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Weighted ADMM for Fast Decentralized
Network Optimization

Qing Ling, Yaohua Liu, Wei Shi, and Zhi Tian

Abstract—In this paper, we propose a weighted alternating
direction method of multipliers (ADMM) to solve the consensus
optimization problem over a decentralized network. In the
proposed algorithm, every node holds its local objective function,
exchanges its current iterate with a subset of neighbors, carries on
local computation, and eventually reaches an optimal and consen-
sual solution that minimizes the summation of the local objective
functions. Compared with the conventional ADMM that is popular
in decentralized network optimization, the weighted ADMM is
able to reduce the communication cost spent in the optimization
process through tuning the weight matrices, which assign beliefs on
the neighboring iterates. We first prove convergence and establish
linear convergence rate of the weighted ADMM. Second, we max-
imize the derived convergence speed and obtain the best weight
matrices on a given topology. Third, observing that exchanging
information with all the neighbors is expensive, we maximize the
convergence speed while limit the number of communication arcs.
This strategy finds a subset of arcs within the underlying topology
to fulfill the optimization task while leads to a favorable tradeoff
between the number of iterations and the communication cost
per iteration. Numerical experiments demonstrate advantages
of the weighted ADMM over its conventional counterpart in
expediting the convergence speed and reducing the communication
cost.

Index Terms—Alternating direction method of multipliers
(ADMM), Decentralized network, communication cost, consensus
optimization.

I. INTRODUCTION

PROPELLED by the rapid progress of data acquisition, com-
munication and networking technologies, information pro-

cessing and decision making over decentralized networks have
attracted noticeable research interest in these years. A group of
geographically distributed nodes, which are equipped with sens-
ing, communicating and computing abilities, collaboratively ac-
complish an information processing or decision making task
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over an underlying network topology. A typical task is decen-
tralized consensus optimization, in which n nodes solve

min
x

n∑

i=1

fi(x). (1)

Here x ∈ Rp is the common optimization variable and
fi : Rp → R is the local objective function of node i. Such a
problem formulation appears in various applications, for exam-
ple, wireless communications and networking [2], [3], spectrum
sensing of cognitive radios [4], [5], monitoring and optimization
of smart grids [6], [7], distributed control of networked robots
[8]–[10], to name a few.

In a decentralized algorithm that solves (1), every node holds
its local objective function, exchanges its current iterate with a
subset of neighbors, carries on local computation, and eventually
reaches an optimal solution that is consensual to all the nodes.
In this optimization process, communication cost is one of the
key considerations of implementation. Reducing the amount
of information exchange among the nodes alleviates burden
on bandwidth, improves system robustness, and enables fast
information processing and decision making. In this paper, we
propose a weighted alternating direction method of multipliers
(ADMM) to solve (1), aiming at reducing the communication
cost via a principled design.

A. Related Works

Decentralized optimization algorithms that solve (1) include
gradient/subgradient methods [11], [12] and their accelerated
versions [13], diffusion methods [14], [15], dual averaging
methods [16], [17], Newton methods [18], [19], and ADMM
[2], [3], [20]–[22]. Among these algorithms, the decentralized
ADMM has shown fast convergence in both practice and theory.
When (1) is a convex program, ADMM converges to the optimal
solution at a sublinear rate of O(1/k) with k being the num-
ber of iterations [3]. Its linear rate of O(τk ), where τ ∈ (0, 1)
is a topology-dependent constant, is established in [23] given
that the local objective functions are strongly convex. ADMM
is also able to utilize special composite structures or introduce
surrogates of the local objective functions so as to significantly
simplify the computation, while still keep its favorable conver-
gence properties [24]–[27].

ADMM is originally developed to solve centralized optimiza-
tion problems with linear constraints [28], [29]. It splits primal
optimization variables into two sets, minimizes them in an
alternating direction manner, and follows with a dual gradient
ascent step. Its sublinear convergence rate is established in
[30] and [31] and linear convergence rate is established in [32]
and [33]. ADMM became popular because of its simplicity
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in implementation and stability of computation. Readers are
referred to the survey paper [34] for some of its applications.

To apply ADMM in decentralized optimization, we need to
first introduce a set of consensus constraints to the unconstrained
problem (1), and then use the technique of variable splitting. To
be specific, we introduce at every node and every arc a local
copy of x, and for every arc, force the local copies of the arc
and the two attached nodes to be equal. This way, ADMM has
two sets of local copies, those of the arcs and those of the
nodes, which are alternatingly optimized. Of particular note,
the local copies of the arcs are eventually eliminated in the re-
sultant algorithm. Not surprisingly, convergence speed of the
conventional decentralized ADMM is determined by condition
numbers of the local objective functions, spectral properties of
the underlying topology and the stepsize of dual gradient ascent
(namely, the ADMM penalty factor) [23]. However, the con-
ventional ADMM is unable to achieve the best communication
efficiency due to two reasons. First, there is only one parameter,
the ADMM penalty factor, which can be tuned to maximize
the convergence speed and consequently minimize the required
number of iterations. Second, at every iteration, every node has
to exchange its current iterate with all of its neighbors, which
leads to a large amount of information exchange per iteration.

B. Our Contributions and Paper Organization

This paper proposes a weighted ADMM to solve the decen-
tralized optimization problem (1) and address the two aforemen-
tioned disadvantages of the conventional ADMM. Intuitively,
one can assign different weights to the consensus constraints
on different arcs. Through tuning the weights, we have more
flexibility to maximize the convergence speed than in the con-
ventional ADMM. Furthermore, by setting some weights as
zeros, we are able to avoid information exchange over a subset
of arcs and hence reduce the communication cost per iteration.
The intuitive idea of weight tuning is made rigorous by our ana-
lytical delineation of the convergence speed as a function of the
weights, which is one of the main contributions of this paper as
well.

Section II develops the weighted ADMM following this in-
tuitive idea and discusses its connection with the conventional
ADMM. Section III proves convergence and establishes linear
rate of convergence for the weighted ADMM. We provide an
explicit expression that shows how the convergence speed is
determined by the weight matrices. Such an expression enables
optimal design of the weights, which leads to two design strate-
gies we develop in Section IV. The first one gives two optimal
design strategies. The first one simply maximizes the conver-
gence speed, while the second one further confines the number
of communication arcs for the sake of reducing the amount of
information exchange at every iteration. Numerical experiments
in Section V demonstrate advantages of the weighted ADMM
over its conventional counterpart in expediting the conver-
gence speed and reducing the communication cost. Section VI
concludes the paper.

C. Notations

Throughout the paper, define e = [1; 1; · · · ; 1] ∈ Rn as an
all-one vector. For a matrix M , define ‖M‖F as its Frobenius

norm and ‖M‖0 as its number of nonzero elements (or its
pseudo �0 norm by convention). Given a positive semidefinite
matrix G, the G-norm of M is defined as ‖M‖G �

√
〈M,GM〉

where 〈·, ·〉 denotes the inner product operator. The null space
of M is denoted by Null(M) and the span of M by Span(M).
The largest and the smallest nonzero eigenvalues of G are
denoted by σmax(G) and σ̃min(G), respectively. For a square
matrix A, denote OffDiag(A) as a matrix whose off-diagonal
elements are identical to those of A and diagonal elements are
zeros.

II. ALGORITHM DEVELOPMENT

In this section, we propose a weighted ADMM to solve
the decentralized network optimization problem (1), aim-
ing at reducing the communication cost of the conventional
ADMM. Connection between the two algorithms is also
explained.

A. Problem Statement

Network model. Throughout this paper, we consider a bidirec-
tionally connected network consisting of n nodes and r edges.
We describe the network as an undirected graph G = {V, E},
where V is the set of nodes with cardinality |V| = n and E is the
set of arcs with cardinality |E| = 2r. Nodes i and j are neighbors
of each other if (i, j) ∈ E and, by the symmetry of the network,
(j, i) ∈ E . The set of node i’s neighbors is denoted as Ni , whose
cardinality |Ni | is the degree of node i.

Communication model. This paper designs an iterative decen-
tralized algorithm to solve the network optimization problem
(1). At every iteration of the algorithm, every node i commu-
nicates with a set of other nodes Ci , sending its current local
estimate and receiving the others’. It is assumed that the com-
munication and iterative updating steps are synchronous among
all the nodes. Furthermore, in order to guarantee that the algo-
rithm is decentralized, every node is only allowed to communi-
cate with those nodes in its neighbor set; that is to say, for every
node i we must have Ci ⊆ Ni . Notice that Ni comes from phys-
ical limits of the network while Ci is user-designed. Intuitively,
taking Ci ⊂ Ni will decrease the convergence speed but save
the communication cost per iteration, as we will discuss in the
rest of this paper.

We consider the costs of two communication schemes,
broadcast and unicast. In the broadcast scheme, upon sending
a local estimate, node i broadcasts once to all the nodes in Ci .
Suppose that the dimension of each local estimate is p. The
communication cost of the whole network at every iteration
is pn. In the unicast scheme, upon sending a local estimate,
node i contacts every individual node in Ci separately. The
communication cost is hence p

∑n
i=1 |Ci | per iteration. Here the

communication costs are measured in terms of the energy and
time spent in sending messages. Note that for both the broadcast
and unicast schemes, the network receives

∑n
i=1 |Ci | local

estimates at every iteration. The receiving costs of management
and post-processing are hence proportional to p

∑n
i=1 |Ci |.

To simplify the discussion, this paper mainly focuses on the
sending costs, because the receiving costs are proportional to
the sending cost of the unicast scheme.
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B. Weighted ADMM

In the weighted ADMM, every node i maintains a local vari-
able xi ∈ Rp , which is a copy of the optimization variable x in
(1). Node i also keeps a local variable λi ∈ Rp , which plays the
role of Lagrange multiplier as we will explain in Section II-C.
Both xi and λi are updated using information collected from
the nodes in Ci . However, only xi is transmitted to the nodes in
Ci ; λi is kept private.

Collect all local variables xi and λi in two matrices

X �

⎛

⎜⎜⎜⎜⎜⎝

xT
1

xT
2

...

xT
n

⎞

⎟⎟⎟⎟⎟⎠
∈ Rn×p and Λ �

⎛

⎜⎜⎜⎜⎜⎝

λT
1

λT
2

...

λT
n

⎞

⎟⎟⎟⎟⎟⎠
∈ Rn×p .

Define an aggregate objective function f(X) =
∑n

i=1 fi(xi).
DenoteD ⊂ Rn×n as the set of n-by-n diagonal matrices whose
diagonal elements are positive, and A ⊂ Rn×n as the set of n-
by-n symmetric matrices whose (i, j)-th elements are zeros if
nodes i and j are neither neighbors nor the same. The matrix
form of the weighted ADMM update is given by

Xk+1 = arg min
X

f(X) +
〈
X,Λk − (D + A)Xk

〉

+ 〈X,DX〉,

Λk+1 = Λk + (D − A)Xk+1 . (2)

In (2), D ∈ D is a diagonal matrix and its (i, i)-th element
is positive and denoted by dii ; A ∈ A is a symmetric matrix
satisfying that its (i, j)-th element aij = 0 if nodes i and j
are neither neighbors nor the same. Given a matrix A, define
Ci = {j|aij 	= 0 and i 	= j}, which guarantees Ci ⊆ Ni .

Splitting the computation in the matrix form (2) to individual
nodes, the update of node i is given by

xk+1
i = arg min

xi

fi(xi) +

〈
xi, λ

k
i − diix

k
i −

n∑

j=1

aijx
k
j

〉

+ dii‖xi‖2 ,

λk+1
i = λk

i + diix
k+1
i −

n∑

j=1

aijx
k+1
j . (3)

The algorithm can be implemented in a decentralized manner.
In the update of xk+1

i , node i needs to calculate the summation∑n
j=1 aijx

k
j , which only requires the previous iterates xk

i and
xk

j , j ∈ Ci , as aij = 0 if j 	= i and j /∈ Ci . The objective function

fi(xi) and the previous Lagrange multiplier λk
i are also locally

available. Similarly, in the update of λk+1
i , node i calculates

the weighted summation
∑n

j=1 aijx
k+1
j of the current local

estimates; this can be done through communication with its
neighbors.

The weighted ADMM is outlined in Algorithm 1. At time k =
0 we initialize the local variables to x0

i = 0 and λ0
i = 0. For all

subsequent times, node i runs the update (3), as shown in Step 2
and Step 4 of Algorithm 1. Implementation of Step 2 requires
neighboring iterates xk

j from the previous iteration. Implementa-

tion of Step 4 requires current neighboring iterates xk+1
j , which

Algorithm 1: Weighted ADMM run by node i.

Require: Initialize local estimates to x0
i = 0 and λ0

i = 0.
1: for iterations k = 1, 2, . . . do
2: Compute local estimate xk+1

i by

xk+1
i = arg min

xi

fi(xi)

+
〈

λk
i − diix

k
i +

n∑

j=1

aijx
k
j , x

〉
+ dii‖xi‖2 .

3: Transmit xk+1
i & receive xk+1

j from neighbors
j ∈ Ci ⊆ Ni .

4: Update local Lagrange multiplier λk+1
i as

λk+1
i = λk

i + diix
k+1
i −

n∑

j=1

aijx
k+1
j .

5: end for

become available through the exchange implemented in Step 3.
This exchange step also makes the neighboring iterates available
for the update in Step 2 with respect to the following time index.
Note that in the exchange step, the communication scheme is
broadcast, as we have assumed in Section II-A.

C. Connection Between Weighted ADMM and
Conventional ADMM

To unveil the connection between the proposed weighted
ADMM and the conventional one, observe that [23] gives the
matrix form of the conventional ADMM as

Xk+1 = arg min
X

f(X) +
〈
X,Λk − cUXk

〉

+
〈

X, c
U + V

2
X

〉
,

Λk+1 = Λk + cV Xk+1 . (4)

Therein, c is the ADMM penalty factor for constraint violation,
and also the stepsize of dual gradient ascent; U and V are the
signless and signed Laplacian matrices of the network, respec-
tively; (U + V )/2 is the diagonal node degree matrix whose
i-th diagonal element is |Ni |, the degree of node i. Such an
algorithm is developed following the ADMM routine: introduc-
ing local copies of x at all the arcs and the nodes so as to form
consensus constraints; minimizing the augmented Lagrangian
function regarding the local copies at the arcs and those at the
nodes, respectively; then moving a dual ascent step to update the
Lagrange multipliers. Note that the local copies of the arcs are
eliminated eventually due to the special structure of the problem
formulation.

Comparing (2) and (4), we can find that the conventional
ADMM is a special case of the weighted ADMM by setting
D = c(U + V )/2 and A = c(U − V )/2. In this case, D is the
degree matrix whose (i, i)-th element dii denotes the degree of
node i, while A is the adjacent matrix whose (i, j)-th element aij

equals to one if nodes i and j are connected and zero otherwise.
Observe that such choices of D and A satisfy the requirements
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of the weighted ADMM given by Section II-B. In fact, they
correspond to assigning the same weights to all the consensus
constraints. In contrast, the weighted ADMM essentially assigns
different weights to the consensus constraints at different arcs.

This difference enables the weighted ADMM to achieve a bet-
ter communication efficiency than the conventional one. First,
in the conventional ADMM, updating the primal variable xi and
the Lagrange multiplier λi in node i involves communication
with all the neighbors j in Ni , because of the structures of U
and V . Therefore, the conventional ADMM has a fixed com-
munication cost per iteration given the network topology, which
is pn for broadcast and p

∑n
i=1 |Ni | for unicast in the whole

network. Contrarily, the weighted ADMM is able to reduce
the communication cost by letting every node communicate
with less neighbors; this can be done through wisely choos-
ing the matrix A such that

∑n
i=1 |Ci | is significantly less than∑n

i=1 |Ni |. Second, the conventional ADMM can optimize its
convergence speed through tuning the penalty factor c, since
U and V are fixed given the network topology. Whereas, the
weighted ADMM has the flexibility of tuning two matrices, A
and D. Consequently, the weighted ADMM has the potential to
achieve a faster convergence speed than its conventional coun-
terpart.

In summary, comparing to the conventional ADMM, the
weighted ADMM is able to both reduce the communication
cost per iteration and accelerate the convergence speed. Thus,
the weighted ADMM can achieve a target solution accuracy
using less communication cost. In the following sections, we
theoretically establish convergence and linear convergence rate
of the weighted ADMM (Section III), minimize its communica-
tion cost based upon the analyses (Section IV), and demonstrate
its effectiveness through numerical experiments (Section V).

III. CONVERGENCE AND LINEAR RATE OF CONVERGENCE

In this section, we give conditions on the weight matrices
D and A under which the weighted ADMM converges to an
optimal solution (Section III-B). We also establish its linear rate
of convergence when every local objective functions have Lip-
schitz continuous gradients and are strongly convex (Section
III-C). The convergence speed is dependent on condition num-
bers of the local objective functions and spectral properties of
the weight matrices D and A. This fact motivates us to max-
imize the convergence speed through tuning D and A in the
next section. Note that the tools of analyses used in this paper
and in the conventional ADMM share similarities. However, the
proof techniques have been adapted to fit the special algorithmic
structures of the weighted ADMM.

A. Assumptions and Supporting Lemmas

We begin with several assumptions and supporting lemmas.
Unless otherwise stated, the convergence results in this section
are given under Assumptions from 1 through 4. Assumptions 1
and 2 are basic, requiring that the underlying network to be
connected and the solution set not null, respectively.

Assumption 1 (Network connectivity): The network of n
nodes are bidirectionally connected.

Assumption 2 (Solution existence): The solution set to (1),
denoted by X∗, is nonempty and has at least one bounded ele-
ment.

Assumption 3 supposes that the local objective functions are
convex and continuously differentiable. This assumption, along
with Assumptions 1 and 2, is sufficient to prove convergence of
the weighted ADMM.

Assumption 3 (Convexity and differentiability): The local
objective functions fi are convex and continuously differen-
tiable.

To further establish linear rate of convergence, we require the
local objective functions to have Lipschitz continuous gradients
and be strongly convex, as stated in Assumption 4.

Assumption 4 (Lipschitz continuous gradients and strong
convexity): The local objective functions fi have Lipschitz
continuous gradients. For node i, there is a positive constant
Li > 0 such that for any pair of points x̂ and x̄ it holds
‖∇fi(x̂) −∇fi(x̄)‖ ≤ Li‖x̂ − x̄‖. The maximum Lipschitz
constant is L = maxi Li . The local objective functions fi

are strongly convex. For node i, there is a positive constant
μi > 0 such that for any pair of points x̂ and x̄ it holds
〈x̂ − x̄,∇fi(x̂) −∇fi(x̄)〉 ≥ μi‖x̂ − x̄‖2 . The minimum
strong convexity constant is μ = mini μi .

Define two diagonal matrices P ∈ Rn×n and Q ∈ Rn×n ,
whose i-th diagonal elements are L2

i and μi , respectively.
Recall the definition of f(X) =

∑n
i=1 fi(xi) where X =

[xT
1 ;xT

2 ; · · · ;xT
n ]. For any pair of points X̂ ∈ Rn×n and X̄ ∈

Rn×n , Assumption 4 yields

‖∇f(X̂) −∇f(X̄)‖2
F ≤ ‖X̂ − X̄‖2

P ,

and

〈∇f(X̂) −∇f(X̄), X̂ − X̄〉 ≥ ‖X̂ − X̄‖2
Q .

To facilitate analysis of the weighted ADMM, we rewrite
its update in (2) to another form. Suppose that D − A is pos-
itive semidefinite, which is necessary to the convergence of
the weighted ADMM. Introducing a new series of matrices
{Y k ∈ Rn×p} and observing the differentiability of f , we know
that (2) is equivalent to

∇f(Xk+1) +
√

D − AY k + 2DXk+1 − (D + A)Xk

= 0,

Y k+1 = Y k +
√

D − AXk+1 . (5)

The equivalence of (2) and (5) is given by Λk =
√

D − AY k .
To guarantee that such Y k exists for every k, Λk must be in
the column space of D − A (also that of

√
D − A). This is not

difficult to satisfy because if Λ0 is initialized in the column
space of D − A (to be specific, Λ0 = 0), then every Λk stays
inside due to the recursion Λk+1 = Λk + (D − A)Xk+1 .

In the convergence analyses, we shall show that the weighted
ADMM converges to an optimal solution of (1). This is done by
showing that (Xk, Y k ) converges to an optimal pair (X∗, Y ∗)
defined by the following first-order optimality condition of (1).

Lemma 1 (First-order optimality condition): Suppose that
D − A � 0 and Null(D − A) = e. Under Assumptions 2 and
3, the following two statements are equivalent.
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� X∗ �
[
(x∗

1)
T ; (x∗

2)
T ; · · · ; (x∗

n )T
]
∈ Rn×p is consensual

(namely, x∗
1 = x∗

2 = · · · = x∗
n ) and every x∗

i is optimal to
(1);

� There exists an optimal pair (X∗, Y ∗) with Y ∗ =√
D − AP for some P ∈ Rn×p such that

∇f(X∗) +
√

D − AY ∗ = 0,
√

D − AX∗ = 0. (6)

Proof: First, by Null(D − A) = e, we have
Null(

√
D − A) = e. Thus,

√
D − AX∗ = 0 is equivalent

to that X∗ is consensual, namely, x∗
1 = x∗

2 = · · · = x∗
n .

Second, given that X∗ is consensual, every x∗
i is optimal to

(1) if and only if eT ∇f(X∗) = 0. Because Null(D − A) =
e, eT ∇f(X∗) = 0 is equivalent to that ∇f(X∗) stays in
Span(D − A). That is, there exists some P ∈ Rn×p such that
∇f(X∗) +

√
D − AY ∗ = 0 with Y ∗ =

√
D − AP . This com-

pletes the proof. �
Observing (5) and (6), we can see that the conver-

gence of (Xk, Y k ) to (X∗, Y ∗) is possible. Suppose
that the convergence is true such that limk→∞Xk = X∗

and limk→∞Y k = Y ∗. Then in the first line of (5),
limk→∞∇f(Xk+1) +

√
D − AY k = ∇f(X∗) +

√
D − AY ∗

and limk→∞2DXk+1 − (D + A)Xk = (D − A)X∗; the
latter term is zero because the null space of D − A
is e and X∗ is consensual. In the second line of (5),
limk→∞Y k+1 − Y k −

√
D − AXk+1 =

√
D − AX∗. There-

fore, the optimal pair (X∗, Y ∗) is a possible fixed point of the
weighted ADMM iterate (Xk, Y k ).

In the convergence analyses, we are interested in the distance
between (Xk, Y k ) and (X∗, Y ∗). This is investigated through
the weighted ADMM recursion in terms of Xk , Y k , X∗, and Y ∗

given in Lemma 2. The recursion is obtained through subtracting
the corresponding lines of (5) and (6).

Lemma 2 (Recursion of the weighted ADMM): Suppose
D − A � 0 and Null(D − A) = e. Under Assumptions 2 and
3, the quadruple sequence {Xk, Y k ,X∗, Y ∗} in the weighted
ADMM obeys

∇f(Xk+1) −∇f(X∗) +
√

D − A(Y k+1 − Y ∗)

+ (D + A)(Xk+1 − Xk ) = 0,

Y k+1 = Y k +
√

D − A(Xk+1 − X∗). (7)

for any k = 0, 1, · · · .

B. Convergence

To facilitate convergence analysis of the weighted ADMM,
define

Zk �
(

Y k

Xk

)
, Z∗ �

(
Y ∗

X∗

)
, G �

(
I 0

0 D + A

)
.

In Theorem 1, we shall show that Zk converges to Z∗, or equiv-
alently, Y k converges to Y ∗ and Xk converges to X∗.

Theorem 1: Under Assumptions 2 and 3 and given that the
weight matrices D ∈ D and A ∈ A are chosen such that D +
A � 0, D − A � 0 and Null(D − A) = e, the iterate (Xk, Y k )
generated by the weighted ADMM converges to an optimal pair
(X∗, Y ∗).

Proof: See Appendix A. �
Note that the weight matrices D and A that satisfy the

requirements D ∈ D, A ∈ A, D + A � 0, D − A � 0 and
Null(D − A) = e do exist when Assumption 1 holds, namely,
the network is connected. One possible choice is that D =
(U + V )/2 and A = (U − V )/2 where U and V are the signless
and signed Laplacian matrices of the network, respectively; see
Section II-C.

C. Linear Convergence Rate

Suppose that the local objective functions have Lipschitz con-
tinuous gradients and are strongly convex as in Assumption 4.
Recall that P and Q are diagonal matrices containing the squared
Lipschitz gradient constants and the strong convexity constants,
respectively. Theorem 2 further establishes linear rate of con-
vergence for the weighted ADMM. In particular, we obtain the
convergence speed that is explicitly determined by the Lips-
chitz continuous gradient and strong convexity constants of the
local objective functions, as well as the spectral properties of
the weight matrices D and A. Note that the optimal solution
to (1) is unique due to the strong convexity of the objective
function.

Theorem 2: Under Assumptions 2, 3 and 4 and given that the
weight matrices D ∈ D and A ∈ A are chosen such that D +
A � 0, D − A � 0 and Null(D − A) = e, the iterate (Xk, Y k )
generated by the weighted ADMM converges linearly to the
optimal pair (X∗, Y ∗). Specifically, for any positive δ satisfying

1 ≥ δθσmax(D + A)
σ̃min(D − A)

, (8)

and

2Q + (D − A) − δ(D + A) � δθ

(θ − 1)σ̃min(D − A)
P, (9)

where θ is a constant satisfying θ > 1, it holds

‖Zk − Z∗‖2
G ≥ (1 + δ)‖Zk+1 − Z∗‖2

G. (10)

That is, ‖Zk − Z∗‖2
G converges to zero at the Q-linear rate

O
(
(1 + δ)−k

)
and consequently, ‖Xk − X∗‖2

D+A converges
to zero at the R-linear rate O

(
(1 + δ)−k

)
.

Proof: See Appendix B. �
Theorem 2 shows that the weighted ADMM converges lin-

early and its theoretically achievable speed is given by the max-
imum constant δ satisfying (8) and (9), which is determined
by the Lipschitz gradient and strong convexity constants of the
local objective functions (P and Q) and the weight matrices
(D and A). However, the matrix constraint (9) hinders us from
obtaining an explicit expression of δ. In the corollary below,
we give a sufficient condition of (8) and (9), which provides a
clearer indication that how the weight matrices D and A affects
the achievable convergence speed.

Corollary 1: Under Assumptions 2, 3 and 4 and given that
the weight matrices D ∈ D and A ∈ A are chosen such that D +
A � 0, D − A � 0 and Null(D − A) = e, the iterate (Xk, Y k )
generated by the weighted ADMM converges linearly to the
optimal pair (X∗, Y ∗) in the sense of

∥∥Zk − Z∗∥∥2
G
≥ (1 + δ)

∥∥Zk+1 − Z∗∥∥2
G

.
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The achievable convergence speed δ satisfies

δ ≤

min

{
σ̃min(D − A)
θσmax(D + A)

,
2μ

σmax(D + A) + θL2

(θ−1)σ̃m in (D−A)

}
,

(11)

where θ is a constant satisfying θ > 1, L and μ denote the
largest Lipschitz continuity and the smallest strong convexity
constants, respectively.

Proof: For (9), observe that the smallest eigenvalues of Q and
D − A are μ and 0, respectively, while the largest eigenvalues of
D + A and P are σmax(D + A) and L2 , respectively. Therefore,
a sufficient condition of (9) is

2μ − δσmax(D + A) ≥ δθL2

(θ − 1)σ̃min(D − A)
. (12)

It is easy to check that (8) and (12) simultaneously hold for any
δ satisfying (11). �

Note that when the matrices D and A are chosen such that
the weighted ADMM turns to the conventional ADMM (see
Section II-C), the theoretical bound δ also degenerates to the
one of the conventional ADMM [23]. Also observe that (12)
requires the smallest strong convexity constant μ is positive
and sufficiently large, meaning that all local objective functions
are strongly convex. This is actually not necessary since (9)
only implies that 2Q + (D − A) must be sufficiently positive
definite.

Based on the theoretical analyses in this section, the next
section investigates how to minimize the communication cost
of the weighted ADMM.

IV. MINIMIZING COMMUNICATION COST

This section investigates how to minimize the communication
cost of the weighted ADMM through optimizing the spectral
properties of the weight matrices D and A. Observe that the
diagonal elements of D and A correspond to the nodes and the
off-diagonal elements of A correspond to the arcs. If aij and aji

are both zero and i 	= j, then nodes i and j have no information
exchange even though there exist communication arcs between
nodes i and j. Therefore, given a predefined network topology
(V, E), we propose two different strategies of tuning D and
A. The first strategy allows every aij to be nonzero as long
as i ∈ Nj (Section IV-A). The second strategy lets some aij

be zeros even though i ∈ Nj , which is equivalent to selecting
a subset of neighbors Cj from Nj to communicate and hence
reduces the amount of information exchange per iteration
(Section IV-B). Discussions on the reduction of communication
cost are given in Section IV-C.

A. Maximizing Convergence Speed

According to (8) and (9) in Theorem 2, to maximize the
convergence speed of the weighted ADMM through tuning the

weight matrices D and A, the optimization model is

max δ,

s.t. 1 ≥ δθσmax(D + A)
σ̃min(D − A)

,

2Q + (D − A) − δ(D + A) � δθ

(θ − 1)σ̃min(D − A)
P,

θ > 1. (13)

The optimized convergence speed is dependent with the local
Lipschitz gradient and strong convexity constants, which are
contained in the matrices P and Q. If P and Q are known in
advance and solving this optimization problem is affordable,
we can obtain task-dependent weight matrices D and A.
This straightforward application of Theorem 2, however, is
not flexible when the local objective functions change (for
example, the nodes collect new data for fusion). In addition,
we may prefer setting the weight matrices prior to starting the
decentralized network optimization tasks, when the properties
of the local objective functions are unknown. To address these
issues, we have an alternative approach that is simple and
independent with P and Q.

Suppose that the local objective functions are unknown but
fixed. Under this circumstance, the theoretically achievable
speed given by (12) in Corollary 1 is monotonically decreas-
ing in σmax(D + A) while increasing in σ̃min(D − A). Hence,
to accelerate the convergence speed and reduce the communi-
cation cost, we have the flexibility of tuning the weight ma-
trices D and A so as to minimize σmax(D + A) and maximize
σ̃min(D − A). Note that tuning the elements in D and A changes
the weights of the individual nodes and arcs. This helps because
in a given topology some nodes and arcs may contribute more
to the information diffusion process while the others contribute
less. Intuitively, we expect to identify those important nodes and
arcs and give them higher weights, which expedites propagation
of “useful” information and in turn reduces exchange of “less
useful” messages.

According to the discussions above, a simplified way
of maximizing the convergence speed of the weighted
ADMM through tuning the weight matrices D and A is to
solve

min
D,A

{σmax(D + A),−σ̃min(D − A)} ,

s.t. D ∈ D, A ∈ A,

D + A � 0,D − A � 0,

Null(D − A) = e. (14)

However, the multi-objective optimization problem (14) is dif-
ficult to handle. Therefore, we propose a single-objective vari-
ant that keeps the value of σmax(D + A) less than a positive
constant ρ while minimizes −σ̃min(D − A). Thus, we have a
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single-objective optimization formulation

min
D,A

− σ̃min(D − A),

s.t. D ∈ D, A ∈ A,

D + A � 0,D − A � 0,

Null(D − A) = e,

σmax(D + A) ≤ ρ. (15)

The optimization problem (14) is convex since the objective
function −σ̃min(D − A) is convex in (D,A) given that the
smallest eigenvalue of D − A is 0 with multiplicity 1, which is
guaranteed by the constraint Null(D − A) = e and D − A � 0,
while the set of constraints

Ω � {(D,A)|D ∈ D, A ∈ A,D + A � 0,D − A � 0,

Null(D − A) = e, σmax(D + A) ≤ ρ}

is also convex [36]. We solve (14) with CVX, a popular opti-
mization toolbox [37]. Of particular note, in the implementation
of CVX, we change the objective function of (15) to the negative
summation of the two smallest eigenvalues of D − A (namely, 0
and σ̃min(D − A)), which is easier to handle in CVX. To reach
an ε-optimal solution of (15), the number of iterations is in the
order of O(

√
n)ln(1/ε) and the per-iteration computation cost

is in the order of O(n4) [35].
Though the convergence speed derived in Theorem 2 is for

the strongly convex case, our numerical experiments demon-
strate that the idea of minimizing σmax(D + A) and maximiz-
ing σ̃min(D − A) also works when the local objective functions
are not strongly convex.

B. Maximizing Convergence Speed Using Limited
Communication Arcs

As we have discussed in Sections II and III, overall com-
munication cost of the weighted ADMM is determined by the
product of the number of iterations and the communication cost
per iteration. On a fixed topology, utilizing all the available com-
munication arcs shall definitely achieve the fastest convergence
speed, and hence reduce the number of iterations to reach a
given accuracy. However, this strategy brings high communi-
cation cost per iteration for the unicast scheme. Indeed, some
communication arcs are less important than the others and can
be disconnected to reduce the amount of information exchange
per iteration, while not significantly affecting the convergence
speed as we have pointed out in Section IV-A. Therefore, below
we propose another strategy that maximizes the convergence
speed under the constraint of limited communication arcs.

Observe that the number of communication arcs required
in the weighted ADMM equals to the number of nonzero
off-diagonal elements in A. Denote OffDiag(A) as a matrix
whose off-diagonal elements are identical to those of A
and diagonal elements are zeros. Also denote the pseudo �0
norm ‖OffDiag(A)‖0 as the number of nonzero elements of
OffDiag(A). Suppose that we expect to use at most 2s arcs
(namely, at most s edges due to the symmetry of A), the

optimization of D and A turns to

min
D,A

− σ̃min(D − A),

s.t. (D,A) ∈ Ω,

‖OffDiag(A)‖0 ≤ 2s. (16)

Note that we can also consider a more complicated optimization
task in a similar form of (13) by appending the constraint on
the number of edges.

The new formulation (16) is nonconvex due to the �0 norm
constraint. We propose to utilize ADMM to find a suboptimal
solution of (16) because ADMM has had successful applications
in many optimization problems with �0 norm constraints. Note
that here ADMM is used to split the nonconvex constraint and
the rest convex part, while in decentralized optimization ADMM
is used to split the computation of the nodes. Following the
ADMM routine, we introduce an auxiliary variable Ã ∈ Rn×n

and reformulate (16) to

min
D,Ã,A

− σ̃min(D − A),

s.t. (D,A) ∈ Ω,
∥∥∥OffDiag(Ã)

∥∥∥
0
≤ 2s,

Ã = A. (17)

Denote Γ ∈ Rn×n as the Lagrange multiplier corresponding to
the constraint Ã = A and let a positive constant β be the ADMM
penalty factor. The augmented Lagrangian of (17) is

− σ̃min(D − A) +
〈
Γ, Ã − A

〉
+

β

2

∥∥∥Ã − A
∥∥∥

2

F
, (18)

where (D,A) ∈ Ω and ‖OffDiag(Ã)‖0 ≤ 2s.
At every iteration, the ADMM first fixes Ã and Γ and min-

imizes the augmented Lagrangian with respect to (D,A), then
fixes (D,A) and Γ and minimizes the augmented Lagrangian
with respect to Ã, and finally updates Γ from the calculated
(D,A) and Ã. At the t-th iteration, the update of (D,A) is

(
Dt+1 , At+1) = arg min

D,A
− σ̃min(D − A)

+
β

2

∥∥∥∥A − Ãt − Γt

β

∥∥∥∥
2

F

,

s.t. (D,A) ∈ Ω. (19)

This is a convex program and can be solved by, for example,
CVX. The update of Ã is

Ãt+1 = arg min
Ã

β

2

∥∥∥∥Ã − At+1 +
Γt

β

∥∥∥∥
2

F

, (20)

s.t.
∥∥∥OffDiag(Ã)

∥∥∥
0
≤ 2s.

The explicit solution of (20) is the projection of At+1 − Γt/β

onto the set {A|‖OffDiag(Ã)‖0 ≤ 2s}. This step is computa-
tionally cheap because we just need to keep the 2s largest-in-
magnitude off-diagonal elements of At+1 − Γt/β and set the
rest as zeros. For the sake of computational stability, we also
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keep Ãt+1 symmetric in the optimization process. The update
of Γ is

Γt+1 = Γt + β
(
Ãt+1 − At+1

)
. (21)

In preliminary experiments we tried to relax the nonconvex
�0 norm constraint to the convex �1 norm constraint. However,
numerical results on this convex approximation showed that the
off-diagonal part of A is not as sparse as we expected. Thus,
we resorted to the nonconvex formulation (16) and its ADMM
algorithm, which yields favorable solutions as we will demon-
strate in the next section. Indeed, the use of ADMM to handle �0
norm constraints has already found successful applications even
though it cannot guarantee global convergence to the optimal
solution; for this topic readers are referred to [34] and [38].

C. Discussions

In Section II we have assumed that the network follows either
a broadcast or a unicast communication scheme. Suppose that at
every iteration, every node exchanges its local estimate, whose
communication cost is p, with a subset Ci of its neighbor set Ni .
For every iteration, it has been shown in Section II that the cost
of broadcast is pn and the cost of unicast is p

∑n
i=1 |Ci |.

When we only maximize the convergence speed of the
weighted ADMM as in Section IV-A, very likely the weight
matrix A is dense; that is, aij 	= 0 if and only if nodes i and j
are neighbors or identical. In this case, Ci = Ni for every node
i. Therefore, saving of the communication cost is determined
by the improvement of convergence speed.

If instead we maximize the convergence speed under the con-
straint of communication arcs as in Section IV-B, then the de-
centralized algorithm requires at most 2s arcs. In this case,∑n

i=1 |Ci | ≤ 2s. Thus, we know that every iteration requires pn
broadcast cost and at most 2ps unicast cost. Meanwhile, opti-
mizing convergence speed also contributes to the reducing of
the communication cost.

The optimization of D and A in this section can be done
offline in a centralized manner. However, for a large-scale or
slowly time-varying network, decentralized computation of D
and A is preferred. Note that for the average consensus prob-
lem, which is a very special case of the consensus optimiza-
tion problem (1), there have been relevant works about tuning
weighted Laplacian matrices in average consensus algorithms to
accelerate convergence speeds and reduce communication costs
[39]. Decentralized optimization algorithms of calculating such
weighted Laplacian matrices (for example, the one in [40]) can
potentially enlighten the decentralized computation of D and
A in our future research, since the matrix D − A in this pa-
per is essentially a weighted Laplacian matrix. Intuitively, the
connection between our work and the previous ones on aver-
age consensus is understandable because they are all relevant to
information diffusion over networks.

Two papers tightly related to our work are [41] and [42], which
consider applying a weighted version of ADMM in the average
consensus problem. Write the average consensus problem in the
form of (1). For every node i, its local objective function has
the simplest quadratic forms fi(x) = (1/2)‖yi − x‖2 , where
yi is a constant measurement vector to be averaged. Applying
the weighted ADMM in this problem yields a linear system,

whose convergence speed can be strictly characterized by the
weight matrices and optimized based on the theoretical results.
Note that the convergence analyses in [41] and [42] are essen-
tially different from those in our paper, and cannot be easily
extended to the general decentralized consensus optimization
problem (1).

The optimization problems (15) and (16) have a common
parameter ρ, while (16) has an additional parameter s. The value
of ρ determines the scale of σmax(D + A). Large ρ in general
leads to large diagonal elements of D and A (namely, aii and
dii). We suggest to use large ρ when the local cost functions
are not strongly convex, since large values of dii improve the
condition numbers of the objectives in (3). Otherwise, ρ can
be chosen as a moderate value. The value of s represents the
expected number of working communication edges. For the sake
of reducing the unicast cost per iteration, s should be chosen as a
small value. Nevertheless, s must be large enough such that the
convergence speed (which determines the number of required
iterations) is reasonable.

V. NUMERICAL EXPERIMENTS

In the numerical experiments, we compare the weighted
ADMM and the conventional ADMM with respect to the com-
munication costs. We first show that through maximizing the
convergence speed, the weighted ADMM achieves better com-
munication efficiency than the conventional one on unbalanced
graphs (Section V-A). The saving of the weighted ADMM on
the communication cost becomes more significant when we
maximize the convergence speed under the constraint of com-
munication arcs (Section V-B). In the comparison, we hand-tune
the penalty factor c of the conventional ADMM and the param-
eter ρ (scale of σmax(D + A)) of the the weighted ADMM to
their optimal values. We conduct numerical experiments on the
following two local objective functions.

� Quadratic functions: for every node i, let

fi(x) =
1
2
‖yi − Mix‖2 .

� Huber functions: for every node i, let

fi(x) = h(yi − Mix).

Here h(·) is the Huber function. For a scalar a, h(a) is given
by a2/2 if |a| ≤ 1 and |a| − (1/2) otherwise. It extends to
the vector case as the sum of the Huber functions of the
components [34]. In both functions, Mi ∈ Rm×p and yi ∈
Rm for every i and their elements are generated following
the standard normal distribution.

In the numerical experiments, let p = 3 (length of x), m = 3
(length of yi) and n = 50 (number of nodes). Quality of the local
estimates at time k is evaluated by accuracy, which is defined as
the maximum distance from the local estimates to the optimal
solution x∗, namely, maxi ‖xk

i − x∗‖2 . We demonstrate how
the accuracies evolve with respect to the broadcast and unicast
costs. As we have discussed in Section II-A, at every iteration
the unicast costs are p

∑n
i=1 |Ci | for the weighted ADMM and

p
∑n

i=1 |Ni | for the conventional ADMM, while the broadcast
costs are pn for both. Therefore, the curves of broadcast costs
also depict the convergence speeds of the two algorithms in
terms of the number of iterations.
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Fig. 1. A graph with two clusters of nodes. The weighted ADMM outperforms
the conventional ADMM with respect to communication efficiency on this kind
of graphs.

Fig. 2. Communication costs on the graph with two clusters. The local
objective functions are quadratic.

A. Best Convergence Speed

In the first set of numerical experiments, we consider maxi-
mizing the convergence speed of the weighted ADMM. Inter-
estingly, the conventional ADMM performs almost the same as
the weighted one on most regular (such as line, circle, star, and
complete) graphs as well as on many random graphs accord-
ing to extensive preliminary simulations. But we observe that
if the graph has several clusters of nodes (see Fig. 1 for an ex-
ample of two clusters), then the weighted ADMM outperforms
its conventional counterpart. Figs. 2 and 3 compare the two
algorithms for the cases that the local objective functions are
quadratic and Huber, respectively. For both cases, the weighted
ADMM only needs nearly a half number of iterations to reach
an accuracy of 10−8 , comparing to the conventional ADMM.
Because the two algorithms work on the same underlying graph,
they require the same communication costs per iteration for both
broadcast and unicast. Therefore, the weighted ADMM reduces
50% communication costs of both broadcast and unicast than
the conventional ADMM, as demonstrated by Figs. 2 and 3.

Such a significant gap of communication efficiency is reason-
able because in the conventional ADMM, the cluster heads do
not distinguish the neighboring ordinary nodes and the neigh-
boring cluster heads. Through optimizing the weight matrices,

Fig. 3. Communication costs on the graph with two clusters. The local
objective functions are Huber.

Fig. 4. The subgraph optimized through maximizing the convergence speed
of the ADMM while the number of communication arcs is limited to 2s = 150.

the weighted ADMM properly emphasizes the importance of
the cluster heads to their neighboring peers, and hence achieves
better communication efficiency.

B. Best Convergence Speed Using Limited Communication
Arcs

In the second set of numerical experiments, we let the conven-
tional ADMM run on a complete graph, but limit the number of
communication arcs for the weighted ADMM. Optimally pick-
ing 150 arcs (letting s = 75) out of 2450 possible ones through
solving (16), the resultant subgraph is given by Fig. 4. The
communication costs of the two algorithms, in terms of broad-
cast and unicast, are demonstrated in Figs. 5 and 6 for quadratic
and Huber local objective functions, respectively. Regarding the
communication cost of broadcast, which is proportional to the
number of iterations and irrelevant with the number of commu-
nication arcs, the conventional ADMM is nearly twice faster
than the weighted ADMM when the target accuracy is set as
10−8 . The reason is that the conventional ADMM runs on a
complete graph and guarantees to have the fastest information
diffusion speed. However, considering the communication cost
of unicast that is proportional to the product of the number of
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Fig. 5. Communication costs of the weighted ADMM on the optimized sub-
graph and the conventional one on the complete graph. The local objective
functions are quadratic.

Fig. 6. Communication costs of the weighted ADMM on the optimized sub-
graph and the conventional one on the complete graph. The local objective
functions are Huber.

iterations and the number of communication arcs, the weighted
ADMM achieves more than 85% saving than the conventional
ADMM, since the average number of neighbors reduces from
49 in the complete graph to 3 in the optimized subgraph. This
demonstrates the importance of dropping out redundant com-
munication arcs, which does not significantly slow down the
convergence speed but effectively improves the communication
efficiency.

A noticeable byproduct of the weighted ADMM is that the
selected subgraph is naturally load-balanced, meaning that all
the nodes have similar numbers of neighbors, though we do
not explicitly consider this metric in (16). Most of the nodes
have 3 neighbors and some have 2 or 4, which is beneficial to
the robustness of the network. This is relevant with the prop-
erties of expander graphs [43], [44]. We shall investigate this
phenomenon in our future research.

In the last set of numerical experiments, we demonstrate the
impact of the number of communication arcs on the communi-
cation costs in the weighted ADMM. Letting every node hold
a quadratic local objective function, we choose different values
of 2s in (16). Figs. 7 and 8 show the communication costs of
broadcast and unicast, respectively, and compare s = 49 (line
graph), s = 75 (average node degree equals to 3), s = 150 (av-
erage node degree equals to 6), s = 250 (average node degree
equals to 10), and s = 1225 (complete graph). Since adding

Fig. 7. The impact of the number of communication arcs 2s on the communi-
cation cost of broadcast in the weighted ADMM. The local objective functions
are quadratic.

Fig. 8. The impact of the number of communication arcs 2s on the commu-
nication cost of unicast in the weighted ADMM. The local objective functions
are quadratic.

the number of communication arcs generally helps information
diffusion over the network, larger s leads to faster convergence,
and thus smaller communication cost of broadcast (see Fig. 7).
However, allowing too many communication arcs to work incurs
large communication cost of unicast at every iteration. Hence,
we can observe a tradeoff between the communication cost per
iteration and the convergence speed (see Fig. 8). The rule of
thumb is to choose a moderate number of the communication
arcs, such that the convergence speed is reasonably fast, and
meanwhile, the network is not unnecessarily dense.

VI. CONCLUSION

This paper is dedicated to improving the communication effi-
ciency of ADMM, a powerful decentralized network optimiza-
tion algorithm. We propose the weighted ADMM by assigning
every communication arc and every node a weight, which de-
termines the speed of network information diffusion. Compared
with the conventional ADMM, the weighted ADMM is able to
tune its weight matrices for the purpose of reducing the com-
munication costs. We prove convergence and establish linear
convergence rate of the weighted ADMM, and then maximize
the derived convergence speed to obtain the best weight matrices
on a given topology. Moreover, observing that exchanging in-
formation with all the neighbors is expensive, we maximize the
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convergence speed while limit the number of communication
arcs. This strategy finds a subset of arcs within the underlying
topology to fulfill the optimization task and leads to a favorable
tradeoff between the number of iterations and the communi-
cation cost per iteration. Numerical experiments show that the
weighted ADMM outperforms its conventional counterpart in
expediting the convergence speed and reducing the communi-
cation cost.

One of the future research topics is designing decentralized
algorithms to optimize the weight matrices, which enables ef-
ficient implementation of the weighted ADMM. Another topic
is investigating the load-balancing property of the weight tun-
ing strategy. Through addressing these two issues, we expect
to reach the goal of autonomous, robust and communication-
efficient decentralized network optimization.

APPENDIX A
PROOF OF THEOREM 1

Proof: Given any bounded optimal pair (X∗, Y ∗), by con-
vexity of f(X) in Assumption 2, it holds

〈
Xk+1 − X∗,∇f

(
Xk+1) −∇f(X∗)

〉
≥ 0. (22)

Substituting the equality containing ∇f(Xk+1) −∇f(X∗) in
(7) into (22) yields

〈
Xk+1 − X∗, −

√
D − A

(
Y k+1 − Y ∗)

−(D + A)
(
Xk+1 − Xk

)〉
≥ 0. (23)

Rearranging the terms at the left-hand side of (23) and noticing
Y k+1 = Y k +

√
D − A(Xk+1 − X∗) in (7), we have

〈
Y k − Y k+1 , Y k+1 − Y ∗〉

+
〈
(D + A)

(
Xk − Xk+1) ,Xk+1 − X∗〉 ≥ 0. (24)

According to the definition of Zk , Z∗ and G, we rewrite (24) to
〈
G

(
Zk − Zk+1) , Zk+1 − Z∗〉

=
1
2

(∥∥Zk − Z∗∥∥2
G
−

∥∥Zk+1 − Z∗∥∥2
G
−

∥∥Zk − Zk+1
∥∥2

G

)

≥ 0. (25)

Here the equality comes from expanding the squared norms.
Observing (25), we know that ‖Zk − Z∗‖2

G is nonincreasing.
Because Z0 and Z∗ are bounded, it follows that ‖Z0 − Z∗‖2

G

is bounded and consequently, any ‖Zk − Z∗‖2
G is bounded.

Summing (25) over k = 0 through∞ and applying the telescope
cancellation, we have

∞∑

k=0

∥∥Zk − Zk+1
∥∥2

G
≤

∥∥Z0 − Z∗∥∥2
G
− ‖Z∞ − Z∗‖2

G .

The summation is bounded because ‖Z0 − Z∗‖2
G and ‖Z∞ −

Z∗‖2
G are both bounded. Thus we must have limk→∞‖Zk −

Zk+1‖2
G = 0.

According to the definitions of Zk , Zk+1 and
G, limk→∞‖Zk − Zk+1‖2

G = 0 implies that limk→∞‖Y k −

Y k+1‖2
F = 0 and limk→∞‖Xk − Xk+1‖2

D+A = 0. The first re-
sult limk→∞‖Y k − Y k+1‖2

F = 0 immediately shows that Y k

converges to a stationary point Ŷ . Now we proceed to show that
the second result limk→∞‖Xk − Xk+1‖2

D+A = 0, along with
the conditions D + A � 0, D − A � 0 and Null(D − A) = e,
guarantees that Xk also reaches a stationary point in limit.

Due to the convergence of Y k to Ŷ and by the second line
of (5), we know that

√
D − AXk+1 converges to zero. Since

Null(D − A) = e, Xk+1 must stay in the subspace spanned by
e in the limit. Hence, to satisfy limk→∞‖Xk − Xk+1‖2

D+A =
0, we have either (D + A)e = 0 or Xk − Xk+1 converges to
zero. But (D + A)e 	= 0 as can be proved by contradiction. If
(D + A)e = 0, by Null(D − A) = e we also have (D − A)e =
0, then it holds De = 0. But by hypothesis D ∈ D is a diagonal
matrix whose diagonal elements are positive such that De 	=
0. Thus we conclude that Xk converges to a stationary point,
denoted by X̂ .

Given that (Xk, Y k ) converges to the stationary pair (X̂, Ŷ ),
we shall show that (X̂, Ŷ ) is an optimal pair. Substituted into
the weighted ADMM recursion (5), the stationary pair (X̂, Ŷ )
satisfies

∇f(X̂) +
√

D − AŶ + (D − A)X̂ = 0, (26)
√

D − AX̂ = 0.

Comparing (26) with (6) in Lemma 1, we know (X̂, Ŷ ) satis-
fies the optimality condition and is thus an optimal pair, which
completes the proof. �

Note that in proving convergence of the weighted ADMM,
we do not need f to be differentiable. If f is nondifferentiable
but continuous, replacing the gradient ∇f by one of the sub-
gradients ∂f , the proof still holds true. Here we assume that f
is differentiable to keep the presentation simple. However, the
assumption of differentiability is necessary in the proof of linear
convergence.

APPENDIX B
PROOF OF THEOREM 2

Proof: By Assumption 4, we have

2
∥∥X∗ − Xk+1

∥∥2
Q

≤ 2
〈
X∗ − Xk+1 ,∇f(X∗) −∇f(Xk+1)

〉
. (27)

Substituting (7) in Lemma 2 into the right-hand side of (27)
yields

2
∥∥X∗ − Xk+1

∥∥2
Q

≤ 2
〈
X∗ − Xk+1 ,

√
D − A

(
Y k+1 − Y ∗)

+ (D + A)
(
Xk+1 − Xk

)〉

= 2
〈
Y k − Y k+1 , Y k+1 − Y ∗〉

+ 2
〈
X∗ − Xk+1 , (D + A)

(
Xk+1 − Xk

)〉
. (28)
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Using the definitions of Zk , Zk+1 , Z∗ and G, we have

2
∥∥X∗ − Xk+1

∥∥2
Q

≤ 2
〈
Zk − Zk+1 , G

(
Zk+1 − Z∗)〉

=
∥∥Zk − Z∗∥∥2

G
−

∥∥Zk+1 − Z∗∥∥2
G
−

∥∥Zk − Zk+1
∥∥2

G
. (29)

A critical inequality: Having (29) at hand, in order to establish
(10) it remains to show

2
∥∥Xk+1 − X∗∥∥2

Q
+

∥∥Zk − Zk+1
∥∥2

G

≥ δ
∥∥Zk+1 − Z∗∥∥2

G
. (30)

Observing the equality Y k+1 = Y k +
√

D − A(Xk+1 − X∗)
from (7) in Lemma 2, it holds that ‖Y k − Y k+1‖2

F = ‖Xk+1 −
X∗‖2

D−A . Hence (30) is equivalent to

∥∥Xk+1 − X∗∥∥2
2Q+(D−A)−δ(D+A) +

∥∥Xk − Xk+1
∥∥2

D+A

≥ δ
∥∥Y k+1 − Y ∗∥∥2

F , (31)

which shall be proved below. The proof is based on finding
upper bounds for ‖Y k+1 − Y ∗‖2

F in terms of ‖Xk+1 − X∗‖2
F

and ‖Xk − Xk+1‖2
F . We split it into the next two steps.

Establishing (31), step 1: From (7) in Lemma 2, we have

∥∥∥
√

D − A
(
Y k+1 − Y ∗)

∥∥∥
2

F

=
∥∥(D + A)

(
Xk+1 − Xk

)
+ ∇f

(
Xk+1) −∇f(X∗)

∥∥2
F .

(32)

From the inequality ‖C1 + C2‖2
F ≤ θ‖C1‖2

F + θ
θ−1 ‖C2‖2

F ,
which holds for any θ > 1 and any matrices C1 and C2 of
the same dimensions, it follows that

∥∥Y k+1 − Y ∗∥∥2
D−A

≤ θ
∥∥Xk − Xk+1

∥∥2
(D+A)2

+
θ

θ − 1

∥∥∇f
(
Xk+1) −∇f(X∗)

∥∥2
F . (33)

By Lemmas 1 and 2, all the columns of Y ∗ and Y k+1 lie in the
column space of

√
D − A. This fact, together with the Lipschitz

continuity of ∇f in Assumption 4, turns (33) into

σ̃min(D − A)
∥∥Y k+1 − Y ∗∥∥2

F

≤ θσmax(D + A)
∥∥Xk − Xk+1

∥∥2
D+A

+
θ

θ − 1

∥∥Xk+1 − X∗∥∥2
P

, (34)

where σ̃min(·) and σmax(·) give the smallest nonzero and the
largest eigenvalues, respectively.

Establishing (31), step 2: In order to establish (31), with (34),
it only remains to show

∥∥Xk − Xk+1
∥∥2

D+A
+

∥∥Xk+1 − X∗∥∥2
2Q+(D−A)−δ(D+A)

≥ δθσmax(D + A)
σ̃min(D − A)

∥∥Xk − Xk+1
∥∥2

D+A

+
δθ

(θ − 1)σ̃min(D − A)

∥∥Xk+1 − X∗∥∥2
P

. (35)

A sufficient condition for (35) being valid is that

1 ≥ δθσmax(D + A)
σ̃min(D − A)

,

and

2Q + (D − A) − δ(D + A) � δθ

(θ − 1)σ̃min(D − A)
P,

given that D − A � 0. This finishes the proof of (31) and con-
sequently, the proof of the main result (10). Observe that when
D + A � 0, D − A � 0 and Null(D − A) = e, (10) implies
the linear convergence of (Xk, Y k ) to (X∗, Y ∗); the derivation
is the same as that in the proof of Theorem 1. �
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