula at step t is equivalent to a (regular) gradient descent
algorithm being used to solve the program

y∗ := arg minF (y) := min
1
2
yT (I − Z)y + α

n∑

i=1

fi(xi).

(6)
This interpretation has been previously used in [14], [26] to
design a Nesterov type acceleration of DGD. Indeed, given
the definition of the function F (y) := (1/2)yT (I − Z) y +
α

∑n
i=1 fi(xi) it follows that the gradient ∇F (yt) is given by

gt := ∇F (yt) = (I − Z)yt + αh(yt). (7)

Using (7) we rewrite (5) as yt+1 = yt − gt and conclude that
DGD descends along the negative gradient of F (y) with unit
stepsize. The expression in (3) is just a distributed implementa-
tion of gradient descent that uses the gradient in (7). To confirm
that this is true, observe that the ith element of the gradient
gt = [g1,t ; . . . ;gn,t] is given by

gi,t = (1 − wii)xi,t −
∑

j∈Ni

wijxj,t + α∇fi(xi,t). (8)

The gradient descent iteration yt+1 = yt − gt is then equiva-
lent to (3) if we entrust node i with the implementation of the
descent xi,t+1 = xi,t − gi,t , where, we recall, xi,t and xi,t+1
are the ith components of the vectors yt and yt+1 . Observe that

the local gradient component gi,t can be computed using local
information and the xj,t iterates of its neighbors j ∈ Ni . This
is as it should be, because the descent xi,t+1 = xi,t − gi,t is
equivalent to (3).

Is it a good idea to descend on F (y) to solve (1)? To some
extent. Since we know that the null space of I − W is null(I −
W) = span(1) and that Z = W ⊗ I we know that the null
space of I − Z is the set of consensus vectors, i.e., null(I −
Z) =

{
y = [x1 ; . . . ;xn]

∣
∣x1 = · · · = xn

}
. Thus, (I − Z)y =

0 holds if and only if x1 = · · · = xn . Since the matrix I −
Z is positive semidefinite and symmetric, the same is true of
the square root matrix (I − Z)1/2 . Therefore, the optimization
problem in (2) is equivalent to the optimization problem

ỹ∗ := argmin
x

n∑

i=1

fi(xi), s.t. (I − Z)1/2y = 0. (9)

Indeed, for y = [x1 ; . . . ;xn] to be feasible in (9) we must
have x1 = · · · = xn . This is the same constraint imposed in
(2) from where it follows that we must have ỹ∗ = [x∗

1 ; . . . ;x
∗
n]

with x∗
i = x∗ for all i. The unconstrained minimization in

(6) is a penalty version of (9). The penalty function associ-
ated with the constraint (I − Z)1/2y = 0 is the squared norm
(1/2)‖(I − Z)1/2y‖2 and the corresponding penalty coefficient
is 1/α. Inasmuch as the penalty coefficient 1/α is sufficiently
large, the optimal arguments y∗ and ỹ∗ are not too far apart.

The reinterpretation of (3) as a penalty method demonstrates
that DGD is an algorithm that finds the optimal solution of (6),
not (9) or its equivalent original formulations in (1) and (2).
Using a fixed α the distance between y∗ and ỹ∗ is of order
O(α), [15]. To solve (9) we need to introduce a rule to pro-
gressively decrease α. In the following section we exploit the
reinterpretation of (5) as a method to minimize (6) to propose
an approximate Newton algorithm that can be implemented in
a distributed manner.

III. NETWORK NEWTON

Instead of solving (6) with a gradient descent method as
in DGD, we can solve (6) using Newton’s method. To im-
plement Newton’s method we need to compute the Hessian
Ht := ∇2F (yt) of F evaluated at yt so as to determine the
Newton step dt := −H−1

t gt . Start by differentiating twice in
(6) in order to write Ht as

Ht := ∇2F (yt) = I − Z + αGt , (10)

where Gt ∈ Rnp×np is a block diagonal matrix formed by
blocks Gii,t ∈ Rp×p defined as

Gii,t = ∇2fi(xi,t). (11)

It follows from (10) and (11) that the Hessian Ht is block
sparse with blocks Hij,t ∈ Rp×p having the sparsity pattern of
Z, which is the sparsity pattern of the graph. The diagonal blocks
are of the form Hii,t = (1 − wii)I + α∇2fi(xi,t) and the off
diagonal blocks are not null only when j ∈ Ni in which case
Hij,t = wij I.

While the Hessian Ht is sparse, the inverse Ht is not. It is the
latter that we need to compute the Newton step dt := H−1

t gt .
To overcome this problem we split the diagonal and off diagonal
blocks of Ht and rely on a Taylor’s expansion of the inverse –
This splitting technique is inspired from the Taylor’s expansion

MOKHTARI et al.: NETWORK NEWTON DISTRIBUTED OPTIMIZATION METHODS 149

used in [24]. To be precise, write Ht = Dt − B where the
matrix Dt is defined as

Dt := αGt + 2 (I − diag(Z)) := αGt + 2 (I − Zd), (12)

where in the second equality we defined Zd := diag(Z) for fu-
ture reference. Since the diagonal weights must be wii < 1,
the matrix I − Zd is positive definite. The same is true of
the block diagonal matrix Gt because the local functions
are assumed strongly convex. Therefore, the matrix Dt is
block diagonal and positive definite. The ith diagonal block
Dii,t ∈ Rp of Dt can be computed and stored by node i as
Dii,t = α∇2fi(xi,t) + 2(1 − wii)I. To have Ht = Dt − B we
must define B := Dt − Ht . Considering the definitions of Ht

and Dt in (10) and (12), it follows that

B = I − 2Zd + Z. (13)

Note that B is time-invariant and depends on the weight matrix
Z only. As in the case of the Hessian Ht , the matrix B is block
sparse with blocks Bij ∈ Rp×p having the sparsity pattern of Z,
which is the sparsity pattern of the graph. Node i can compute the
diagonal blocks Bii = (1 − wii)I and the off diagonal blocks
Bij = wij I using information about its own and neighbors’
weights.

Proceed now to factor D1/2
t from both sides of the splitting

relationship to write Ht = D1/2
t (I − D−1/2

t BD−1/2
t)D1/2

t .
When we consider the Hessian inverse H−1 , we can use the
Taylor series (I − X)−1 =

∑∞
j=0 Xj with X =

D−1/2
t BD−1/2

t to write

H−1
t = D−1/2

t

∞∑

k=0

(
D−1/2

t BD−1/2
t

)k

D−1/2
t . (14)

The sum in (14) converges if the absolute value of all the eigen-
values of the matrix D−1/2BD−1/2 are strictly less than 1.
For the time being we assume this to be the case but we will
prove that this is true in Section IV. When the series converge,
we can use truncations of this series to define approximations
to the Newton step as we explain in the following section.

Remark 1: The Hessian decomposition Ht = Dt − B with
the matrices Dt and B in (12) and (13), respectively, is not the
only valid decomposition that we can use for Network New-
ton. Any decomposition of the form Ht = Dt ± Bt is valid
if Dt is positive definite and the eigenvalues of the matrix
D−1/2

t BtD
−1/2
t are in the interval (−1, 1). An example al-

ternative decomposition is given by the matrices Dt = αGt

and B = I − Z. This decomposition has the advantage of sep-
arating the effects of the function in Dt and the effects of the
network in B. The decomposition in (12) and (13) exhibits
faster convergence of the series in (14) because the matrix Dt

in (12) accumulates more weight in the diagonal than the matrix
Dt = αGt . The study of alternative decompositions is beyond
the scope of this paper.

A. Distributed Approximations of the Newton Step

Network Newton (NN) is defined as a family of algorithms
that rely on truncations of the series in (14). The Kth member of
this family, NN-K, considers the first K + 1 terms of the series

to define the approximate Hessian inverse

Ĥ(K)−1

t := D−1/2
t

K∑

k=0

(
D−1/2

t BD−1/2
t

)k

D−1/2
t . (15)

NN-K uses the approximate Hessian Ĥ(K)−1

t as a curvature
correction matrix that is used in lieu of the exact Hessian inverse
H−1 to estimate the Newton step. I.e., instead of descending
along the Newton step dt := −H−1

t gt we descend along the

NN-K step d(K)
t := −Ĥ(K)−1

t gt as an approximation of dt .

Using the explicit expression for Ĥ(K)−1

t in (15) we write the
NN-K step as

d(K)
t = − D−1/2

t

K∑

k=0

(
D−1/2

t BD−1/2
t

)k

D−1/2
t gt , (16)

where, we recall, gt as the gradient of the function F (y) defined
in (7). The NN-K update can then be written as

yt+1 = yt + ε d(K)
t , (17)

where ε is a properly selected stepsize – see Theorem 1
for specific conditions. The algorithm defined by recursive
application of (17) can be implemented in a distributed man-
ner because the truncated series in (15) has a local struc-
ture controlled by the parameter K. To explain this statement
better define the components d(K)

i,t ∈ Rp of the NN-K step

d(K)
t = [d(K)

1,t ; . . . ;d(K)
n,t]. A distributed implementation of (17)

requires that node i computes d(K)
i,t so as to implement the lo-

cal descent xi,t+1 = xi,t + εd(K)
i,t . The key observation here is

that the step component d(K)
i,t can indeed be computed through

local operations. Specificially, begin by noting that as per the
definition of the NN-K descent direction in (16) the sequence
of NN descent directions satisfies

d(k+1)
t = D−1

t Bd(k)
t − D−1

t gt = D−1
t

(
Bd(k)

t − gt

)
. (18)

Since the matrix B has the sparsity pattern of the graph, this
recursion can be decomposed into local components

d(k+1)
i,t = D−1

ii,t

⎛

⎝
∑

j∈Ni ∪{i}
Bijd

(k)
j,t − gi,t

⎞

⎠ , (19)

The matrix Dii,t = α∇2fi(xi,t) + 2(1 − wii)I is stored and
computed at node i. The gradient component gi,t = (1 −
wii)xi,t −

∑
j∈Ni

wijxj,t + α∇fi(xi,t) is also stored and com-
puted at i. Node i can also evaluate the values of the matrix
blocks Bii = (1 − wii)I and Bij = wij I. Thus, if the NN-k

step components d(k)
j,t are available at neighbors j, node i can

determine the NN-(k + 1) step component d(k+1)
i,t upon being

communicated that information.
The expression in (19) represents an iterative computation

embedded inside the NN-K recursion in (17). At time index
t, we compute the local component of the NN-0 step d(0)

i,t =
−D−1

ii,tgi,t . Upon exchanging this information with neighbors

we use (19) to determine the NN-1 step d(1)
i,t . These can be

exchanged to compuer d(2)
i,t as in (19). Repeating this procedure

150 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 1, JANUARY 1, 2017

Algorithm 1: Network Newton-K method at node i.
Require: Initial iterate xi,0 . Weights wij . Penalty coefficient

α.
1: B matrix blocks: Bii = (1 − wii)I and Bij = wij I
2: for t = 0, 1, 2, . . . do
3: D matrix block: Dii,t = α∇2fi(xi,t) + 2(1 − wii)I
4: Exchange iterates xi,t with neighbors j ∈ Ni .
5: Gradient: gi,t = (1 − wii)xi,t −

∑
j∈Ni

wijxj,t

+α∇fi(xi,t)
6: Compute NN-0 descent direction d(0)

i,t = −D−1
ii,tgi,t

7: for k = 0, . . . , K − 1 do
8: Exchange elements d(k)

i,t of the NN-k step with
neighbors

9: NN-(k + 1) step: d(k+1)
i,t

= D−1
ii,t [

∑
j∈Ni ,j=i Bijd

(k)
j,t − gi,t]

10: end for
11: Update local iterate: xi,t+1 = xi,t + ε d(K)

i,t .
12: end for

K times, nodes ends up having determined their NN-K step
component d(K)

i,t .
The resulting NN-K method is summarized in Algorithm 1.

The descent iteration in (17) is implemented in Step 11. Im-
plementation of this descent requires access to the NN-K de-
scent direction d(K)

i,t which is computed by the loop in steps
6-10. Step 6 initializes the loop by computing the NN-0 step
d(0)

i,t = −D−1
ii,tgi,t . The core of the loop is in Step 9 which cor-

responds to the recursion in (19). Step 8 stands for the variable
exchange that is required to implement Step 9. After K iter-
ations through this loop, the NN-K descent direction d(K)

i,t is
computed and can be used in Step 11. Both, Steps 6 and 9,
require access to the local gradient component gi,t . This is eval-
uated in Step 5 after receiving the prerequisite information from
neighbors in Step 4. Steps 1 and 3 compute the blocks Bii,t ,
Bij,t , and Dii,t required in steps 6 and 9.

Remark 2: By trying to approximate the Newton step, NN-
K ends up reducing the number of iterations required for
convergence. Furthermore, the larger K is, the closer that
the NN-K step gets to the Newton step, and the faster
NN-K converges. We will justify these assertions both, an-
alytically in Section IV, and numerically in Section V. It is
important to observe, however, that reducing the number of it-
erations reduces the computational cost but not necessarily the
communication cost. In DGD, each node i shares its vector
xi,t ∈ Rp with each of its neighbors j ∈ Ni . In NN-K, node
i exchanges not only the vector xi,t ∈ Rp with its neighboring
nodes, but it also communicates iteratively the local compo-
nents of the descent directions {d(k)

i,t }K−1
k=0 ∈ Rp so as to com-

pute the descent direction d(K)
i,t . Hence, at each iteration, node

i sends |Ni | vectors of size p to its neighbors in DGD, while
in NN-K it sends (K + 1)|Ni | vectors of the same size. Unless
the original problem is well conditioned, NN-K also reduces
total communication cost until convergence, even though the
cost of each individual iteration is larger. However, the use
of large K is unwarranted because the added benefit of better

approximating the Newton step does not compensate the in-
crease in communication cost.

IV. CONVERGENCE ANALYSIS

In this section we show that as time progresses the sequence of
objective function values F (yt) [cf. (6)] approaches the optimal
objective function value F (y∗). In proving this claim we make
the following assumptions.

Assumption 1: There exist constants 0 ≤ δ ≤ Δ < 1 that
lower and upper bound the diagonal weights for all i,

0 < δ ≤ wii ≤ Δ < 1, i = 1, . . . , n. (20)

Assumption 2: The local objective functions fi(x) are twice
differentiable and the eigenvalues of the local Hessians are
bounded with positive constants 0 < m ≤ M < ∞, i.e.

mI � ∇2fi(x) � MI. (21)

Assumption 3: The local objective function Hessians
∇2fi(x) are Lipschitz continuous with respect to the Euclid-
ian norm with parameter L. I.e., for all x, x̂ ∈ Rp , it holds

‖∇2fi(x) −∇2fi(x̂)‖ ≤ L ‖x − x̂‖. (22)

The lower bound in Assumption 1 is more a definition than
a constraint. To be more precise, the weights wij are positive
if and only if j ∈ Ni or j = i. This observation verifies exis-
tence of a lower bound for the local weights wii that is defined
as δ > 0 in Assumption 1. The upper bound Δ < 1 on the
weights wii is true for all connected networks as long as neigh-
bors j ∈ Ni are assigned nonzero weights wij > 0. This is be-
cause the matrix W is doubly stochastic [cf. (4)], which implies
that wii = 1 −

∑
j∈Ni

wij < 1 as long as wij > 0.
The lower bound m for the eigenvalues of local objective

function Hessians ∇2fi(x) is equivalent to the strong convexity
of local objective functions fi(x) with parameter m. The strong
convexity assumption for the local objective functions fi(x)
stated in Assumption 2 is customary in Newton-based meth-
ods, since the Hessian of objective function should be invertible
to establish Newton’s method [Chapter 9 of [23]]. The upper
bound M for the eigenvalues of local objective function Hes-
sians ∇2fi(x) is similar to the condition that gradients ∇fi(x)
are Lipschitz continuous with parameter M for the case that
functions are twice differentiable.

The restriction imposed by Assumption 3 is customary in the
analysis of second order methods, see Section 9.5.3 of [23],
which guarantees that the Hessians ∇2F (y) are also Lipschitz
continuous as we show in the following lemma.

Lemma 1: Consider the definition of objective function
F (y) in (6). If Assumption 3 holds then the objective func-
tion Hessian H(y) =: ∇2F (y) is Lipschitz continuous with
parameter αL, i.e., for all y, ŷ ∈ Rnp we have

‖H(y) − H(ŷ)‖ ≤ αL‖y − ŷ‖. (23)

Proof: See Appendix A. �
Lemma 1 states that the penalty objective function introduced

in (6) has the property that the Hessians are Lipschitz contin-
uous, while the Lipschitz constant is a function of the penalty
coefficient 1/α. Thus, if we increase the penalty coefficient
1/α, or, equivalently, decrease α, the objective function F (y)

MOKHTARI et al.: NETWORK NEWTON DISTRIBUTED OPTIMIZATION METHODS 151

approaches a quadratic form because the curvature becomes
constant.

To prove convergence properties of NN we need bounds for
the eigenvalues of the block diagonal matrixDt , the block sparse
matrix B, and the Hessian Ht . These eigenvalue bounds are
established in the following proposition using the conditions
imposed by Assumptions 1 and 2.

Proposition 1: Consider the definitions of matrices Ht , Dt ,
and B in (10), (12), and (13), respectively. If Assumptions 1 and
2 hold true, then the eigenvalues of matrices Ht , Dt , and B are
uniformly bounded as

αmI � Ht � (2(1 − δ) + αM)I, (24)

(2(1 − Δ) + αm)I � Dt � (2(1 − δ) + αM)I, (25)

0 � B � 2(1 − δ)I. (26)

Proof: See Appendix B. �
Proposition 1 states that Hessian matrix Ht and block diag-

onal matrix Dt are positive definite, while matrix B is positive
semidefinite.

As we noted in Section III, for the expansion in (14) to be
valid the eigenvalues of the matrix D−1/2

t BD−1/2
t must be non-

negative and strictly smaller than 1. The following proposition
states that this is true for all times t.

Proposition 2: Consider the definitions of the matrices Dt in
(12) and B in (13). If Assumptions 1 and 2 hold true, the matrix
D−1/2

t BD−1/2
t is positive semidefinite and its eigenvalues are

bounded above by a constant ρ < 1

0 � D−1/2
t BD−1/2

t � ρI, (27)

where ρ := 2(1 − δ)/(2(1 − δ) + αm).
Proof: See Appendix C. �
The results in Proposition 1 would lead to the trivial up-

per bound 2(1 − δ)/(αM + 2(1 − Δ)) for the eigenvalues of
D−1/2

t BD−1/2
t . The upper bound in Proposition 2 is tighter and

follows from the structure of the matrix D−1/2
t BD−1/2

t .
The bounds for the eigenvalues of D−1/2

t BD−1/2
t in (27)

guarantee convergence of the Taylor series in (14). As mentioned
in Section III, NN-K truncates the first K summands of the
Hessian inverse Taylor series in (14) to approximate the Hessian
inverse of the objective function in optimization problem (6).
To evaluate the performance of NN-K we study the error of
the Hessian inverse approximation by defining the error matrix
Et ∈ Rnp×np as

Et := I − Ĥ(K)−1 / 2

t HtĤ
(K)−1 / 2

t . (28)

The error matrix Et measures closeness of the Hessian inverse
approximation matrix Ĥ(K)−1

t and the exact Hessian inverse
H−1

t at time t. Based on the definition of the error matrix Et , if

the Hessian inverse approximation Ĥ(K)−1

t approaches the exact
Hessian inverse H−1

t the error matrix Et approaches the zero
matrix 0. We therefore bound the error of the Hessian inverse
approximation by developing a bound for the eigenvalues of Et .
This bound is provided in the following proposition.

Proposition 3: Consider the NN-K method in (12)-(17) and
the definition of error matrix Et in (28). Further, recall the
definition of the constant ρ := 2(1 − δ)/(αm + 2(1 − δ)) < 1

in Proposition 2. The error matrix Et is positive semidefinite
and all its eigenvalues are upper bounded by ρK +1 ,

0 � Et � ρK +1I. (29)

Proof: See Appendix D. �
Proposition 3 asserts that the error in the approximation of the

Hessian inverse, thereby on the approximation of the Newton
step, is bounded by ρK +1 . This result corroborates the intu-
ition that the larger K is, the closer that d(K)

i,t approximates
the Newton step. This closer approximation comes at the cost
of increasing the communication cost of each descent iteration.
The decrease of this error being proportional to ρK +1 hints that
using a small value of K should suffice in practice. Further to
decrease ρ we can increase δ or increase α. Increasing δ calls
for assigning substantial weight to wii . Increasing α comes at
the cost of moving the solution of (6) away from the solution of
(9) and its equivalent (1).

Bounds on the eigenvalues of the objective function Hessian
Ht are central to the convergence analysis of Newton’s method
[Chapter 9 of [23]]. Lower bounds for the Hessian eigenvalues
guarantee that the matrix is nonsingular. Upper bounds imply
that the minimum eigenvalue of the Hessian inverse H−1 is
strictly larger than zero, which, in turn, implies a strict decrement
in each Newton step. Analogous bounds for the eigenvalues

of the NN approximate Hessian inverses Ĥ(K)−1

t are required.
These bounds are studied in the following lemma.

Lemma 2: Consider the NN-K method as defined in (12)-
(17). If Assumptions 1 and 2 hold true, we have

λI � Ĥ(K)−1

t � ΛI, (30)

where constants λ and Λ are defined as

λ :=
1

2(1 − δ) + αM
and Λ :=

1 − ρK +1

(1 − ρ)(2(1 − Δ) + αm)
.

(31)
Proof: See Appendix E. �
According to the result in Lemma 2, the NN-K approximate

Hessian inverses Ĥ(K)−1

t are strictly positive definite and have
all of their eigenvalues bounded between the positive and finite
constants λ and Λ. This is true for all K and uniform across
all iteration indexes t. Considering these eigenvalue bounds and
the fact that −gt is a descent direction, the approximate Newton

step −Ĥ(K)−1

t gt enforces convergence of the iterate yt to the
optimal argument y∗ of the penalized objective function F (y)
in (6). In the following theorem we show that if the stepsize
ε is properly chosen, the sequence of objective function val-
ues F (yt) converges at least linearly to the optimal objective
function value F (y∗).

Theorem 1: Consider the NN-K method as defined in (12)-
(17) and the objective function F (y) as introduced in (6). Fur-
ther, recall the definitions of the lower and upper bounds λ and
Λ, respectively, for the eigenvalues of the approximate Hessian

inverse Ĥ(K)−1

t in (31). If the stepsize ε is chosen as

ε ≤ min

⎧
⎨

⎩
1 ,

[
3mλ

5
2

LΛ3(F (y0) − F (y∗))
1
2

] 1
2

⎫
⎬

⎭
, (32)

152 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 1, JANUARY 1, 2017

and Assumptions 1-3 hold, the sequence F (yt) converges to the
optimal argument F (y∗) at least linearly as

F (yt) − F (y∗) ≤ (1 − ζ)t(F (y0) − F (y∗)), (33)

where the constant 0 < ζ < 1 is explicitly given by

ζ := (2 − ε)εαmλ − αε3LΛ3(F (y0) − F (y∗))
1
2

6λ
3
2

. (34)

Proof: See Appendix F. �
Theorem 1 shows that the objective function error sequence

F (yt) − F (y∗) asymptoticly converges to zero and that the rate
of convergence is at least linear. Note that according to the def-
inition of the convergence parameter ζ in Theorem 1 and the
definitions of λ and Λ in (31), increasing α leads to faster conver-
gence. This observation verifies existence of a tradeoff between
rate and accuracy of convergence. For large values of α the se-
quence generated by network Newton converges faster to the
optimal solution of (6). These faster convergence comes at the
cost of increasing the distance between the optimal solutions of
(6) and (1). Conversely, smaller α implies smaller gap between
the optimal solutions of (6) and (1), but the convergence rate of
NN-K is slower. In the following section, we illustrate the con-
nection between network Newton and the centralized Newton’s
method.

A. Analysis of Network Newton as a Newton-like Method

To connect the proposed NN method with the classic New-
ton’s method, we first study the difference between these
methods. In particular, the following lemma shows that the con-
vergence of the norm of the weighted gradient ‖D−1/2

t−1 gt‖ in
NN-K is akin to the convergence of Newton’s method with
constant stepsize. The difference is the appearance of a term
associated with the error of the Hessian inverse approximation
as we formally state next.

Lemma 3: Consider the NN-K method as defined in (12)-
(17). If Assumptions 1-3 hold, the sequence of weighted gradi-
ents D−1/2

t gt+1 satisfies

‖D− 1
2

t gt+1‖ ≤
(
1 − ε + ερK +1)

[
1 + Γ1(1 − ζ)

(t−1)
4

]

× ‖D− 1
2

t−1gt‖ + ε2Γ2‖D−1/2
t−1 gt‖2 , (35)

where the constants Γ1 and Γ2 are defined as

Γ1 :=
(αεLΛ)

1
2 (F (y0) − F (y∗))

1
4

λ
3
4 (2(1 − Δ) + αm)

,

Γ2 :=
αLΛ2

2λ(2(1 − Δ) + αm)
1
2
. (36)

Proof: See Appendix G. �
As per Lemma 3 the weighted gradient norm ‖D−1/2

t gt+1‖
is upper bounded by terms that are linear and quadratic on
the weighted norm ‖D−1/2

t−1 gt‖ associated with the previous
iterate. This is akin to the gradient norm decrease of New-
ton’s method with constant stepsize. Note that if the error
of Hessian inverse approximation which is characterized by
ρK +1 becomes zero, by setting ε = 1 we can simplify (35) as
‖D−1/2

t gt+1‖ ≤ Γ2‖D−1/2
t−1 gt‖2 . This result shows quadratic

convergence when Γ2‖D−1/2
t−1 gt‖ < 1. However, the term ρK +1

is not zero in general. Although, the error of Hessian inverse ap-
proximation is not zero, the result in (35) is very similar to the
one for the classic Newton’s method. To make this connection
clearer, further note that for all except the first few iterations the
term Γ1(1 − ζ)(t−1)/4 ≈ 0 is close to 0 and the relation in (35)
can be simplified to

‖D− 1
2

t gt+1‖ � (1 − ε + ερK +1)‖D− 1
2

t−1gt‖ + ε2Γ2‖D
− 1

2
t−1gt‖2 .

(37)

In (37), the coefficient in the linear term is reduced to (1 − ε +
ερK +1) and the coefficient in the quadratic term stays at ε2Γ2 . If,
for discussion purposes, we set ε = 1 as in Newton’s quadratic
phase, the upper bound in (37) is further reduced to

‖D−1/2
t gt+1‖ � ρK +1‖D−1/2

t−1 gt‖ + Γ2‖D−1/2
t−1 gt‖2 . (38)

The equation in (38) makes the connection between NN and
Newton’s clear, because the exact same result would hold for
Newton’s method if we set ρ = 0. The NN method can not
have a quadratic convergence phase for the rest of the itera-
tions – like the one for Newton’s method – because of the term
ρK +1‖D−1/2

t−1 gt‖. However, since the constant ρ (cf. Proposi-
tion 2) is smaller than 1 the term ρK +1 can be made arbitrarily
small by increasing the approximation order K. Equivalently,
this means that by selecting K to be large enough, we can make
the quadratic term in (38) dominant and observe a quadratic con-
vergence phase. The boundaries of this quadratic convergence
phase are formally determined in the following Theorem using
the result in (35).

Theorem 2: Consider the NN-K method as defined in (12)-
(17). Define the sequence ηt := [(1 − ε + ερK +1)(1 + Γ1(1 −
ζ)(t−1)/4)] and the time t0 as the first time at which se-
quence ηt is smaller than 1, i.e. t0 := arg mint{t | ηt < 1}. If
Assumptions 1-3 hold, then for all t ≥ t0 when the sequence
‖D−1/2

t−1 gt‖ satisfies

√
ηt(1 −√

ηt)
ε2Γ2

≤ ‖D−1/2
t−1 gt‖ <

1 −√
ηt

ε2Γ2
, (39)

the sequence of scaled gradient norms is such that

‖D−1/2
t gt+1‖ ≤ ε2Γ2

1 −√
ηt
‖D−1/2

t−1 gt‖
2
. (40)

Proof: Based on the definition of ηt , we can rewrite (35) as

‖D−1/2
t gt+1‖ ≤ ηt‖D−1/2

t−1 gt‖ + ε2Γ2‖D−1/2
t−1 gt‖2 . (41)

We use this expression to prove the inequality in (40). To do so,
rearrange terms in the first inequality in (39) and write

√
ηt ≤ ε2Γ2

1 −√
ηt
‖D−1/2

t−1 gt‖. (42)

Multiplying both sides of (42) by
√

ηt‖D−1/2
t−1 gt‖ yields

ηt‖D−1/2
t−1 gt‖ ≤

√
ηtε

2Γ2

1 −√
ηt

‖D−1/2
t−1 gt‖2 . (43)

MOKHTARI et al.: NETWORK NEWTON DISTRIBUTED OPTIMIZATION METHODS 153

Substituting ηt‖D−1/2
t−1 gt‖ in (41) by its upper bound in (43)

implies that

‖D−1/2
t gt+1‖ ≤

√
ηtε

2Γ2

1 −√
ηt

‖D−1/2
t−1 gt‖2 + ε2Γ2‖D−1/2

t−1 gt‖2

=
ε2Γ2

1 −√
ηt
‖D−1/2

t−1 gt‖2 . (44)

To verify quadratic convergence, it is necessary to prove that the
sequence ‖D−1/2

i−1 gi‖ of weighted gradient norms is decreasing.
For this to be true we must have

ε2Γ2

1 −√
ηt

∥
∥
∥D−1/2

t−1 gt

∥
∥
∥ < 1. (45)

But (45) is true because we are looking at a range of gradients
that satisfy the second inequality in (39). �

As per Theorem 1 yt is converging to y∗ at a rate that is at
least linear. Thus, the gradients gt will be such that at some
point in time they satisfy the rightmost inequality in (39). At
that point in time, progress towards y∗ proceeds at a quadratic
rate as indicated by (40). This quadratic rate of progress is main-
tained until the leftmost inequality in (39) is satisfied, at which
point the linear term in (35) dominates and the convergence rate
goes back to linear. Furthermore, making K sufficiently large it
is possible to reduce ηt arbitrarily and make the quadratic con-
vergence region last longer. In practice, this calls for making K
large enough so that

√
ηt is close to the desired gradient norm

accuracy.
Remark 3: For a quadratic function F , the Lipschitz constant

for the Hessian is L = 0. Then, the optimal choice of stepsize
for NN-K is ε = 1 as a result of stepsize rule in (32). More-
over, the constants for the linear and quadratic terms in (35)
are Γ1 = Γ2 = 0 as it follows from their definitions in (36). For
quadratic functions we also have that the Hessian of the objec-
tive function Ht = H and the block diagonal matrix Dt = D
are time-invariant. Thus, we can rewrite (35) as

‖D−1/2gt+1‖ ≤ ρK +1‖D−1/2gt‖. (46)

Note that Newton’s method converges in a single step in
quadratic programming. This property follows from (46) be-
cause Newton’s method is equivalent to NN-K as K → ∞. The
expression in (46) states that NN-K converges linearly with a
constant decrease factor of ρK +1 per iteration. This in contrast
with first order methods like DGD that converge with a linear
rate that depends on the problem condition number.

V. NUMERICAL ANALYSIS

In this section, we study the performance of NN-K in the
minimization of a distributed quadratic objective. For each agent
i we consider a positive definite diagonal matrix Ai ∈ S++

p and
a vector bi ∈ Rp to define the local objective function fi(x) :=
(1/2)xT Aix + bT

i x. Therefore, the global cost function f(x)
is written as

f(x) :=
n∑

i=1

1
2
xT Aix + bT

i x . (47)

The difficulty of solving (47) is given by the condition number
of the matrices Ai . To tune condition numbers we generate

diagonal matrices Ai with random diagonal elements aii .
The first p/2 diagonal elements aii are drawn uniformly at
random from the discrete set {1, 10−1 , . . . , 10−ξ} and the
next p/2 are uniformly and randomly chosen from the set
{1, 101 , . . . , 10ξ}. This choice of coefficients yields local ma-
trices Ai with eigenvalues in the interval [10−ξ , 10ξ] and
global matrices

∑n
i=1 Ai with eigenvalues in the interval

[n10−ξ , n10ξ]. The linear terms bT
i x are added so that the dif-

ferent local functions have different minima. The vectors bi are
chosen uniformly at random from the box [0, 1]p .

The graph is graph is d-regular and generated by creating a
cycle and then connecting each node with the d/2 nodes that are
closest in each direction. The diagonal weights in the matrix W
are set to wii = 1/2 + 1/2(d + 1) and the off diagonal weights
to wij = 1/2(d + 1) when j ∈ Ni .

A. Comparison with Existing Methods

In this section we compare the performance of the proposed
NN method with primal methods such as DGD in [13] and
the accelerated version of DGD (Acc. DGD) in [14]. For the
Acc. DGD method, we assume that the stepsize parameter and
the momentum coefficients are constant as in the case for the
centralized accelerated gradient descent. This makes the com-
parison between Acc. DGD, DGD, and NN fair, since our aim
is to compare their performances in solving the penalized ob-
jective function. Moreover, we consider the convergence paths
of the distributed ADMM (DADMM) in [18] and the exact first
order method EXTRA in [16]. Although EXTRA operates in
the primal domain, it has been shown that it can be interpreted
as a saddle-point method [27]. Thus, we consider EXTRA in
the category of dual methods which has a linear convergence
rate as DADMM.

We compare these methods in solving (47) for the case that
there are n = 100 nodes in the network and the dimension of
the vector x is p = 20. We assume that the graph is 4-regular.
Further, we set the condition number parameter to ξ = 2 and
the penalty parameter to α = 10−3 . The momentum coefficient
for the accelerated DGD is 0.9. Note that among the values
{0.1, 0.2, . . . , 0.9, 1}, the best performance belongs to the mo-
mentum coefficient 0.9 which we use in the experiments.

As the condition number of the problem is relatively large,
i.e., 4.3 × 103 , the NN method performs better than DGD and
Acc. DGD in terms of the number of iterations and total number
of local information exchanges as they are illustrated in Fig. 1
and Fig. 2, respectively. In the case that the condition number of
the objective function is not significantly large with respect to
the dimension of the problem, the accelerated DGD would be a
better choice relative to NN.

The comparison with dual methods shows that in terms of
iterations and rounds of communications DADMM and differ-
ent variants of NN perform relatively well and after some point
DADMM outperform NN and other primal methods because it
converges to the optimal argument of the original problem in-
stead of the penalized function. On the other hand, each step of
DADMM requires solving a convex program which can be com-
putationally costly. We observe that EXTRA also has a linear
convergence rate to the exact optimal solution, and its accu-
racy becomes better than all primal methods. However, EXTRA
is a first-order method and its convergence at the beginning is

154 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 1, JANUARY 1, 2017

Fig. 1. Comparison of DGD, Acc. DGD, DADMM, EXTRA, NN-0, NN-1,
and NN-2 in terms of number of iterations.

Fig. 2. Comparison of DGD, Acc. DGD, DADMM, EXTRA, NN-0, NN-1,
and NN-2 in terms of rounds of local information exchanges.

relatively slower than NN. This advantage of NN results from
incorporation of the curvature information of the objective func-
tion. These observations show that by incorporating the idea of
NN and EXTRA we should be able to come up with a second-
order method that has a linear convergence rate to the exact
solution of (47) while it can perform well in ill-conditioned
problems.

B. Effect of Objective Function Condition Number

We study the effect of condition number on the convergence
rate of NN and show that NN is less sensitive to the objective
function condition number with respect to primal first-order
methods, e.g., DGD in [13] and accelerated DGD in [14]. To
do so, we compare the performances of the mentioned methods
in solving the problem in (47) for small and large condition
numbers. The parameters are the same as the parameters in
Fig. 1 except the choice of the condition number parameter ξ.

We first consider the case that ξ = 1 which leads to condition
number 1.24 × 101 . The convergence paths of DGD, accelerated
DGD, NN-0, NN-1, and NN-2 in terms of the number of local
information exchanges are shown in Fig. 3. The performance
of variations of NN are not significantly better than DGD and
accelerated DGD. In particular, DGD and Acc. DGD both out-
perform NN-1 and NN-2 in terms of the total communications
until convergence. Thus, accelerated DGD is the best option
among the primal methods for problems with small condition
number.

Fig. 3. Relative error of DGD, Acc. DGD, NN-0, NN-1, and NN-2 vs number
of local info. exchanges for a well-conditioned problem.

Fig. 4. Relative error of DGD, Acc. DGD, NN-0, NN-1, and NN-2 vs number
of local info. exchanges for an ill-conditioned problem.

To explore the performance of these methods for an ill-
conditioned problem we set the condition number parameter
ξ = 3 which leads to the condition number 1.4 × 104 for the
considered realization. Fig. 4 illustrate the convergence paths of
the considered primal methods in terms of the number of local
information exchanges. As we observe, the advantage of the
network Newton methods is substantial in this setting and they
outperform DGD and accelerated DGD in terms of communi-
cation cost.

C. Effect of Network Topology

We proceed to compare the performance of NN in differ-
ent network topologies. In particular, we consider five different
topologies which are random graphs with connectivity prob-
abilities pc = 0.25 and pc = 0.35, complete graph, cycle, and
line. Note that in random graphs, we generate the edges between
nodes with probability pc . The complete graph is a graph that
all nodes are connected to each other directly. A cycle graph is
a connected graph that each node has degree 2. A line graph is
a cycle graph that is missing an edge. The parameters are the
same as the parameters in Fig. 1 except the network graph and
the way that we generate the weight matrix W. We generate
the weight matrix W using the formula W = I − L/τ where
L is the Laplacian matrix of the graph and τ/2 is the largest
eigenvalue of the Laplacian L. We compare the performance of
NN-2 for all these networks in terms of the number of iterations
and the total number of communications between nodes. Notice

MOKHTARI et al.: NETWORK NEWTON DISTRIBUTED OPTIMIZATION METHODS 155

Fig. 5. Relative error of NN-2 vs num. of iterations for random graphs with
pc = {0.25, 0.35}, complete graph, cycle graph, and line graph.

Fig. 6. Relative error of NN-2 vs num. of communications for random graphs
with pc = {0.25, 0.35}, complete graph, cycle graph, and line graph.

that in this section we use total communications between node
instead of the number of local information exchanges (rounds
of local communications) since the degrees of nodes in the dif-
ferent networks are not equal.

The convergence paths of NN-2 for the considered topologies
in terms of the number of iterations and the total number of com-
munications are demonstrated in Fig. 5 and Fig. 6, respectively.
The first important observation is the accuracy of convergence.
According to the results in [15], if we define β < 1 as the second
largest magnitude of the eigenvalues of W, then the accuracy
of convergence is proportional to 1/(1 − β). Thus, the graphs
with smaller β converge to a smaller neighborhood of the op-
timal argument. In particular, the parameter β for the complete
graph which has the most accurate convergence is β = 0.5,
while for the line graph that has the least accurate convergence
path β = 0.99.

The second important observation is the rate of convergence
for NN-2 in these network topologies. It follows from the re-
sult in Theorem 1 that for a quadratic objective function the
constant of linear convergence becomes 1 − αmλ. Therefore,
for larger values of λ we expect faster convergence. Note
that λ is large when δ = mini wii is large and close to 1.
These observations imply that for the graphs that δ is larger
we expect faster linear convergence. The convergence paths
in Fig. 5 reinforce this claim. Note that δ for the considered
graphs are δpc =0.25 = 0.5898, δpc =0.35 = 0.5585, δcom = 0.51,
δcycle = 0.75, δline = 0.7498. These numbers justify the simi-
larity of the convergence paths of line and cycle graphs and the
slow convergence rate of the complete graph.

Fig. 7. Comparison of the theoretical bound (T.B.) in (46) with the empirical
result for a quadratic programming.

D. Tightness of the Bounds

In this section, we study the tightness of the theoretical bounds
in the paper. To do so, we compare the empirical convergence
rates of NN-0, NN-1, and NN-2 with the theoretical result in
Lemma 3. As we discussed in Remark 3, for a quadratic ob-
jective function the sequence of weighted gradients of NN-K
satisfies the inequality ‖D−1/2gt+1‖ ≤ ρK +1‖D−1/2gt‖. We
refer to this rate as T.B. which stands for theoretical bound.
Figure 7 illustrates the theoretical bounds and empirical conver-
gence paths of NN-0, NN-1, and NN-2 for the quadratic problem
in (47). As we observe, the convergence rates of all methods are
faster than their theoretical bounds at the beginning, but after al-
most 10 iterations their convergence rate becomes similar to the
theoretical bound in (46). To be clearer, the slopes of the actual
convergence paths and their corresponding theoretical bounds
become equal after almost 10 iterations. This observation shows
that the bound in (46) is reasonably tight and the sequence of
weighted gradients for NN-K diminishes with factor ρK +1 .

VI. CONCLUSION

We developed the network Newton method as an approximate
Newton method for solving consensus optimization problems.
The algorithm builds on a reinterpretation of distributed gradi-
ent descent as a penalty method and relies on an approximation
of the Newton step of the corresponding penalized objective
function. To approximate the Newton direction we truncate the
Taylor series of the exact Newton step. This leads to a family of
methods defined by the number K of Taylor series terms kept
in the approximation. When we keep K terms of the Taylor
series, the method is called NN-K and can be implemented
through the aggregation of information in K-hop neighbor-
hoods. We showed that NN converges at least linearly to the
solution of the penalized objective, and, consequently, to a
neighborhood of the optimal argument for the original opti-
mization problem. We completed the convergence analysis of
NN-K by showing that the sequence of iterates generated by
NN-K converges at a quadratic rate in a specific interval. Nu-
merical analyses compared the performances of NN-K with
different choices of K for minimizing quadratic objectives. We
observed that all NN-K methods work faster than distributed
gradient descent in terms of number of iterations and number of
communications.

156 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 1, JANUARY 1, 2017

APPENDIX A
PROOF OF LEMMA 1

Consider two vectors y := [x1 ; . . . ;xn] ∈ Rnp and ŷ :=
[x̂1 ; . . . ; x̂n] ∈ Rnp . Based on the Hessian expression in (10),
we simplify the Euclidean norm ‖H(y) − H(ŷ)‖ as

‖H(y) − H(ŷ)‖ = α ‖G(y) − G(ŷ)‖

= α max
i=1,...,n

∥
∥∇2fi(xi) −∇2fi.(x̂i)

∥
∥ .

(48)

By using 3 and (48) we obtain that

‖H(y) − H(ŷ)‖ ≤ αLmax
i

‖xi − x̂i‖ ≤ αL ‖y − ŷ‖ . (49)

Therefore, the claim in (23) follows.

APPENDIX B
PROOF OF PROPOSITION 1

The Gershgorin circle theorem states that each eigenvalue
of a matrix A lies within at least one of the Gershgorin discs
D(aii , Rii) where the center aii is the ith diagonal element
of A and the radius Rii :=

∑
j 	=i |aij | is the sum of the abso-

lute values of all the non-diagonal elements of the ith row.
Hence, Gershgorin discs can be considered as intervals of
width [aii − Rii, aii + Rii] for I − W, where aii = 1 − wii

and Rii =
∑

j 	=i |wij | =
∑

j 	=i wij . Therefore, all the eigen-
values of I − W are in at least one of the intervals [1 − wii −∑

j 	=i wij , 1 − wii +
∑

j 	=i wij]. Since
∑

j wij = 1, it can be
derived that 1 − wii =

∑n
j 	=i wij . Thus, the Gershgorin in-

tervals can be simplified as [0, 2(1 − wii)] for i = 1, . . . , n.
This observation in association with the fact that 2(1 − wii) ≤
2(1 − δ) implies that the eigenvalues of I − W are in the inter-
val [0, 2(1 − δ)] and consequently the eigenvalues of I − Z are
bounded as

0 � I − Z � 2(1 − δ)I. (50)

Since matrix Gt is block diagonal and the eigenvalues of each
diagonal block Gii,t = ∇2fi(xi,t) are bounded by constants
0 < m ≤ M < ∞ as mentioned in (21), we obtain

mI � Gt � MI. (51)

Considering the definition of the Hessian Ht := I − Z + αGt

and the bounds in (50) and (51), the first claim follows.
The definition of the matrix Dt in (12) yields

Dt = αGt + (In − Wd) ⊗ Ip , (52)

whereWd is defined asWd := diag(W). Note that matrix In −
Wd is diagonal and the i-th diagonal component is 1 − wii .
Since the local weights satisfy δ ≤ wii ≤ Δ, we obtain that the
eigenvalues of In − Wd are bounded below and above by 1 − Δ
and 1 − δ, respectively. Since the eigenvalues of (In − Wd) and
(In − Wd) ⊗ Ip are identical we obtain

(1 − Δ)Inp � (In − Wd) ⊗ Ip � (1 − δ)Inp (53)

Considering the relation in (52) and bounds in (51) and (53), the
second claim follows.

Based on the definition of B in (13), we can write

B = (I − 2Wd + W) ⊗ I. (54)

Note that in the i-th row of matrix I − 2Wd + W, the diagonal
component is 1 − wii and the jth component is wij for all
j 	= i. Using Gershgorin theorem and the same argument that
we established for the eigenvalues of I − Z, we can write

0 � I − 2Wd + W � 2(1 − δ)I. (55)

Based on (55) and (54), the last claim follows.

APPENDIX C
PROOF OF PROPOSITION 2

According to the result of Proposition 1,Dt is positive definite
and B is positive semidefinite which immediately implies that
D−1/2

t BD−1/2
t is positive semidefinite.

Recall the definition of Dt in (12) and define the matrix D̂
as a special case of matrix Dt for α = 0. I.e., D̂ := 2(I − Zd).
Notice that D̂ is diagonal, time invariant, and only depends on
the structure of the network. Since D̂ is diagonal and each diag-
onal component 1 − wii is strictly larger than 0, D̂ is positive
definite and invertible. Hence, we can write

D− 1
2

t BD− 1
2

t = (D− 1
2

t D̂
1
2)(D̂− 1

2 BD̂− 1
2)(D̂

1
2 D− 1

2
t). (56)

We proceed to find an upper bound for the eigenvalues of the
matrix D̂−1/2BD̂−1/2 in (56). Observing the fact that matrices
D̂−1/2BD̂−1/2 and BD̂−1 are similar, eigenvalues of these
matrices are identical. Hence, we proceed to characterize an
upper bound for the eigenvalues of matrix BD̂−1 . Based on
the definitions of B and D̂, the product BD̂−1 is given by
BD̂−1 = (I − 2Zd + Z) (2(I − Zd))−1 . Therefore, the blocks
of the matrix BD̂−1 are given by

[BD̂−1]ii =
1
2
I and [BD̂−1]ij =

wij

2(1 − wjj)
I. (57)

Thus, each diagonal component of the matrix BD̂−1 is 1/2 and
that the sum of non-diagonal components of column i is

np∑

j=1,j 	=i

BD̂−1 [ji] =
1
2

np∑

j=1,j 	=i

wji

1 − wii
=

1
2
. (58)

Consider (58) and apply Gershgorin theorem to obtain

0 ≤ μi(BD̂−1) ≤ 1 i = 1, . . . , n, (59)

where μi(BD̂−1) indicates the i-th eigenvalue of the matrix
BD̂−1 . The bounds in (59) and similarity of the matrices BD̂−1

and D̂−1/2BD̂−1/2 show that the eigenvalues of the matrix
D̂−1/2BD̂−1/2 are uniformly bounded in the interval

0 ≤ μi(D̂−1/2BD̂−1/2) ≤ 1. (60)

Based on (56), to characterize the bounds for the eigenvalues
of D−1/2

t BD−1/2
t , the bounds for the eigenvalues of the matrix

D̂1/2D−1/2
t should be studied as well. Notice that according to

the definitions of D̂ and Dt , the product D̂1/2D−1/2
t is block

diagonal and the i-th diagonal block is

[
D̂1/2D−1/2

t

]

ii
=

(
α∇2fi(xi,t)
2(1 − wii)

+ I
)−1/2

. (61)

MOKHTARI et al.: NETWORK NEWTON DISTRIBUTED OPTIMIZATION METHODS 157

Observe that according to Assumption 1, the eigenvalues of
local Hessian matrices ∇2fi(xi) are bounded by m and M .
Further notice that the diagonal elements of weight matrix wii

are bounded by δ and Δ, i.e. δ ≤ wii ≤ Δ. Considering these
bounds we can show that the eigenvalues of matrices (α/2(1 −
wii))∇2fi(xi,t) + I are lower and upper bounded as
[

αm

2(1 − δ)
+ 1

]

I � α∇2fi(xi,t)
2(1 − wii)

+ I �
[

αM

2(1 − Δ)
+ 1

]

I.

(62)
By considering the bounds in (62) and the expression in (61),
the eigenvalues of the matrix D̂1/2D−1/2

t are bounded as
[

2(1 − Δ)
2(1 − Δ) + αM

] 1
2

≤ μi

(
D̂

1
2 D− 1

2
t

)

≤
[

2(1 − δ)
2(1 − δ) + αm

] 1
2

, (63)

for i = 1, . . . , n. Observing the decomposition in (56), the norm
of the matrix D−1/2

t BD−1/2
t is upper bounded as

‖D− 1
2

t BD− 1
2

t ‖ ≤ ‖D− 1
2

t D̂1/2‖2 ‖D̂− 1
2 BD̂− 1

2 ‖. (64)

Considering the symmetry of matrices D̂1/2D−1/2
t and

D̂−1/2BD̂−1/2 , and the upper bounds for their eigenvalues in
(60) and (63), respectively, we can substitute the norm of these
two matrices by the upper bounds of their eigenvalues and sim-
plify the upper bound in (64) to

‖D−1/2
t BD−1/2

t ‖ ≤ 2(1 − δ)
2(1 − δ) + αm

. (65)

Since D−1/2
t BD−1/2

t is positive semidefinite and symmetric,
the result in (27) follows.

APPENDIX D
PROOF OF PROPOSITION 3

In this proof and the rest of the proofs we denote the Hessian

approximation as Ĥ−1
t instead of Ĥ(K)−1

t for simplification of
equations. To prove lower and upper bounds for the eigenvalues
of the error matrix Et we first develop a simplification for the
matrix I − HtĤ−1

t in the following lemma.
Lemma 4: Consider the NN-K method as defined in (12)-

(17). The matrix I − HtĤ−1
t can be simplified as

I − HtĤ−1
t =

(
BD−1

t

)K +1
. (66)

Proof: Check Lemma 2 in [24]. �
Proof of Proposition 3: Recall the result in Proposition 2.

Since the matrices D−1/2
t BD−1/2

t and BtD−1
t are similar (con-

jugate) the sets of eigenvalues of these two matrices are identical.
Thus, the eigenvalues of BD−1 are bounded as

0 ≤ μi(BD−1) ≤ ρ, (67)

for i = 1, 2, . . . , np. This result in association with (66) yields

0 ≤ μi(I − HtĤ−1
t) ≤ ρK +1 . (68)

Observe that the error matrix Et = I − Ĥ−1/2
t HtĤ

−1/2
t is the

conjugate of matrix I − HtĤ−1
t . Hence, the bounds for the

eigenvalues of matrix I − HtĤ−1
t also hold for the eigenvalues

of error matrix Et and the claim in (29) follows.

APPENDIX E
PROOF OF LEMMA 2

Based on the Cauchy-Schwarz inequality, the product of the
norms is larger than norm of the products. This observation and
the definition of Ĥ−1

t in (15) lead to

‖Ĥ−1
t ‖ ≤ ‖D− 1

2
t ‖2‖ I + D− 1

2
t BD− 1

2
t + . . .

+ [D− 1
2

t BD− 1
2

t]K ‖. (69)

As a result of Proposition 1 the eigenvalues of Dt are bounded
below by 2(1 − Δ) + αm. Thus, the maximum eigenvalue of
its inverse D−1

t is smaller than 1/(2(1 − Δ) + αm), and, there-
fore, the norm of the matrix D−1/2

t is bounded above as

‖D−1/2
t ‖ ≤ [2(1 − Δ) + αm]−1/2 . (70)

Based on the result in Proposition 2, the eigenvalues of
D−1/2

t BD−1/2
t are smaller than ρ. Further, using the symmetry

and positive definiteness of D−1/2
t BD−1/2

t we obtain

‖D−1/2
t BD−1/2

t ‖ ≤ ρ. (71)

Using the triangle inequality in (69) to claim that the norm of
the sum is smaller than the sum of the norms and substituting
the bounds in (70) and (71) into the resulting expression yield

‖Ĥ−1
t ‖ ≤ 1

2(1 − Δ) + αm

K∑

k=0

ρk . (72)

Since ρ < 1, the sum
∑K

k=0 ρk can be simplified to (1 −
ρK +1)/(1 − ρ). Considering this simplification for the sum in
(72), the upper bound in (30) for the eigenvalues of the approx-
imate Hessian inverse Ĥ−1

t follows.
In expression (15), all the summands except the first one,

D−1
t , are positive semidefinite. Hence, the approximate Hessian

inverse Ĥ−1
t is the sum of the matrix D−1

t and K positive
semidefinite matrices and as a result we can conclude that

D−1
t � Ĥ−1

t . (73)

Proposition 1 shows that the eigenvalues of Dt are bounded
above by 2(1 − δ) + αM which leads to the conclusion that
there exists a lower bound for the eigenvalues of D−1

t ,

(2(1 − δ) + αM)−1 I � D−1
t . (74)

The claim in (30) follows from the results in (73) and (74).

APPENDIX F
PROOF OF THEOREM 1

To prove global convergence of the Network Newton method
we first introduce two technical lemmas. In the first lemma,
we develop an upper bound for the objective function value
F (y) using the first three terms of its Taylor expansion. In
the second lemma, we construct an upper bound for the error
F (yt+1) − F (y∗) in terms of F (yt) − F (y∗).

158 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 1, JANUARY 1, 2017

Lemma 5: Consider the function F (y) defined in (6). If As-
sumptions 2 and 3 hold, then for any y, ŷ ∈ Rnp

F (ŷ) ≤ F (y) + ∇F (y)T (ŷ − y)

+
1
2
(ŷ − y)T ∇2F (y)(ŷ − y) +

αL

6
‖ŷ − y‖3 .

(75)

Proof: The claim follows from the Lipschitz continuity of
the Hessian with constant αL and Theorem 7.7 in [28] which
characterizes the error of taylor’s expansion. �

In the following lemma, we use the result in Lemma 5 to
establish an upper bound for the error F (yt+1) − F (y∗).

Lemma 6: Consider the NN-K method as defined in (12)-
(17). Further, recall the definition of y∗ as the optimal argument
of the objective function F (y). If Assumptions 1-3 hold, then

F (yt+1) − F (y∗) ≤
[
1 −

(
2ε − ε2) αmλ

]
[F (yt) − F (y∗)]

+
αLε3Λ3

6λ
3
2

[F (yt) − F (y∗)]
3
2 . (76)

Proof: By setting ŷ := yt+1 and y := yt in (75) we obtain

F (yt+1) ≤ F (yt) + gT
t (yt+1 − yt)

+
1
2
(yt+1 − yt)T Ht(yt+1 − yt)

+
αL

6
‖yt+1 − yt‖3 , (77)

where gt := ∇F (yt) and Ht := ∇2F (yt). From the definition
of the NN-K update in (16) we can write the difference of two
consecutive variables as yt+1 − yt = −εĤ−1

t gt . Making this
substitution into (77) implies

F (yt+1) ≤ F (yt) − εgT
t Ĥ−1

t gt +
ε2

2
gT

t Ĥ−1
t HtĤ−1

t gt

+
αLε3

6
‖Ĥ−1

t gt‖3 . (78)

According to (28), we can substitute Ĥ−1/2
t HtĤ

−1/2
t in (78)

by I − Et which leads to

F (yt+1) ≤ F (yt) − εgT
t Ĥ−1

t gt +
ε2

2
gT

t Ĥ− 1
2

t (I − Et)Ĥ
− 1

2
t gt

+
αLε3

6
‖Ĥ−1

t gt‖3 . (79)

Proposition 3 shows that Et is positive semidefinite, and, there-
fore, the quadratic form gT

t Ĥ−1/2
t EtĤ

−1/2
t gt is nonnegative.

Considering this lower bound we can simplify (79) to

F (yt+1) ≤ F (yt) −
(
2ε − ε2

)

2
gT

t Ĥ−1
t gt +

αLε3

6
‖Ĥ−1

t gt‖3 .

(80)
Since ε < 1, we obtain that 2ε − ε2 is positive. Moreover, recall
the result of Lemma 2 that all the eigenvalues of the Hessian
inverse approximation Ĥ−1

t are lower and upper bounded by λ
and Λ, respectively. These two observations imply that we can
replace the term gT

t Ĥ−1
t gt by its lower bound λ‖gt‖2 . More-

over, existence of upper bound Λ for the eigenvalues of Hessian
inverse approximation Ĥ−1

t implies that the term ‖Ĥ−1
t gt‖3 is

upper bounded by Λ3‖gt‖3 . Substituting these bounds for the
second and third terms of (80) and subtracting F (y∗) from both
sides of inequality (80) leads to

F (yt+1) − F (y∗) ≤ F (yt) − F (y∗) −
(
2ε − ε2

)
λ

2
‖gt‖2

+
αLε3Λ3

6
‖gt‖3 . (81)

Since the function F is strongly convex with constant αm we
can write [see Eq. (9.9) in [23]],

F (y∗) ≥ F (yt) −
1

2αm
‖∇F (yt)‖2 . (82)

Rearrange terms in (82) to obtain 2αm(F (yt) − F (y∗)) as
a lower bound for ‖∇F (yt)‖2 = ‖gt‖2 . Now substitute the
lower bound 2αm(F (yt) − F (y∗)) for squared norm of gradi-
ent ‖gt‖2 in the second summand of (81) to obtain

F (yt+1) − F (y∗) ≤
[
1 −

(
2ε − ε2) αmλ

]
(F (yt) − F (y∗))

+
αLε3Λ3

6
‖gt‖3 . (83)

Since the eigenvalues of the Hessian are upper bounded by
2(1 − δ) + αM , for any vectors ŷ and y in Rnp we can write

F (y)≤F (ŷ)+∇F (ŷ)T (y − ŷ) +
2(1 − δ) + αM

2
‖y − ŷ‖2 .

(84)
According to the definition of λ in (31), we can substitute
2(1 − δ) + αM by 1/λ. Implementing this substitution and
minimizing both sides of the equality with respect to y yields

F (y∗) ≤ F (ŷ) − λ‖∇F (ŷ)‖2 . (85)

Setting ŷ = yt , replacing ∇F (yt) by gt , and taking the square
root of both sides of the resulting inequality yields

‖gt‖ ≤
[
λ−1 [F (yt) − F (y∗)]

]1/2
. (86)

Replace the upper bound in (124) for the norm of the gradient
‖gt‖ in the last term of (83) to obtain (76). �

Proof of Theorem 1: To simplify upcoming derivations de-
fine the sequence βt as

βt := (2 − ε)εαmλ − ε3αLΛ3 [F (yt) − F (y∗)]
1
2

6λ
3
2

. (87)

Recall the result of Lemma 6. Factorizing F (yt) − F (y∗) from
the terms of the right hand side of (76) in association with the
definition of βt in (87) implies that we can simplify (76) as

F (yt+1) − F (y∗) ≤ (1 − βt)(F (yt) − F (y∗)). (88)

It remains to show that for all time steps t, the constants βt satisfy
0 < βt < 1. We first show that βt < 1 for all t ≥ 0. Based on
(87) we can write

βt ≤ (2 − ε)εαmλ. (89)

Considering (ε − 1)2 ≥ 0 we have ε(2 − ε) ≤ 1. Further, by
inequalities m < M and 1 − δ > 0, we obtain αm < αM +
(1 − δ). Thus, αm/(αM + 2(1 − δ)) < 1 which is equivalent
to αmλ < 1. It follows from these inequalities that

(2 − ε)εαmλ < 1. (90)

MOKHTARI et al.: NETWORK NEWTON DISTRIBUTED OPTIMIZATION METHODS 159

That βt < 1 follows by combining (89) with (90).
To prove that 0 < βt for all t ≥ 0 we prove that this is true

for t = 0 and then prove that the βt sequence is increasing.
According to (32), we can write

ε ≤
[

3mλ
5
2

LΛ3(F (y0) − F (y∗))
1
2

] 1
2

, (91)

By computing the squares of both sides of (91), multiplying
the right hand side of the resulting inequality by 2 to make the
inequality strict, and factorizing αmλ we obtain

ε2 <
6λ

3
2

αLΛ3[F (y0) − F (y∗)]
1
2
× αmλ. (92)

If we now divide both sides of the inequality in (92) by the first
multiplicand in the right hand side of (92) we obtain

ε2αLΛ3[F (y0) − F (y∗)]
1
2

6λ
3
2

< αmλ. (93)

Observe that based on the hypothesis in (32) the step size ε is
smaller than 1 and it is then trivially true that 2 − ε ≥ 1. This
observation shows that if we multiply the right hand side of (93)
by 2(1 − ε/2) the inequality still holds,

ε2αLΛ3(F (y0) − F (y∗))
1
2

6λ
3
2

< αm(2 − ε)λ. (94)

Multiply both sides of (94) by ε and rearrange terms to obtain

αmε(2 − ε)λ − ε3αLΛ3[F (y0) − F (y∗)]
1
2

6λ
3
2

> 0. (95)

Based on (87), the result in (95) yields β0 > 0. Observing that
β0 is positive, to show that for all t the sequence of βt is positive
it is sufficient to prove that the sequence βt is increasing. We
use strong induction to prove βt < βt+1 for all t ≥ 0. By setting
t = 0 in (88) we obtain

F (y1) − F (y∗) ≤ (1 − β0)(F (y0) − F (y∗)). (96)

Considering the result in (96) and the fact that 0 < β0 < 1, we
obtain that the objective function error at time t = 1 is strictly
smaller than the error at time t = 0, i.e.

F (y1) − F (y∗) < F (y0) − F (y∗). (97)

According to (87), a smaller objective function error F (yt) −
F (y∗) leads to a larger coefficient βt . This observation com-
bined with the result in (97) leads to

β0 < β1 . (98)

To complete the strong induction argument assume now that
β0 < β1 < . . . < βt−1 < βt and proceed to prove that if this is
true we must have βt < βt+1 . Begin by observing that since 0 <
β0 the induction hypothesis implies that for all u ∈ {0, . . . , t}
the constant βu is also positive, i.e., 0 < βu . Further recall that
for all t the sequence βt is also smaller than 1 as already proved.
Combining these two observations we have 0 < βu < 1 for all
u ∈ {0, . . . , t}. Consider now the inequality in (88) and utilize
the fact that 0 < βu < 1 for all u ∈ {0, . . . , t} to conclude that

F (yu+1) − F (y∗) < F (yu) − F (y∗), (99)

for all u ∈ {0, . . . , t}. Setting u = t in (99) we conclude that
F (yt+1) − F (y∗) < F (yt) − F (y∗). By further repeating the
argument leading from (98) to (97) we can conclude that

βt < βt+1 . (100)

The strong induction proof is complete and we can claim that

0 < β0 < β1 < . . . < βt < 1, (101)

for all times t. The results in (88) and (101) imply
limt→∞ F (yt) − F (y∗) = 0. To conclude that the rate is at least
linear simply observe that if the sequence βt is increasing as per
(101), the sequence 1 − βt is decreasing and satisfies

0 < 1 − βt < 1 − β0 < 1, (102)

for all time steps t. Applying the inequality in (88) recursively
and considering the inequality in (102) yields

F (yt) − F (y∗) ≤ (1 − β0)t(F (y0) − F (y∗)). (103)

Considering ζ = β0 , the claim in (33) follows.

APPENDIX G
PROOF OF LEMMA 3

To simplify notation we use Ĥ−1
t to indicate the approximate

Hessian inverse Ĥ(K)−1

t . Based on Lemma 1.2.3 in [29], the
Lipschitz continuity of Hessians with constant αL yields

‖gt+1 − gt + εHtĤ−1
t gt‖ ≤ ε2αL

2
‖Ĥ−1

t gt‖2 , (104)

where we have used yt+1 − yt = −εĤ−1
t gt . Based on the

definition of matrix norm we can write

‖D− 1
2

t [gt+1 − gt + εHtĤ−1
t gt]‖

≤ ‖D− 1
2

t ‖‖gt+1 − gt + εHtĤ−1
t gt‖. (105)

Substituting ‖gt+1 − gt + εHtĤ−1
t gt‖ in the right hand side

of (105) by the upper bound in (104) leads to

‖D− 1
2

t [gt+1 − gt + εHtĤ−1
t gt]‖ ≤ ε2αL

2
‖D− 1

2
t ‖‖Ĥ−1

t gt‖2 .

(106)
Based on the triangle inequality, for any vectors a and b, and
a positive constant C, if the relation ‖a − b‖ ≤ C holds, then
‖a‖ ≤ ‖b‖ + C. Thus, we can use the result in (106) to write

‖D− 1
2

t gt+1‖ ≤ ‖D− 1
2

t [gt − εHtĤ−1
t gt]‖

+
ε2αL

2
‖D− 1

2
t ‖‖Ĥ−1

t gt‖2 . (107)

Write D−1/2
t gt as the sum (1 − ε)(D−1/2

t gt) + ε(D−1/2
t gt)

and use the triangle inequality to obtain

‖D− 1
2

t gt+1‖ ≤ (1 − ε)‖D− 1
2

t gt‖ + ε‖D− 1
2

t [I − HtĤ−1
t]gt‖

+
ε2αL

2
‖D− 1

2
t ‖‖Ĥ−1

t gt‖2 . (108)

Use the result in Lemma 4 to write

‖D− 1
2

t [I − HtĤ−1
t]gt‖ = ‖[D− 1

2
t BD− 1

2
t]K +1D− 1

2
t gt‖.

(109)

160 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 1, JANUARY 1, 2017

The result in Proposition 2 implies that ‖[D−1/2
t BD−1/2

t]K +1

‖ ≤ ρK +1 . Considering this upper bound and the simplification
in (109) we can write

‖D−1/2
t [I − HtĤ−1

t]gt‖ ≤ ρK +1‖D−1/2
t gt‖. (110)

Substitute the upper bound in (110) into (108) and use the in-
equality ‖Ĥ−1

t gt‖ ≤ ‖Ĥ−1
t ‖‖gt‖ to write

‖D−1/2
t gt+1‖ ≤ (1 − ε + ερK +1)‖D−1/2

t gt‖

+
αε2L

2
‖D−1/2

t ‖‖Ĥ−1
t ‖2‖gt‖2 . (111)

Note that ‖D−1
t − D−1

t−1‖ is bounded above as
∥
∥D−1

t − D−1
t−1

∥
∥ ≤

∥
∥D−1

t

∥
∥ ‖Dt − Dt−1‖

∥
∥D−1

t−1

∥
∥ . (112)

The eigenvalues of Dt and Dt−1 are bounded below by αm +
2(1 − Δ). Thus, the eigenvalues of D−1

t and D−1
t−1 are bounded

above by 1/(αm + 2(1 − Δ)). Hence,
∥
∥D−1

t − D−1
t−1

∥
∥ ≤ (2(1 − Δ) + αm)−2 ‖Dt − Dt−1‖ .

(113)
The difference Dt − Dt−1 can be simplified as α(Gt − Gt−1).
Moreover, Ht − Ht−1 = α(Gt − Gt−1). Thus, Dt − Dt−1 =
Ht − Ht−1 . This observation in conjunction with the Lipschitz
continuity of the Hessians with parameter αL implies that

‖Dt − Dt−1‖ ≤ αL‖yt − yt−1‖. (114)

Replace ‖Dt − Dt−1‖ in (113) by the bound in (114) to obtain

∥
∥D−1

t − D−1
t−1

∥
∥ ≤ αL

(2(1 − Δ) + αm)2 ‖yt − yt−1‖ . (115)

Note that |gT
t (D−1

t − D−1
t−1)gt | is bounded above by ‖D−1

t −
D−1

t−1‖‖gt‖2 . Considering the upper bound for ‖D−1
t − D−1

t−1‖
in (115), the term |gT

t (D−1
t − D−1

t−1)gt | is bounded above by

∣
∣gT

t (D−1
t − D−1

t−1)gt

∣
∣ ≤ αL ‖yt − yt−1‖‖gt‖2

(2(1 − Δ) + αm)2 . (116)

Using the result in (116), and simplifactions |gT
t D−1

t−1gt | =
‖D−1/2

t−1 gt‖2 and |gT
t D−1

t gt | = ‖D−1/2
t gt‖2 , we can write

‖D− 1
2

t gt‖2 ≤ ‖D− 1
2

t−1gt‖2 +
αL ‖yt − yt−1‖‖gt‖2

(2(1 − Δ) + αm)2 . (117)

For any constants a, b, and c if a2 ≤ b2 + c2 holds, then |a| ≤
|b| + |c| holds. Using this result and (117) we obtain

‖D− 1
2

t gt‖ ≤ ‖D− 1
2

t−1gt‖ +
(αL‖yt − yt−1‖)

1
2 ‖gt‖

2(1 − Δ) + αm
. (118)

Considering the update in (17) we can substitute yt − yt−1 by
−εĤ−1

t−1gt−1 . Applying this substitution into (118) yields

‖D− 1
2

t gt‖ ≤ ‖D− 1
2

t−1gt‖ +
[αεL‖Ĥ−1

t−1gt−1‖]
1
2 ‖gt‖

2(1 − Δ) + αm
. (119)

If we substitute ‖D−1/2
t gt‖ by the upper bound in (119) and

substitute ‖Ĥ−1
t−1gt−1‖ by the upper bound ‖Ĥ−1

t−1‖‖gt−1‖, the

inequality in (111) can be written as

‖D−1/2
t gt+1‖ ≤

(
1 − ε + ερK +1) ‖D−1/2

t−1 gt‖

+

(
1 − ε + ερK +1

)
[αεL‖Ĥ−1

t−1‖ ‖gt−1‖]1/2

2(1 − Δ) + αm
‖gt‖

+
αε2L

2
‖D−1/2

t ‖‖Ĥ−1
t ‖2 ‖gt‖2 . (120)

Note that μmin (D−1/2
t−1)‖gt‖ ≤ ‖D−1/2

t−1 gt‖. Considering this

inequality and the lower bound (2(1 − δ) + αM)−1/2 for the
eigenvalues of D−1/2

t−1 we can write

‖gt‖ ≤ (2(1 − δ) + αM)1/2‖D−1/2
t−1 gt‖. (121)

Substitute ‖gt‖ by the upper bound in (121), use the defini-
tion λ := 1/(2(1 − δ) + αM), replace the norms the norms
‖Ĥ−1

t ‖ and ‖Ĥ−1
t−1‖ by their upper bound Λ, and use the fact

that ‖D−1/2
t ‖ is bounded above by 1/(2(1 − Δ) + αm)1/2 to

rewrite the right hand side of (120) as

‖D− 1
2

t gt+1‖ ≤ (1 − ε + ερK +1)[1 + C1‖gt−1‖
1
2]‖D− 1

2
t−1gt‖

+
αε2LΛ2

2λ(2(1 − Δ) + αm)
1
2
‖D− 1

2
t−1gt‖2 , (122)

where C1 :=
[
αεLΛ/λ(2(1 − Δ) + αm)2

]1/2
.

According to (31), we can substitute 1/(2(1 − δ) + αM) by
λ. Applying this substitution into (84) and minimizing the both
sides of (84) with respect to y yields

F (y∗) ≤ F (ŷ) − λ‖∇F (ŷ)‖2 . (123)

Since (123) holds for any ŷ, we set ŷ := yt−1 . By rearranging
the terms and taking their square roots, we obtain an upper
bound for the gradient norm ‖∇F (yt−1)‖ = ‖gt−1‖ as

‖gt−1‖ ≤
[
λ−1 [F (yt−1) − F (y∗)]

] 1
2 . (124)

The result in Theorem 1 and the relation in (124) allow us to
show that ‖gt−1‖1/2 is upper bounded by

‖gt−1‖
1
2 ≤

[
λ−1(1 − ζ)t−1(F (y0) − F (y∗))

] 1
4 . (125)

Consider the definition of Γ2 in (36) and substitute the upper
bound in (125) for ‖gt−1‖1/2 to update (122) as

‖D− 1
2

t gt+1‖ ≤
(
1−ε + ερK +1)

[
1 + C2(1−ζ)

t−1
4

]
‖D− 1

2
t−1gt‖

+ ε2Γ2‖D
− 1

2
t−1gt‖2 , (126)

where C2 := C1 [(F (y0) − F (y∗))/λ]1/4 . Based on the defini-
tions of C2 and Γ1 we obtain that C2 = Γ1 . This observation in
association with (126) leads to the claim in (35).

REFERENCES

[1] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton,” in Proc. 2014
48th Asilomar Conf. Signals, Syst., Comput., 2014, pp. 1621–1625.

[2] A. Mokhtari, Q. Ling, and A. Ribeiro, “An approximate newton method for
distributed optimization,” in Proc. 2015 IEEE Int. Conf. Acoust., Speech,
Signal Process., 2015, pp. 2959–2963.

MOKHTARI et al.: NETWORK NEWTON DISTRIBUTED OPTIMIZATION METHODS 161

[3] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress
in the study of distributed multi-agent coordination,” IEEE Trans. Ind.
Informat., vol. 9, no. 1, pp. 427–438, Feb. 2013.

[4] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive
networks: Formulation and performance analysis,” IEEE Trans. Signal
Process., vol. 56, no. 7, pp. 3122–3136, Jul. 2008.

[5] A. Ribeiro, “Ergodic stochastic optimization algorithms for wireless com-
munication and networking,” IEEE Trans. Signal Process., vol. 58, no. 12,
pp. 6369–6386, Dec. 2010.

[6] M. G. Rabbat and R. D. Nowak, “Decentralized source localization and
tracking [wireless sensor networks],” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2004, vol. 3, pp. 921–924.

[7] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc
WSNS with noisy links—Part I: Distributed estimation of determinis-
tic signals,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 350–364,
Jan. 2008.

[8] U. A. Khan, S. Kar, and J. M. Moura, “DILAND: An algorithm for
distributed sensor localization with noisy distance measurements,” IEEE
Trans. Signal Process., vol. 58, no. 3, pp. 1940–1947, Mar. 2010.

[9] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,”
in Proc. 3rd Int. Symp. Inf. Process. Sensor Netw., 2004, pp. 20–27.

[10] R. Bekkerman, M. Bilenko, and J. Langford, Scaling up Machine Learn-
ing: Parallel and Distributed Approaches. Cambridge, U.K.: Cambridge
Univ. Press, 2011.

[11] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Consensus-based distributed
optimization: Practical issues and applications in large-scale machine
learning,” in Proc. 2012 50th Annu. Allerton Conf. Commun., Control,
Comput., 2012, pp. 1543–1550.

[12] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed graphlab: A framework for machine learn-
ing and data mining in the cloud,” Proc. VLDB Endowment, vol. 5, no. 8,
pp. 716–727, 2012.

[13] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1,
pp. 48–61, Jan. 2009.

[14] D. Jakovetic, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1131–1146,
May 2014.

[15] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM J. Optim., vol. 26, no. 3, pp. 1835–1854, 2016,
DOI: 10.1137/130943170.

[16] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm
for decentralized consensus optimization,” SIAM J. Optim., vol. 25, no. 2,
pp. 944–966, 2015, DOI: 10.1137/14096668X.

[17] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[18] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence
of the ADMM in decentralized consensus optimization,” IEEE Trans.
Signal Process., vol. 62, no. 7, pp. 1750–1761, Apr. 2014.

[19] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimiza-
tion via inexact consensus ADMM,” IEEE Trans. Signal Process., vol. 63,
no. 2, pp. 482–497, Jan. 2015.

[20] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “DQM: Decentralized
quadratically approximated alternating direction method of multipliers,”
IEEE Trans. Signal Process., vol. 64, no. 19, pp. 5158–5173, Oct. 2016.

[21] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for dis-
tributed optimization: Convergence analysis and network scaling,” IEEE
Trans. Autom. Control, vol. 57, no. 3, pp. 592–606, Mar. 2012.

[22] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual
averaging for convex optimization,” in Proc. 2012 IEEE 51st Annu. Conf.
Decision Control, 2012, pp. 5453–5458.

[23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[24] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, “Accelerated dual
descent for network flow optimization,” IEEE Trans. Autom. Control, vol.
59, no. 4, pp. 905–920, Apr. 2014.

[25] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed newton method
for network utility maximization—I: Algorithm,” IEEE Trans. Autom.
Control, vol. 58, no. 9, pp. 2162–2175, Sep. 2013.

[26] D. Jakovetic, J. M. Moura, and J. Xavier, “Distributed Nesterov-like gra-
dient algorithms,” in Proc. 2012 IEEE 51st Annu. Conf. Decision Control,
2012, pp. 5459–5464.

[27] A. Mokhtari and A. Ribeiro, “DSA: Decentralized double stochastic aver-
aging gradient algorithm,” J. Mach. Learn. Res., vol. 17, no. 61, pp. 1–35,
2016.

[28] T. M. Apostol, Calculus, vol. 1. Hoboken, NJ, USA: Wiley, 2007.
[29] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic

Course, vol. 87. New York, NY, USA: Springer Science & Business
Media, 2013.

Aryan Mokhtari received the B.Sc. degree in elec-
trical engineering in 2011 from Sharif University of
Technology, Tehran, Iran and the M.S. degree in elec-
trical engineering in 2014 from the University of
Pennsylvania, Philadelphia, PA, USA, where since
2012, he has been working toward the Ph.D. degree
in the Department of Electrical and Systems Engi-
neering. From June to August 2010, he was an Intern
in the Advanced Digital Sciences Center, Singapore.
He was a Research Intern with the Big-Data Machine
Learning Group at Yahoo!, Sunnyvale, CA, USA,

from June to August 2016. His research interests lie in the areas of optimiza-
tion, machine learning, control, and signal processing. His current research
focuses on developing methods for large-scale optimization problems.

Qing Ling received the B.E. degree in automation
and the Ph.D. degree in control theory and control
engineering from the University of Science and Tech-
nology of China, Hefei, China, in 2001 and 2006,
respectively. From 2006 to 2009, he was a Postdoc-
toral Research Fellow in the Department of Electrical
and Computer Engineering, Michigan Technological
University. Since 2009, he has been an Associate Pro-
fessor in the Department of Automation, University
of Science and Technology of China. His current re-
search focuses on decentralized optimization of net-

worked multiagent systems.

Alejandro Ribeiro received the B.Sc. degree in
electrical engineering from the Universidad de
la Republica Oriental del Uruguay, Montevideo,
Uruguay, in 1998 and the M.Sc. and Ph.D. degrees
in electrical engineering from the Department of
Electrical and Computer Engineering, University of
Minnesota, Minneapolis, MN, USA, in 2005 and
2007, respectively. From 1998 to 2003, he was a
member of the technical staff at Bellsouth Monte-
video. After his M.Sc. and Ph.D. studies, in 2008 he
joined the University of Pennsylvania, Philadelphia,

where he is currently the Rosenbluth Associate Professor in the Department of
Electrical and Systems Engineering. His research interests include the applica-
tions of statistical signal processing to the study of networks and networked phe-
nomena. His focus is on structured representations of networked data structures,
graph signal processing, network optimization, robot teams, and networked con-
trol. He received the 2014 O. Hugo Schuck Best Paper Award, the 2012 S. Reid
Warren, Jr., Award presented by Penn’s Undergraduate Student Body for out-
standing teaching, the NSF CAREER Award in 2010, and paper awards at the
2016 SSP Workshop, 2016 SAM Workshop, 2015 Asilomar SSC Conference,
ACC 2013, ICASSP 2006, and ICASSP 2005. He is a Fulbright Scholar and a
Penn Fellow.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

