
5158 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

DQM: Decentralized Quadratically Approximated
Alternating Direction Method of Multipliers

Aryan Mokhtari, Wei Shi, Qing Ling, and Alejandro Ribeiro

Abstract—This paper considers decentralized consensus opti-
mization problems where nodes of a network have access to dif-
ferent summands of a global objective function. Nodes cooperate
to minimize the global objective by exchanging information with
neighbors only. A decentralized version of the alternating direc-
tions method of multipliers (DADMM) is a common method for
solving this category of problems. DADMM exhibits linear conver-
gence rate to the optimal objective for strongly convex functions but
its implementation requires solving a convex optimization problem
at each iteration. This can be computationally costly and may re-
sult in large overall convergence times. The decentralized quadrat-
ically approximated ADMM algorithm (DQM), which minimizes
a quadratic approximation of the objective function that DADMM
minimizes at each iteration, is proposed here. The consequent re-
duction in computational time is shown to have minimal effect
on convergence properties. Convergence still proceeds at a linear
rate with a guaranteed factor that is asymptotically equivalent
to the DADMM linear convergence rate factor. Numerical results
demonstrate advantages of DQM relative to DADMM and other
alternatives in a logistic regression problem.

Index Terms—Alternating direction method of multipliers,
decentralized optimization, multi-agent network.

I. INTRODUCTION

D ECENTRALIZED algorithms are used to solve optimiza-
tion problems where components of the objective are

available at different nodes of a network. Nodes access their
local cost functions only but try to minimize the aggregate cost
by exchanging information with their neighbors. Specifically,
consider a variable x̃ ∈ Rp and a connected network contain-
ing n nodes each of which has access to a local cost function
fi : Rp → R. The nodes’ goal is to find the optimal argument
of the global cost function

∑n
i=1 fi (x̃),

x̃∗ = argmin
x̃

n∑

i=1

fi (x̃) . (1)

Manuscript received July 08, 2015; revised January 14, 2016; accepted March
18, 2016. Date of publication March 31, 2016; date of current version August
12, 2016. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Yue Rong. Work supported by NSF CA-
REER CCF-0952867, Office of Naval Research N00014-12-1-0997, NSF China
61573331, and NSF Anhui 1608085QF130. This paper expands results and
presents proofs that were preliminarily reported in Proceedings of the Global
Conference on Signal and Information Processing (GlobalSIP) 2015 [1].

A. Mokhtari and A. Ribeiro are with the Department of Electrical and Systems
Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
aryanm@seas.upenn.ed; aribeiro@seas.upenn.edu).

W. Shi and Q. Ling are with the Department of Automation, University of
Science and Technology of China, Anhui, 230026, China (e-mail: hiwei00@
mail.ustc.edu.cn; qingling@mail.ustc.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2016.2548989

Problems of this form arise in, e.g., decentralized control [2]–
[4], wireless systems [5]–[7], sensor networks [8]–[11], and
large scale machine learning [12]–[14]. In this paper we as-
sume that the local costs fi are twice differentiable and strongly
convex.

There are different algorithms to solve (1) in a decentralized
manner which can be divided into two major categories. The
ones that operate in the primal domain and the ones that op-
erate in the dual domain. Among primal domain algorithms,
decentralized (sub)gradient descent (DGD) methods are well
studied [15]–[17]. They can be interpreted as either a mix of
local gradient descent steps with successive averaging or as
a penalized version of (1) with a penalty term that encourages
agreement between adjacent nodes. This latter interpretation has
been exploited to develop the network Newton (NN) methods
that attempt to approximate the Newton step of this penalized
objective in a distributed manner [18], [19]. The methods that
operate in the dual domain consider a constraint that enforces
equality between nodes’ variables. They then ascend on the dual
function to find optimal Lagrange multipliers with the solution
of (1) obtained as a byproduct [8], [20]–[27]. Among dual de-
scent methods, decentralized implementation of the alternating
directions method of multipliers (ADMM), known as DADMM,
is proven to be very efficient with respect to convergence time
[8], [20]–[23], [28].

A fundamental distinction between primal methods such as
DGD and NN and dual domain methods such as DADMM is that
the former compute local gradients and Hessians at each itera-
tion while the latter minimize local pieces of the Lagrangian at
each step—this is necessary since the gradient of the dual func-
tion is determined by Lagrangian minimizers. Thus, iterations in
dual domain methods are, in general, more costly because they
require solution of a convex optimization problem. However,
dual methods also converge in a smaller number of iterations
because they compute approximations to x̃∗ instead of descend-
ing towards x̃∗. Having complementary advantages, the choice
between primal and dual methods depends on the relative cost
of computation and communication for specific problems and
platforms. Alternatively, one can think of developing methods
that combine the advantages of ascending in the dual domain
without requiring solution of an optimization problem at each
iteration. This can be accomplished by the decentralized lin-
earized ADMM (DLM) algorithm [29], [30], which replaces
the minimization of a convex objective required by ADMM
with the minimization of a first order linear approximation of
the objective function. This yields per-iteration problems that
can be solved with a computational cost akin to the computa-
tion of a gradient and a method with convergence properties
closer to DADMM than DGD.

If a first order approximation of the objective is useful, a
second order approximation should decrease convergence times

1053-587X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html

MOKHTARI et al.: DQM: DECENTRALIZED QUADRATICALLY APPROXIMATED ALTERNATING DIRECTION METHOD OF MULTIPLIERS 5159

further. The decentralized quadratically approximated ADMM
(DQM) algorithm that we propose here minimizes a quadratic
approximation of the Lagrangian minimization of each ADMM
step. This quadratic approximation requires computation of lo-
cal Hessians but results in an algorithm with convergence prop-
erties that are: (i) better than the convergence properties of
DLM; (ii) asymptotically identical to the convergence behav-
ior of DADMM. The technical contribution of this paper is to
prove that (i) and (ii) are true from both analytical and practical
perspectives.

We begin the paper by discussing solution of (1) with
DADMM and its linearized version DLM (Section II). Both
of these algorithms perform updates on dual and primal aux-
iliary variables that are identical and computationally simple.
They differ in the manner in which principal primary variables
are updated. DADMM solves a convex optimization problem
and DLM solves a regularized linear approximation. We fol-
low with an explanation of DQM that differs from DADMM
and DLM in that it minimizes a quadratic approximation of the
convex problem that DADMM solves exactly and DLM approx-
imates linearly (Section III). We also explain how DQM can be
implemented in a distributed manner (Proposition 1 and Algo-
rithm 1). Convergence properties of DQM are then analyzed
(Section IV) where linear convergence is established (Theorem
1 and Corollary 1). Key in the analysis is the error incurred
when approximating the exact minimization of DADMM with
the quadratic approximation of DQM. This error is shown to de-
crease as iterations progress (Proposition 2) faster than the rate
that the error of DLM approaches zero (Proposition 3). This
results in DQM having a guaranteed convergence factor strictly
smaller than the DLM factor that approaches the guaranteed
factor of DADMM for large iteration index (Section IV.A). We
corroborate analytical results with numerical evaluations in a lo-
gistic regression problem (Section V). We show that DQM does
outperform DLM and show that convergence paths of DQM and
DADMM are almost identical (Section V.A). Overall computa-
tional cost of DQM is shown to be smaller, as expected.

Notation: Vectors are written as x ∈ Rn and matrices as
A ∈ Rn×n . Given n vectors xi , the vector x = [x1 ; . . . ;xn]
represents a stacking of the elements of each individual xi .
We use ‖ x ‖ to denote the Euclidean norm of vector x and
‖ A ‖ to denote the Euclidean norm of matrix A. The notation
A � B implies that the matrix B − A is positive semidefinite.
The gradient of a function f at point x is denoted as ∇f (x) and
the Hessian is denoted as ∇2f (x). We use σ (B) to denote the
singular values of matrix B and λ (A) to denote the eigenvalues
of matrix A.

II. DISTRIBUTED ALTERNATING DIRECTIONS METHOD

OF MULTIPLIERS

Consider a connected network with n nodes and m edges
where the set of nodes is V = {1, . . . , n} and the set of ordered
edges E contains pairs (i, j) indicating that i can communicate to
j. We restrict attention to symmetric networks in which (i, j) ∈
E if and only if (j, i) ∈ E and define node i’s neighborhood as the
setNi = {j | (i, j) ∈ E}. We further assume that there is no self
loop in the network, i.e., � (i, j) ∈ E such that i = j. In problem
(1) agent i has access to the local objective function fi (x̃) and
agents cooperate to minimize the global cost

∑n
i=1 fi (x̃). This

specification is more naturally formulated by defining variables
xi representing the local copies of the variable x̃. We also define
the auxiliary variables zij associated with edge (i, j) ∈ E and
rewrite (1) as

{x∗
i }n

i=1 := argmin
x

n∑

i=1

fi (xi) ,

s.t. xi = zij , xj = zij , for all (i, j) ∈ E . (2)

The constraints xi = zij and xj = zij enforce that the variable
xi of each node i is equal to the variables xj of its neighbors
j ∈ Ni . This condition in association with network connectiv-
ity implies that a set of variables {x1 , . . . ,xn} is feasible for
problem (2) if and only if all the variables xi are equal to each
other, i.e., if x1 = · · · = xn . Therefore, problems (1) and (2) are
equivalent in the sense that for all i and j the optimal arguments
of (2) satisfy x∗

i = x̃∗ and zij = x̃∗, where x̃∗ is the optimal
argument of (1).

Assign an arbitrary order to the edges eij in the network
from 1 to m. This way, the index of the edge eij which starts
from node i and ends at node j is an integer e from the
set {1, . . . ,m}. To write problem (2) in a matrix form, de-
fine As ∈ Rmp×np as the block source matrix which contains
m × n square blocks (As)e,i ∈ Rp×p . The block (As)e,i is
not identically null if and only if the ordering index of the
edge eij ∈ E is e in which case (As)e,i = Ip . Likewise, the
block destination matrix Ad ∈ Rmp×np contains m × n square
blocks (Ad)e,i ∈ Rp×p . The square block (Ad)e,i = Ip when e
is the index associate to the edge eji ∈ E and is null otherwise.
Further define x := [x1 ; . . . ;xn] ∈ Rnp as a vector concatenat-
ing all local variables xi , the vector z := [z1 ; . . . ; zm] ∈ Rmp

concatenating all auxiliary variables ze = zij based on the de-
fined ordering, and the aggregate function f : Rnp → R as
f (x) :=

∑n
i=1 fi (xi). We can then rewrite (2) as

x∗ := argmin
x

f (x) , s.t. Asx − z = 0, Adx − z = 0. (3)

Define now the matrix A = [As ;Ad] ∈ R2mp×np which stacks
the source and destination matrices, and the matrix B =
[−Imp ;−Imp] ∈ R2mp×mp which stacks two negative identity
matrices of size mp to rewrite (3) as

x∗ := argmin
x

f (x) , s.t. Ax + Bz = 0. (4)

DADMM is the application of ADMM to solve (4). To de-
velop this algorithm introduce Lagrange multipliers αe = αij

and βe = βij associated with the constraints xi = zij and
xj = zij in (2), respectively. Define α := [α1 ; . . . ;αm] as the
concatenation of the multipliers αe which yields the multi-
plier of the constraint Asx − z = 0 in (3). Likewise, the cor-
responding Lagrange multiplier of the constraint Adx − z = 0
in (3) can be obtained by stacking the multipliers βe to de-
fine β := [β1 ; . . . ;βm]. Grouping α and β into λ := [α;β] ∈
R2mp leads to the Lagrange multiplier λ associated with the
constraint Ax + Bz = 0 in (4). Using these definitions and
introducing a positive constant c > 0 we write the augmented
Lagrangian of (4) as

L (x, z,λ) := f (x) + λT (Ax + Bz) +
c

2
‖ Ax + Bz ‖2 .

(5)

5160 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

The idea of ADMM is to minimize the Lagrangian L (x, z,λ)
with respect to x, follow by minimizing the updated Lagrangian
with respect to z, and finish each iteration with an update of
the multiplier λ using dual ascent. To be more precise, consider
the time index k ∈ N and define xk , zk , and λk as the iterates
at step k. At this step, the augmented Lagrangian is minimized
with respect to x to obtain the iterate

xk+1 = argmin
x

f (x) + λT
k (Ax+Bzk) +

c

2
‖ Ax + Bzk ‖2 .

(6)
Then, the augmented Lagrangian is minimized with respect to
the auxiliary variable z using the updated variablexk+1 to obtain

zk+1 = argmin
z

f (xk+1)

+ λT
k (Axk+1 + Bz) +

c

2
‖ Axk+1 + Bz ‖2 . (7)

After updating the variables x and z, the Lagrange multiplier
λk is updated through the dual ascent iteration

λk+1 = λk + c (Axk+1 + Bzk+1) . (8)

The DADMM algorithm is obtained by observing that the struc-
ture of the matrices A and B is such that (6)–(8) can be imple-
mented in a distributed manner [8], [20], [21].

The updates for the auxiliary variable z and the Lagrange
multiplier λ are not costly in terms of computation time. How-
ever, updating the primal variable x can be expensive as it entails
the solution of an optimization problem (cf. (6)). The DLM al-
gorithm avoids this cost with an inexact update of the primal
variable iterate xk+1 . This inexact update relies on approxi-
mating the aggregate function value f (xk+1) in (6) through a
regularized linearization of the aggregate function f in a neigh-
borhood of the current variable xk . This regularized approxi-
mation takes the form f (x) ≈ f (xk) + ∇f(xk)T (x − xk) +
(ρ/2) ‖ x − xk ‖2 for a given positive constant ρ > 0. Conse-
quently, the update formula for the primal variable x in DLM
replaces the DADMM exact minimization in (6) by the mini-
mization of the quadratic form

xk+1 = argmin
x

f (xk) + ∇f(xk)T (x − xk) +
ρ

2
‖ x − xk ‖2

+ λT
k (Ax + Bzk) +

c

2
‖ Ax + Bzk ‖2 . (9)

The first order optimality condition for (9) implies that the up-
dated variable xk+1 satisfies

∇f (xk) + ρ (xk+1 − xk) + AT λk + cAT (Axk+1 + Bzk) = 0.

(10)
According to (10), the updated variable xk+1 can be computed
by inverting the positive definite matrix ρI + cAT A. This up-
date can also be implemented in a distributed manner.

The sequence of variables xk generated by DLM converges
linearly to the optimal argument x∗ [29]. Although this is the
same rate of DADMM, linear convergence factor of DLM is
larger than the one for DADMM (see Section IV.A), and can be
much smaller depending on the condition number of the local
functions fi (see Section V.A). To close the gap between these
factors we can use a second order approximation of (6). This is
the idea of DQM that we introduce in the following section.

III. DQM: DECENTRALIZED QUADRATICALLY

APPROXIMATED ADMM

DQM uses a local quadratic approximation of the pri-
mal function f (x) around the current iterate xk . If we let
Hk := ∇2f (xk) denote the primal function Hessian evaluated
at xk the quadratic approximation of f at xk is f(x) ≈ f(xk) +
∇f(xk)T (x − xk) + (1/2)(x − xk)T Hk (x − xk). Using this
approximation in (6) yields the DQM update that we therefore
define as

xk+1 := argmin
x

f (xk) + ∇f(xk)T (x − xk)

+
1
2
(x − xk)T Hk (x − xk)

+ λT
k (Ax + Bzk) +

c

2
‖ Ax + Bzk ‖2 . (11)

Comparison of (9) and (11) shows that in DLM the quadratic
term (ρ/2) ‖ xk+1 − xk‖2 is added to the first-order approx-
imation of the primal objective function, while in DQM the
second order approximation of the primal objective function is
used to reach a more accurate approximation for f (x). Since
(11) is a quadratic program, the first order optimality condition
yields a system of linear equations that can be solved to find
xk+1 ,

∇f (xk) + Hk (xk+1 − xk) + ATλk

+ cAT (Axk+1 + Bzk) = 0. (12)

This update can be solved by inverting the matrix Hk + cAT A
which is invertible if, as we are assuming, f (x) is strongly
convex.

The DADMM updates in (7) and (8) are used verbatim in
DQM, which is therefore defined by recursive application of
(12), (7), and (8). It is customary to consider the first order
optimality conditions of (7) and to reorder terms in (8) to rewrite
the respective updates as

BT λk + cBT (Axk+1 + Bzk+1) = 0,

λk+1 − λk − c (Axk+1 + Bzk+1) = 0. (13)

DQM is then equivalently defined by recursive solution of the
system of linear equations in (12) and (13). This system, as is
the case of DADMM and DLM, can be reworked into a simpler
form that reduces communication cost. To derive this simpler
form we assume a specific structure for the initial vectors λ0 =
[α0 ;β0] ,x0 , and z0 as introduced in the following assumption.

Assumption 1: Define the oriented incidence matrix as
Eo := As − Ad and the unoriented incidence matrix as Eu :=
As + Ad . The initial Lagrange multipliers α0 and β0 , and the
initial variables x0 and z0 are chosen such that:

a) The multipliers are opposites of each other, α0 = −β0 .
b) The initial primal variables satisfy Eux0 = 2z0 .
c) The initial multiplier α0 lies in the column space of Eo .
First notice that we call Eo := As − Ad as the oriented inci-

dence matrix, since it provides information about the direction
of the edges in the network, while the unoriented incidence ma-
trix Eu := As + Ad only indicates the two end points of each
edge without any information about the direction of the edge.

Assumption 1 is minimally restrictive. The only non-
elementary condition is (c) but that can be satisfied by α0 = 0.

MOKHTARI et al.: DQM: DECENTRALIZED QUADRATICALLY APPROXIMATED ALTERNATING DIRECTION METHOD OF MULTIPLIERS 5161

Nulling all other variables, i.e., making β0 = 0,x0 = 0, and
z0 = 0 is a trivial choice to comply with conditions (a) and (b)
as well. An important consequence of the initialization choice
in (1) is that if the conditions in Assumption 1 are true at time
k = 0 they stay true for all subsequent iterations k > 0 as we
state next.

Lemma 1: Consider the DQM algorithm as defined by (12)–
(13). If Assumption 1 holds, then for all k ≥ 0 the Lagrange
multipliers αk and βk , and the variables xk and zk satisfy:

a) The multipliers are opposites of each other, αk = −βk .
b) The primal variables satisfy Euxk = 2zk .
c) The multiplier αk lies in the column space of Eo .
Proof: See Appendix A. �
The validity of (c) in Lemma 1 is important for the conver-

gence analysis of Section IV. The validity of (a) and (b) means
that maintaining multipliers αk and βk is redundant because
they are opposites and that maintaining variables zk is also re-
dundant because they can be computed as zk = Euxk/2. It is
then possible to replace (12)–(13) by a simpler system of linear
equations as we explain in the following proposition.

Proposition 1: Consider the DQM algorithm as defined by
(12)–(13) and define the sequence φk := ET

o αk . Further define
the unoriented Laplacian as Lu := (1/2)ET

u Eu , the oriented
Laplacian as Lo = (1/2)ET

o Eo , and the degree matrix as D :=
(Lu + Lo) /2. If Assumption 1 holds true, the DQM iterates xk

can be generated as

xk+1= (2cD + Hk)−1 [(cLu + Hk)xk −∇f (xk) − φk] ,

φk+1= φk + cLoxk+1 . (14)

Proof: See Appendix B. �
Proposition 1 states that by introducing the sequence of vari-

ables φk , the DQM primal iterates xk can be computed through
the recursive expressions in (14). These recursions are simpler
than (12)–(13) because they eliminate the auxiliary variables
zk and reduce the dimensionality of λk —twice the number of
edges—to that of φk —the number of nodes. Further observe
that if (14) is used for implementation we do not have to make
sure that the conditions of Assumption 1 are satisfied. We just
need to pick φ0 := ET

o α0 for some α0 in the column space of
E0—which is not difficult, we can use, e.g., φ0 = 0. The role
of Assumption 1 is to state conditions for which the expressions
in (12)–(13) are an equivalent representation of (14) that we use
for convergence analyses.

The structure of the primal objective function Hessian Hk ,
the degree matrix D, and the oriented and unoriented Laplacians
Lo and Lu make distributed implementation of (14) possible.
Indeed, the matrix 2cD + Hk is block diagonal and its i-th diag-
onal block is given by 2cdiI + ∇2fi(xi) which is locally avail-
able for node i. Likewise, the inverse matrix (2cD + Hk)−1 is
block diagonal and locally computable since the i-th diagonal
block is (2cdiI + ∇2fi(xi))

−1 . Computations of the products
Luxk and Loxk+1 can be implemented in a decentralized man-
ner as well, since the Laplacian matrices Lu and Lo are block
neighbor sparse in the sense that the (i, j)-th block is not null
if and only if nodes i and j are neighbors or j = i. Therefore,
nodes can compute their local parts for the products Luxk and
Loxk+1 by exchanging information with their neighbors. By
defining components of the vector φk as φk := [φ1,k , . . . , φn,k],
the update formula in (14) for the individual agents can then be

Algorithm 1: DQM method at node i

Require: Initial local iterates xi,0 and φ0 .
1: for k = 0, 1, 2, . . . do
2: Update the local iterate xi,k as

xi,k+1 =
(
2cdiI + ∇2fi (xi,k)

)−1

⎡

⎣cdixi,k + c
∑

j∈Ni

xj,k

+ ∇2fi (xi,k)xi,k −∇fi (xi,k) − φi,k

⎤

⎦ .

3: Exchange iterates xi,k+1 with neighbors j ∈ Ni .
4: Update local dual variable φi,k as

φi,k+1 = φi,k + c
∑

j∈Ni

(xi,k+1 − xj,k+1) .

5: end for

written block-wise as

xi,k+1 =
(
2cdiI + ∇2fi (xi,k)

)−1

⎡

⎣cdixi,k + c
∑

j∈Ni

xj,k

+ ∇2fi (xi,k)xi,k −∇fi (xi,k) − φi,k

]

, (15)

where xi,k corresponds to the iterate of node i at step k. Notice
that the definition

Lu := (1/2)ET
u Eu = (1/2)(As + Ad)

T (As + Ad) (16)

is used to simplify the i-th component of cLuxk as
c
∑

j∈Ni
(xi,k + xj,k) which is equivalent to cdixi,k +

c
∑

j∈Ni
xj,k . Further, using the definition

Lo = (1/2)ET
o Eo = (1/2)(As − Ad)

T (As − Ad), (17)

the i-th component of the product cLoxk+1 in (16) can be sim-
plified as c

∑
j∈Ni

(xi,k − xj,k). Therefore, the second update
formula in (14) can be locally implemented at each node i as

φi,k+1 = φi,k + c
∑

j∈Ni

(xi,k+1 − xj,k+1) . (18)

The proposed DQM method is summarized in Algorithm 1. The
initial value for the local iterate xi,0 can be any arbitrary vector
in Rp . The initial vector φi,0 should be in column space of ET

o .
To guarantee satisfaction of this condition, the initial vector is
set as φi,0 = 0. At each iteration k, updates of the primal and
dual variables in (15) and (16) are computed in Steps 2 and 4,
respectively. Nodes exchange their local variables xi,k with their
neighbors j ∈ Ni in Step 3, since this information is required
for the updates in Steps 2 and 4.

DADMM, DQM, and DLM occupy different points in a trade-
off curve of computational cost per iteration and number of iter-
ations needed to achieve convergence. The computational cost
of each DADMM iteration is large in general because it requires
solution of the optimization problem in (6). The cost of DLM
iterations is minimal because the solution of (10) can be reduced

5162 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

to the inversion of a block diagonal matrix; see [30]. The cost
of DQM iterations is larger than the cost of DLM iterations
because they require evaluation of local Hessians as well as in-
version of the matrices 2cdiI + ∇2fi (xi,k) to implement (15).
But the cost is smaller than the cost of DADMM iterations ex-
cept in cases in which solving (6) is easy. In terms of the number
of iterations required until convergence, DADMM requires the
least and DLM the most. The foremost technical conclusions
of the convergence analysis presented in the following section
are: (i) convergence of DQM is strictly faster than convergence
of DLM; (ii) asymptotically in the number of iterations, the per
iteration improvements of DADMM and DQM are identical. It
follows from these observations that DQM achieves target op-
timality in a number of iterations similar to DADMM but with
iterations that are computationally cheaper.

IV. CONVERGENCE ANALYSIS

In this section we show that the sequence of iterates xk gen-
erated by DQM converges linearly to the optimal argument
x∗ = [x̃∗; . . . ; x̃∗]. As a byproduct of this analysis we also ob-
tain a comparison between the linear convergence factors of
DLM, DQM, and DADMM. To derive these results we make
the following assumptions.

Assumption 2: The network is such that any singular value
of the unoriented incidence matrix Eu , defined as σ (Eu), sat-
isfies 0 < γu ≤ σ (Eu) ≤ Γu where γu and Γu are constants;
the smallest non-zero singular value of the oriented incidence
matrix Eo is γo > 0.

Assumption 3: The local objective functions fi (x) are twice
differentiable and the eigenvalues of their local Hessians
∇2fi (x) are bounded within positive constants m and M where
0 < m ≤ M < ∞ so that for all x ∈ Rp it holds

mI � ∇2fi (x) � MI. (19)

Assumption 4: The local Hessians ∇2fi (x) are Lipschitz
continuous with constant L so that for all x, x̂ ∈ Rp it holds

‖∇2fi (x) −∇2fi (x̂) ‖ ≤ L ‖ x − x̂ ‖ . (20)

The eigenvalue bounds in Assumption 2 are measures of net-
work connectivity. Note that the assumption that all the singular
values of the unoriented incidence matrix Eu are positive im-
plies that the graph is non-bipartite. Thus, for every connected
non-bipartite graphs the conditions in Assumption 2 are satis-
fied. The conditions imposed by assumptions 3 and 4 are typ-
ical in the analysis of second order methods; see, e.g., ([31],
Chapter 9). The lower bound for the eigenvalues of the local
Hessians ∇2fi (x) implies strong convexity of the local objec-
tive functions fi (x) with constant m, while the upper bound
M for the eigenvalues of the local Hessians ∇2fi (x) is tanta-
mount to Lipschitz continuity of local gradients ∇fi (x) with
Lipschitz constant M . Further note that as per the definition
of the aggregate objective f (x) :=

∑n
i=1 fi (xi), the Hessian

H (x) := ∇2f (x) ∈ Rnp×np is block diagonal with i-th diag-
onal block given by the i-th local objective function Hessian
∇2fi (xi). Therefore, the bounds for the local Hessians’ eigen-
values in (17) also hold for the aggregate function Hessian. Thus,
we have that for any x ∈ Rnp the eigenvalues of the Hessian
H (x) are uniformly bounded as

mI � H (x) � MI. (21)

Assumption 4 also implies an analogous condition for the ag-
gregate function Hessian H (x) as we show in the following
lemma.

Lemma 2: Consider the definition of the aggregate function
f (x) :=

∑n
i=1 fi (xi). If Assumption 4 holds true, the aggre-

gate function Hessian H (x) =: ∇2f (x) is Lipschitz continu-
ous with constant L. I.e., for all x, x̂ ∈ Rnp we can write

‖H (x) − H (x̂) ‖ ≤ L ‖ x − x̂ ‖ . (22)

Proof: See Appendix C. �
DQM can be interpreted as an attempt to approximate the

primal update of DADMM. Therefore, we evaluate the per-
formance of DQM by studying a measure of the error of the
approximation in the DQM update relative to the DADMM up-
date. In the primal update of DQM, the gradient ∇f (xk+1) is
estimated by the approximation ∇f (xk) + Hk (xk+1 − xk).
Therefore, we can define the DQM error vector eDQM

k as

eDQM
k := ∇f (xk) + Hk (xk+1 − xk) −∇f (xk+1) . (23)

Based on the definition in (21), the approximation error of
DQM vanishes when the difference of two consecutive iterates
xk+1 − xk approaches zero. This observation is formalized in
the following proposition by introducing an upper bound for
the error vector norm ‖eDQM

k ‖ in terms of the difference norm
‖ xk+1 − xk ‖.

Proposition 2: Consider the DQM method as introduced in
(12)–(13) and the error eDQM

k defined in (21). If Assumptions
1–4 hold true, the DQM error norm ‖eDQM

k ‖ is bounded above
by
∥
∥
∥eDQM

k

∥
∥
∥ ≤ min

{

2M ‖ xk+1 − xk ‖, L

2
‖ xk+1 − xk ‖2

}

.

(24)
Proof: See Appendix D. �
Proposition 2 asserts that the error norm ‖ eDQM

k ‖ is bounded
above by the minimum of a linear and a quadratic term of the
iterate difference norm ‖ xk+1 − xk ‖. Hence, the approxima-
tion error vanishes as the sequence of iterates xk converges.
We will show in Theorem 1 that the sequence ‖ xk+1 − xk ‖
converges to zero which implies that the error vector eDQM

k
converges to the null vector 0. Notice that after a number of
iterations the term (L/2) ‖ xk+1 − xk ‖ becomes smaller than
2M , which implies that the upper bound in (22) can be sim-
plified as (L/2) ‖ xk+1 − xk‖2 for sufficiently large k. This
is important because it implies that the error vector norm
‖ eDQM

k ‖ eventually becomes proportional to the quadratic
term ‖ xk+1 − xk‖2 and, as a consequence, it vanishes faster
than the term ‖ xk+1 − xk ‖.

Utilize now the definition in (21) to rewrite the primal variable
DQM update in (12) as

∇f(xk+1) + eDQM
k + AT λk + cAT(Axk+1 +Bzk) = 0.

(25)
Comparison of (23) with the optimality condition for the
DADMM update in (6) shows that they coincide except for
the gradient approximation error term eDQM

k . The DQM and
DADMM updates for the auxiliary variables zk and the dual
variables λk are identical (cf. (7), (8), and (13)), as already
observed.

MOKHTARI et al.: DQM: DECENTRALIZED QUADRATICALLY APPROXIMATED ALTERNATING DIRECTION METHOD OF MULTIPLIERS 5163

Further let the pair (x∗, z∗) stand for the unique solution of
(2) with uniqueness implied by the strong convexity assumption
and define α∗ as the unique optimal multiplier that lies in the
column space of Eo—see Lemma 1 of [29] for a proof that such
optimal dual variable exists and is unique. To study convergence
properties of DQM we modify the system of DQM equations
defined by (13) and (23), which is equivalent to the system (12)–
(13), to include terms that involve differences between current
iterates and the optimal arguments x∗, z∗, and α∗. We state this
reformulation in the following lemma.

Lemma 3: Consider the DQM method as defined by (12)–
(13) and its equivalent formulation in (13) and (23). If Assump-
tion 1 holds true, then the optimal arguments x∗, z∗, and α∗

satisfy

∇f (xk+1) −∇f (x∗) + eDQM
k + ET

o (αk+1 − α∗)

− cET
u (zk − zk+1) = 0, (26)

2 (αk+1 − αk) − cEo (xk+1 − x∗) = 0, (27)

Eu (xk − x∗) − 2 (zk − z∗) = 0. (28)

Proof: See Appendix E. �
With the preliminary results in Lemmata 2 and 3 and Propo-

sition 2 we can state our convergence results. To do so, define
the energy function V : Rmp×mp → R as

V (z,α) := c ‖ z − z∗‖2 +
1
c
‖ α − α∗ ‖2 . (29)

The energy function V (z,α) captures the distances of the vari-
ables zk and αk to the respective optimal arguments z∗ and α∗.
To simplify notation we further define the variable u ∈ R2mp

and matrix C ∈ R2mp×2mp as

u :=

[
z

α

]

, C :=

[
cImp 0

0 (1/c) Imp

]

. (30)

Based on the definitions in (28), the energy function in
(27) can be alternatively written V (z,α) = V (u) = ‖ u −
u∗‖2

C , where u∗ = [z∗;α∗]. The energy sequence V (uk) =
‖ uk − u∗ ‖2

C converges to zero at a linear rate as we state
in the following theorem.

Theorem 1: Consider the DQM method as defined by (12)–
(13), let the constant c be such that c > 4M 2/

(
mγ2

u

)
, and define

the sequence of non-negative variables ζk as

ζk := min
{

L

2
‖ xk+1 − xk ‖, 2M

}

. (31)

Further, consider arbitrary constants μ, μ′, and η with μ, μ′ > 1
and ηk ∈

(
ζk/m, cγ2

u/ζk

)
. If Assumptions 1–4 hold true, then

the sequence ‖ uk − u∗‖2
C generated by DQM satisfies

‖ uk+1 − u∗‖2
C ≤ 1

1 + δk
‖ uk − u∗ ‖2

C (32)

where the sequence of positive scalars δk is given by

δk = min
{

(μ − 1) (cγ2
u − ηk ζk) γ2

o

μμ′ (cΓ2
u γ2

u + 4ζ2
k /c (μ′ − 1))

,
m − ζk /ηk

cΓ2
u /4 + μM 2/cγ2

o

}

.

(33)
Proof: See Appendix F. �
Notice that δk is a decreasing function of ζk and that ζk is

bounded above by 2M . Therefore, if we substitute ζk by 2M in

(31), the inequality in (30) is still valid. This substitution implies
that the sequence ‖ uk − u∗‖2

C converges linearly to zero with
a coefficient not larger than 1 − δ with δ = δk following from
(30) with ζk = 2M . The more generic definition of ζk in (29) is
important for the rate comparisons in Section IV.A. Observe that
in order to guarantee that δk > 0 for all k ≥ 0, ηk is chosen from
the interval

(
ζk/m, cγ2

u/ζk

)
. This interval is non-empty since

the constant c is chosen as c > 4M 2/
(
mγ2

u

)
≥ ζ2

k /
(
mγ2

u

)
.

This condition on the parameter c is required for the convergence
proof of DQM, while c can be any positive constant in DADMM
[21]. However, the optimal choices of c for DQM and DADMM
are equal in practice—see Section V—and this condition does
not affect the asymptotic result for the linear convergence factor
of DQM.

The linear convergence in Theorem 1 is for the vector uk

which includes the auxiliary variable zk and the multipliers αk .
Linear convergence of the primal variables xk to the optimal
argument x∗ follows as a corollary that we establish next.

Corollary 1: Under the assumptions in Theorem 1, the se-
quence of squared norms ‖ xk − x∗‖2 generated by the DQM
algorithm converges R-linearly to zero, i.e.,

‖ xk − x∗‖2 ≤ 4
cγ2

u

‖ uk − u∗ ‖2
C . (34)

Proof: Notice that according to (26) we can write
‖Eu (xk − x∗) ‖2 = 4‖ zk − z∗ ‖2 . Since γu is the smallest
singular value of Eu , we obtain that

‖ xk − x∗‖2 ≤
(
4/γ2

u

)
‖zk − z∗‖2 . (35)

Moreover, according to the relation

‖ uk − u∗‖2
C = c ‖ zk − z∗‖2 + (1/c) ‖ αk − α∗ ‖2 (36)

we can write c ‖ zk − z∗‖2 ≤ ‖ uk − u∗ ‖2
C . Combining these

two inequalities yields the claim in (32). �
As per Corollary 1, convergence of the sequence xk to x∗ is

dominated by a linearly decreasing sequence. Notice that the
sequence of squared norms ‖ xk − x∗‖2 need not be monoton-
ically decreasing as the energy sequence ‖ uk+1 − u∗‖2

C is.

A. Convergence Rates Comparison

Based on the result in Corollary 1, the sequence of iterates xk

generated by DQM converges. This observation implies that the
sequence ‖ xk+1 − xk ‖ approaches zero. Hence, the sequence
of scalars ζk defined in (29) converges to 0 as time passes, since
ζk is bounded above by (L/2) ‖ xk+1 − xk ‖. Using this fact
that limk→∞ζk = 0 to compute the limit of δk in (31) and further
making μ′ → 1 in the resulting limit we have that

lim
k→∞

δk = min
{

(μ − 1) γ2
o

μΓ2
u

,
m

cΓ2
u/4 + μM 2/cγ2

o

}

. (37)

Notice that the limit of δk in (33) is identical to the factor of
linear convergence for DADMM [21]. Therefore, we conclude
that as time passes the factor of linear convergence for DQM
approaches the one for DADMM.

To compare the convergence rates of DLM, DQM and
DADMM we define the error of the gradient approximation

5164 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

for DLM as

eDLM
k = ∇f (xk) + ρ (xk+1 − xk) −∇f (xk+1) , (38)

which is the difference of exact gradient ∇f (xk+1) and the
DLM gradient approximation ∇f (xk) + ρ (xk+1 − xk). Sim-
ilar to the result in Proposition 2 for DQM we can show that
the DLM error vector norm ‖eDLM

k ‖ is bounded by a factor of
‖ xk+1 − xk ‖.

Proposition 3: Consider the DLM algorithm with updates
in (7)–(9) and the error vector eDLM

k defined in (34). If As-
sumptions 1–4 hold true, the DLM error vector norm ‖eDLM

k ‖
satisfies

‖eDLM
k ‖ ≤ (ρ + M) ‖ xk+1 − xk ‖ . (39)

Proof: See Appendix D. �
The result in Proposition 3 differs from Proposition 2 in that

the DLM error ‖eDLM
k ‖ vanishes at a rate of ‖ xk+1 − xk ‖

whereas the DQM error ‖eDQM
k ‖ eventually becomes propor-

tional to ‖ xk+1 − xk‖2 . This results in DLM failing to ap-
proach the convergence behavior of DADMM as we show in
the following theorem.

Theorem 2: Consider the DLM method as introduced in
(7)–(9). Assume that the constant c is chosen such that c >
(ρ + M)2/(mγ2

u). Moreover, consider μ, μ′ > 1 as arbitrary
constants and η as a positive constant chosen from the interval
((ρ + M)/m, cγ2

u/(ρ + M)). If Assumptions 1–4 hold true,
then the sequence ‖ uk − u∗‖2

C generated by DLM satisfies

‖ uk+1 − u∗‖2
C ≤ 1

1 + δ
‖ uk − u∗ ‖2

C (40)

where the scalar δ is given by

δ = min

⎧
⎨

⎩

(μ − 1)
(
cγ2

u − ηk (ρ + M)
)
γ2

o

μμ′
(
cΓ2

uγ2
u + 4(ρ+M)2/c (μ′ − 1)

) ,

m − (ρ + M) /ηk

cΓ2
u/4 + μM 2/cγ2

o

}

. (41)

Proof: See Appendix F. �
Based on the result in Theorem 2, the sequence ‖ uk+1 −

u∗‖2
C generated by DLM converges linearly to 0. This result

is similar to the convergence properties of DQM as shown in
Theorem 1; however, the factor of linear convergence 1/ (1 + δ)
in (36) is smaller than the factor 1/ (1 + δk) in (33).

V. NUMERICAL ANALYSIS

In this section we compare the performances of DLM, DQM
and DADMM in solving a logistic regression problem. Con-
sider a training set with points whose classes are known and the
goal is finding the classifier that minimizes the loss function.
Let q be the number of training points available at each node
of the network. Therefore, the total number of training points
is nq. The training set {sil , yil}q

l=1 at node i contains q pairs
of (sil , yil), where sil is a feature vector and yil ∈ {−1, 1} is
the corresponding class. The goal is to estimate the probability
P (y = 1 | s) of having label y = 1 for a given feature vector
s whose class is not known. Logistic regression models this
probability as P(y = 1 | s) = 1/(1 + exp(−sT x̃)) for a linear

Fig. 1. Relative error ‖ xk − x∗ ‖/‖ x0 − x∗ ‖ of DADMM, DQM, and
DLM versus number of iterations for a random network of size n = 10. The
convergence path of DQM is similar to the one for DADMM and they outperform
DLM by orders of magnitude.

classifier x̃ that is computed based on the training samples. It fol-
lows from this model that the maximum log-likelihood estimate
of the classifier x̃ given the training samples {{sil , yil}q

l=1}
n
i=1

is

x̃∗ := argmin
x̃∈Rp

n∑

i=1

q∑

l=1

log
[
1 + exp

(
−yilsT

il x̃
)]

. (42)

The optimization problem in (38) can be written in the form (1).
To do so, simply define the local objective functions fi as

fi (x̃) =
q∑

l=1

log
[
1 + exp

(
−yilsT

il x̃
)]

. (43)

We define the optimal argument for decentralized optimization
as x∗ = [x̃∗; . . . ; x̃∗]. Note that the reference (ground truth) lo-
gistic classifiers x̃∗ for all the experiments in this section are
pre-computed with a centralized method.

A. Comparison of DLM, DQM, and DADMM

We compare the convergence paths of the DLM, DQM, and
DADMM algorithms for solving the logistic regression problem
in (38). Edges between the nodes are randomly generated with
the connectivity ratio rc . Observe that the connectivity ratio rc

is the probability of two nodes being connected.
In the first experiment we set the number of nodes as

n = 10 and the connectivity ratio as rc = 0.4. Each agent holds
q = 5 samples and the dimension of feature vectors is p = 3.
Fig. 1 illustrates the relative errors ‖ xk − x∗ ‖/‖ x0 − x∗ ‖
for DLM, DQM, and DADMM versus the number of iter-
ations. In the experiments, we have hand-optimized the pa-
rameter c for these three algorithms separately and reported
the convergence result for the optimal choice of c. The opti-
mal choices for the three methods are cADMM = 0.7, cDLM =
5.5, and cDQM = 0.7. The convergence path of DQM is al-
most identical to the convergence path of DADMM. More-
over, DQM outperforms DLM by orders of magnitude. To
be more precise, the relative errors ‖ xk − x∗ ‖/‖ x0 − x∗ ‖
for DQM and DADMM after k = 300 iterations are below
10−9 , while for DLM the relative error after the same num-
ber of iterations is 5 × 10−2 . Conversely, achieving accuracy

MOKHTARI et al.: DQM: DECENTRALIZED QUADRATICALLY APPROXIMATED ALTERNATING DIRECTION METHOD OF MULTIPLIERS 5165

Fig. 2. Relative error ‖ xk − x∗ ‖/‖ x0 − x∗ ‖ of DADMM, DQM, and
DLM versus runtime for the setting in Fig. 1. The computational cost of DQM
is lower than DADMM and DLM.

Fig. 3. Relative error ‖ xk − x∗ ‖/‖ x0 − x∗ ‖ of DADMM, DQM, and
DLM versus number of iterations for a random network of size n = 100. The
performances of DQM and DADMM are almost identical. DLM is impractical
in this setting.

‖ xk − x∗ ‖/‖ x0 − x∗ ‖= 10−3 for DQM and DADMM re-
quires 91 iterations, while DLM requires 758 iterations to reach
the same accuracy. Hence, the number of iterations that DLM
requires to achieve a specific accuracy is 8 times more than the
one for DQM.

Observe that the computational complexity of DQM is lower
than DADMM. Therefore, DQM outperforms DADMM in
terms of convergence time or number of required operations
until convergence. This phenomenon is shown in Fig. 2 by com-
paring the relative of errors of DLM, DQM, and DADMM versus
CPU runtime. According to Fig. 2, DADMM achieves the rel-
ative error ‖ xk − x∗ ‖/‖ x0 − x∗ ‖= 10−10 after running for
3.6 seconds, while DLM and DQM require 1.3 and 0.4 seconds,
respectively, to achieve the same accuracy.

We also compare the performances of DLM, DQM, and
DADMM in a larger scale logistic regression problem by setting
size of network n = 100, number of sample points at each node
q = 20, and dimension of feature vectors p = 10. We keep the
rest of the parameters as in Fig. 1. Convergence paths of the
relative errors ‖ xk − x∗ ‖/‖ x0 − x∗ ‖ for DLM, DQM, and
DADMM versus the number of iterations are illustrated in Fig. 3.
Different choices of parameter c are considered for these algo-
rithms and the best for each is chosen for the final comparison.

Fig. 4. Relative error ‖ xk − x∗ ‖/‖ x0 − x∗ ‖ of DADMM, DQM, and
DLM versus runtime for the setting in Fig. 3. The convergence time of DADMM
is slightly faster relative to DLM, while DQM is the most efficient method among
these three algorithms.

The optimal choices of parameter c for DADMM, DLM, and
DQM are cADMM = 0.68, cDLM = 12.3, and cDQM = 0.68, re-
spectively. The results for the large scale problem in Fig. 3 are
similar to the results in Fig. 1. We observe that DQM performs
as well as DADMM, while both outperform DLM. To be more
precise, DQM and DADMM after k = 900 iterations reach the
relative error ‖ xk − x∗ ‖/‖ x0 − x∗ ‖= 3.4 × 10−7 , while the
relative error of DLM after the same number of iterations is
2.9 × 10−1 . Conversely, achieving the accuracy ‖ xk − x∗ ‖/‖
x0 − x∗ ‖= 0.3 for DQM and DADMM requires 52 iterations,
while DLM requires 870 iterations to reach the same accuracy.
Hence, in this setting the number of iterations that DLM re-
quires to achieve a specific accuracy is 16 times more than the
one for DQM. These numbers show that the advantages of DQM
relative to DLM are more significant in large scale problems.

Notice that in large scale logistic regression problems we
expect larger condition number for the objective function f . In
these scenarios we expect to observe a poor performance by the
DLM algorithm that only operates on first-order information.
This expectation is satisfied by comparing the relative errors
of DLM, DQM, and DADMM versus runtime for the large
scale problem in Fig. 4. In this case, DLM is even worse
than DADMM that has a very high computational complexity.
Similar to the result in Fig. 3, DQM has the best performance
among these three methods.

Notice that the inequalities in (30) for DQM and in Theorem 1
of [21] for DADMM give upper bounds for the convergence rate
of these algorithms. One may say in practice the linear conver-
gence factor of DQM does not approach the factor of DADMM.
However, the numerical results show that in practice the factor
of linear convergence of DQM is almost identical to the one for
DADMM which verifies the theoretical result in Section IV.

B. Effect of the Regularization Parameter c

The parameter c has a significant role in the convergence of
DADMM. Likewise, choosing the optimal choice of c is critical
in the convergence of DQM. We study the effect of c by tuning
this parameter for a fixed network and training set. We use all the
parameters in Fig. 1 and we compare performance of the DQM
algorithm for the values c = 0.2, c = 0.4, c = 0.8, and c = 1.

5166 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

Fig. 5. Relative error ‖ xk − x∗ ‖/‖ x0 − x∗ ‖ of DQM for parameters c =
0.2, c = 0.4, c = 0.8, and c = 1 when the network is formed by n = 10 nodes
and the connectivity ratio is rc = 0.4. The best performance belongs to c = 0.8.

Fig. 6. Relative error ‖ xk − x∗ ‖/‖ x0 − x∗ ‖ of DQM for random graphs
with different connectivity ratios rc . The linear convergence of DQM accelerates
by increasing the connectivity ratio.

Fig. 5 illustrates the convergence paths of the DQM algorithm
for different choices of the parameter c. The best performance
among these choices is achieved for c = 0.8. The comparison
of the plots in Fig. 5 shows that increasing or decreasing the
parameter c is not necessarily leads to a faster convergence. We
can interpret c as the stepsize of DQM for which the optimal
choice may vary for problems with different network sizes,
network topologies, condition numbers of objective functions,
etc.

C. Effect of Network Topology

According to (31), the factor of linear convergence for DQM
depends on the bounds for the singular values of the oriented
and unoriented incidence matrices Eo and Eu . These bounds
are related to connectivity ratio of the network. We study how
network topology affects the convergence speed of DQM. We
use different values for the connectivity ratio to generate random
graphs with different number of edges. In this experiment we
use the connectivity ratios rc = {0.2, 0.3, 0.4, 0.6} to generate
the networks. The rest of the parameters are the same as the
parameters in Fig. 1. Notice that since the connectivity param-
eters of these graphs are different, the optimal choices of c for
these graphs are different. The convergence paths of DQM with
the connectivity ratios rc = {0.2, 0.3, 0.4, 0.6} are shown in

Fig. 6. The optimal choices of the parameter c for these graphs
are c0.2 = 0.28, c0.3 = 0.25, c0.4 = 0.31, and c0.6 = 0.28, re-
spectively. Fig. 6 shows that the linear convergence of DQM
accelerates by increasing the connectivity ratio of the graph.

VI. CONCLUSION

A decentralized quadratically approximated version of the
alternating direction method of multipliers (DQM) is proposed
for solving decentralized optimization problems where compo-
nents of the objective function are available at different nodes
of a network. DQM minimizes a quadratic approximation of the
convex problem that DADMM solves exactly at each step, and
hence reduces the computational complexity of DADMM. Un-
der some mild assumptions, linear convergence of the sequence
generated by DQM is proven. Moreover, the factor of linear con-
vergence for DQM approaches that of DADMM asymptotically.
Numerical results for a logistic regression problem verify the an-
alytical results that convergence paths of DQM and DADMM
are similar for large iteration index, while the computational
complexity of DQM is significantly smaller than DADMM.

APPENDIX A
PROOF OF LEMMA 1

According to the update for the Lagrange multiplier λ in (13),
we can substitute λk by λk+1 − c(Axk+1 + Bzk+1). Applying
this substitution into the first equation of (13) leads to

BT λk+1 = 0. (44)

Observing the definitions B = [−Imp ;−Imp] and λ = [α;β],
and the result in (40), we obtain αk+1 = −βk+1 for k ≥ 0.
Considering the initial condition α0 = −β0 , we obtain that
αk = −βk for k ≥ 0 which follows the first claim in Lemma 1.

Based on the definitions A = [As ;Ad] ,B = [−Imp ;−Imp],
and λ = [α;β], we can split the update for the Lagrange multi-
plier λ in (8) as

αk+1 = αk + c [Asxk+1 − zk+1] , (45)

βk+1 = βk + c [Adxk+1 − zk+1] . (46)

Observing the result that αk = −βk for k ≥ 0, summing up the
equations in (41) and (42) yields

(As + Ad)xk+1 = 2zk+1 . (47)

Considering the definition of the oriented incidence matrix
Eu = As + Ad , we obtain that Euxk = 2zk holds for k > 0.
According to the initial condition Eux0 = 2z0 , we can conclude
that the relation Euxk = 2zk holds for k ≥ 0.

Subtract the update for βk in (42) from the update for αk in
(41) and consider the relation βk = −αk to obtain

αk+1 = αk +
c

2
(As − Ad)xk+1 . (48)

Substituting As − Ad in (44) by Eo implies that

αk+1 = αk +
c

2
Eoxk+1 . (49)

Hence, if αk lies in the column space of matrix Eo , then αk+1
also lies in the column space of Eo . According to the third

MOKHTARI et al.: DQM: DECENTRALIZED QUADRATICALLY APPROXIMATED ALTERNATING DIRECTION METHOD OF MULTIPLIERS 5167

condition of Assumption 1, α0 satisfies this condition, therefore
αk lies in the column space of matrix Eo for all k ≥ 0.

APPENDIX B
PROOF OF PROPOSITION 1

Based on the update for the multiplier λ in (8), we can sub-
stitute λk by λk+1 − c (Axk+1 + Bzk+1) to simplify (12) as

∇f (xk) +Hk (xk+1 − xk) + AT λk+1

+ cAT B (zk−zk+1) = 0. (50)

Considering the first result of Lemma 1 that αk = −βk for
k ≥ 0 in association with the definition A = [As ;Ad] implies
that the product AT λk+1 is equivalent to

AT λk+1 = AT
s αk+1 + AT

d βk+1 = (As − Ad)
T αk+1 .

(51)
According to the definition Eo := As − Ad , the right hand side
of (47) can be simplified as

AT λk+1 = ET
o αk+1 . (52)

Based on the structures of the matrices A and B, and the defi-
nition Eu := As + Ad , we can simplify AT B as

AT B = −AT
s − AT

d = −ET
u . (53)

Substituting the results in (48) and (49) into (46) leads to

∇f (xk) + Hk (xk+1 − xk) + ET
o αk+1

+ cET
u (zk+1 − zk) = 0. (54)

The second result in Lemma 1 states that zk = Euxk/2. Multi-
plying both sides of this equality by ET

u from left we obtain that
ET

u zk = ET
u Euxk/2 for k ≥ 0. Observing the definition of the

unoriented Laplacian Lu := ET
u Eu/2, we obtain that the prod-

uct ET
u zk is equal to Luxk for k ≥ 0. Thus, we can substitute

ET
u (zk+1 − zk) by Lu (xk+1 − xk) in (50) to write

∇f (xk) + (Hk + cLu) (xk+1 − xk) + ET
o αk+1 = 0. (55)

Observe that the new variables φk are defined as φk := ET
o αk .

Multiplying both sides of (45) by ET
o from the left hand side and

considering the definition of oriented Laplacian Lo = ET
o Eo/2

follows the update rule of φk in (14), i.e.,

φk+1 = φk + cLoxk+1 . (56)

According to the definition φk = ET
o αk and the update for-

mula in (52), we can conclude that ET
o αk+1 = φk+1 = φk +

cLoxk+1 . Substituting ET
o αk+1 by φk + cLoxk+1 in (51)

yields

∇f (xk) + (Hk + cLu) (xk+1 − xk) + φk + cLoxk+1 = 0.
(57)

Observing the definition D = (Lu + Lo) /2 we rewrite (53) as

(Hk + 2cD)xk+1 = (Hk + cLu)xk −∇f (xk) − φk . (58)

Multiplying both sides of (54) by (Hk + 2cD)−1 from the left
hand side yields the first update in (14).

APPENDIX C
PROOF OF LEMMA 2

Consider two arbitrary vectors x := [x1 ; . . . ;xn] ∈ Rnp and
x̂ := [x̂1 ; . . . ; x̂n] ∈ Rnp . Since the aggregate function Hessian
is block diagonal where the i-th diagonal block is given by
∇2fi (xi), we obtain that the difference of Hessians H (x) −
H (x̂) is also block diagonal where the i-th diagonal block
H(x)ii − H (x̂)ii is

H(x)ii − H (x̂)ii = ∇2fi (xi) −∇2fi (x̂i) . (59)

Consider any vector v ∈ Rnp and separate each p components
of vector v and consider it as a new vector called vi ∈ Rp ,
i.e., v := [v1 ; . . . ;vn]. Observing the relation for the difference
H (x) − H (x̂) in (55), the symmetry of matrices H (x) and
H (x̂), and the definition of Euclidean norm of a matrix that
‖ A ‖=

√
λmax (AT A), we obtain that the squared difference

norm ‖ H (x) − H (x̂) ‖2 can be written as

‖H (x) − H (x̂) ‖2= max
v

vT [H (x) − H (x̂)]2v
‖ v ‖2

= max
v

∑n
i=1 vT

i

[
∇2fi (xi)−∇2fi (x̂i)

]2vi

‖ v ‖2 (60)

Using the Cauchy-Schwarz inequality we can write

vT
i

[
∇2fi (xi) −∇2fi (x̂i)

]2vi ≤ ‖∇2fi (xi)

− ∇2fi (x̂i) ‖2‖ vi ‖2 (61)

Substituting the upper bound in (57) into (56) implies that the
squared norm ‖H (x) − H (x̂) ‖2 is bounded above as

‖H (x) − H (x̂) ‖2

≤ max
v

∑n
i=1 ‖∇2fi (xi) −∇2fi (x̂i) ‖2‖ vi ‖2

‖ v ‖2 . (62)

Observe that Assumption 3 states that local objective func-
tions Hessian ∇2fi (xi) are Lipschitz continuous with constant
L, i.e., ‖ ∇2fi (xi) −∇2fi (x̂i) ‖≤ L ‖ xi − x̂i ‖. Consider-
ing this inequality the upper bound in (58) can be changed
by replacing ‖∇2fi (xi) −∇2fi (x̂i) ‖ by L ‖ xi − x̂i ‖ which
yields

‖H (x) − H (x̂) ‖2 ≤ max
v

L2 ∑n
i=1 ‖xi − x̂i‖2‖ vi ‖2

∑n
i=1 ‖ vi ‖2 .

(63)
Note that for any sequences of scalars such as ai and bi ,
the inequality

∑n
i=1 a2

i b
2
i ≤

(∑n
i=1 a2

i

) (∑n
i=1 b2

i

)
holds. If

we divide both sides of this relation by
∑n

i=1 b2
i and set

ai =‖ xi − x̂i ‖ and bi = ‖ vi ‖, we obtain
∑n

i=1 ‖xi − x̂i‖2‖ vi ‖2

∑n
i=1 ‖ vi ‖2 ≤

n∑

i=1

‖xi − x̂i‖2 . (64)

Combining the two inequalities in (59) and (60) leads to

‖H (x) − H (x̂) ‖2 ≤ max
v

L2
n∑

i=1

‖xi − x̂i‖2 . (65)

5168 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

Since the right hand side of (61) does not depend on v we can
eliminate the maximization with respect to v. Further, note that
according to the structure of vectors x and x̂, we can write
‖x − x̂‖2 =

∑n
i=1 ‖xi − x̂i‖2 . These two observations in as-

sociation with (61) imply that

‖H (x) − H (x̂) ‖2 ≤ L2‖x − x̂‖2 , (66)

Computing the square roots of terms in (62) yields (20).

APPENDIX D
PROOFS OF PROPOSITIONS 2 AND 3

The fundamental theorem of calculus implies that the differ-
ence of gradients ∇f (xk+1) −∇f (xk) can be written as

∇f (xk+1) −∇f (xk)

=
∫ 1

0
H (sxk+1 + (1 − s)xk) (xk+1 − xk) ds. (67)

By computing norms of both sides of (63) and considering that
norm of integral is smaller than integral of norm we obtain that

‖∇f (xk+1) −∇f (xk) ‖

≤
∫ 1

0
‖H (sxk+1 + (1 − s)xk) (xk+1 − xk) ‖ds. (68)

The upper bound M for the eigenvalues of the Hessians as in
(19), implies that ‖H (sx + (1 − s) x̂) (x − x̂) ‖ ≤ M ‖ x −
x̂ ‖. Substituting this upper bound into (64) leads to

‖∇f (xk+1) −∇f (xk) ‖ ≤ M ‖ xk+1 − xk ‖ . (69)

The error vector norm ‖eDLM
k ‖ in (34) is bounded above as

‖eDLM
k ‖ ≤ ‖∇f (xk+1) −∇f (xk) ‖ + ρ ‖ xk+1 − xk ‖ .

(70)
By substituting the upper bound for ‖∇f (xk+1) −∇f (xk) ‖
in (65) into (66), the claim in (35) follows.

To prove (22), first we show that ‖eDQM
k ‖ ≤ 2M ‖ xk+1 −

xk ‖ holds. Observe that the norm of the error vector eDQM
k de-

fined in (21) can be upper bounded using the triangle inequality
as

‖eDQM
k ‖ ≤ ‖∇f (xk+1) −∇f (xk) ‖ + ‖Hk (xk+1 − xk) ‖.

(71)
Based on the Cauchy-Schwarz inequality and the upper bound
M for the eigenvalues of Hessians as in (19), we ob-
tain ‖Hk (xk+1 − xk) ‖ ≤ M ‖ xk+1 − xk ‖. Further, as men-
tioned in (65) the difference of gradients ‖ ∇f (xk+1) −
∇f (xk) ‖ is upper bounded by M ‖ xk+1 − xk ‖. Substituting
these upper bounds for the terms in the right hand side of (67)
yields

‖eDQM
k ‖ ≤ 2M ‖ xk+1 − xk ‖ . (72)

The next step is to show that ‖eDQM
k ‖ ≤ (L/2) ‖ xk+1 − xk ‖2 .

Adding and subtracting the integral
∫ 1

0 H (xk) (xk+1 − xk) ds

to the right hand side of (63) results in

∇f (xk+1) −∇f (xk) =
∫ 1

0
H (xk) (xk+1 − xk) ds

+
∫ 1

0
[H (sxk+1 + (1 − s)xk) − H (xk)] (xk+1 − xk) ds.

(73)

First observe that the integral
∫ 1

0 H (xk) (xk+1 − xk) ds can
be simplified as H (xk) (xk+1 − xk). Observing this simplifi-
cation and regrouping the terms yield

∇f (xk+1) −∇f (xk) − H (xk) (xk+1 − xk)

=
∫ 1

0
[H (sxk+1 + (1 − s)xk) − H (xk)] (xk+1 − xk) ds.

(74)

Computing norms of both sides of (70), considering the fact
that norm of integral is smaller than integral of norm, and using
Cauchy-Schwarz inequality lead to

‖∇f (xk+1) −∇f (xk) − H (xk) (xk+1 − xk) ‖

≤
∫ 1

0
‖H (sxk+1 +(1 − s)xk) − H (xk) ‖ ‖ xk+1 − xk ‖ ds.

(75)

Lipschitz continuity of the Hessian as in (20) implies that
‖H (sxk+1 + (1 − s)xk) − H (xk) ‖ ≤ sL ‖ xk+1 − xk ‖.
By substituting this upper bound into the integral in (71) and
substituting the left hand side of (71) by ‖eDQM

k ‖ we obtain

‖eDQM
k ‖ ≤

∫ 1

0
sL‖ xk+1 − xk ‖2ds. (76)

Simplification of the integral in (72) follows

‖eDQM
k ‖ ≤ L

2
‖ xk+1 − xk ‖2 . (77)

The results in (68) and (73) follow the claim in (22).

APPENDIX E
PROOF OF LEMMA 3

In this section we first introduce an equivalent version of
Lemma 3 for the DLM algorithm. Then, we show the validity
of both lemmata in a general proof.

Lemma 4: Consider DLM as defined by (7)–(9). If Assump-
tion 1 holds true, then the optimal arguments x∗, z∗, and α∗

satisfy

∇f (xk+1) −∇f (x∗) + eDLM
k + ET

o (αk+1 − α∗)

− cET
u (zk − zk+1) = 0, (78)

2 (αk+1 − αk) − cEo (xk+1 − x∗) = 0, (79)

Eu (xk − x∗) − 2 (zk − z∗) = 0. (80)

Notice that the claims in Lemmata 3 and 4 are identical except
in the error term of the first equalities. To provide a general
framework to prove the claim in these lemmata we introduce ek

MOKHTARI et al.: DQM: DECENTRALIZED QUADRATICALLY APPROXIMATED ALTERNATING DIRECTION METHOD OF MULTIPLIERS 5169

as the general error vector. By replacingek witheDQM
k we obtain

the result of DQM in Lemma 3 and by setting ek = eDLM
k the

result in Lemma 4 follows. We start with the following Lemma
that captures the KKT conditions of optimization problem (4).

Lemma 5: Consider the optimization problem (4). The op-
timal Lagrange multiplier α∗, primal variable x∗ and auxiliary
variable z∗ satisfy the following system of equations

∇f (x∗) + ET
o α∗ = 0,Eox∗ = 0,Eux∗ = 2z∗. (81)

Proof: First observe that the KKT conditions of the decen-
tralized optimization problem in (4) are given by

∇f (x∗)+AT λ∗ = 0,BT λ∗ = 0,Ax∗ + Bz∗ = 0. (82)

Based on the definitions of the matrix B = [−Imp ;−Imp] and
the optimal Lagrange multiplier λ∗ := [α∗;β∗], we obtain that
BT λ∗ = 0 in (78) is equivalent to α∗ = −β∗. Considering this
result and the definition A = [As ;Ad], we obtain

AT λ∗ = AT
s α∗ + AT

d β∗ = (As − Ad)
T α∗. (83)

The definition Eo := As − Ad implies that the right hand side
of (79) can be simplified as ET

o α∗ which shows AT λ∗ = ET
o α∗.

Substituting AT λ∗ by ET
o α∗ into the first equality in (78) fol-

lows the first claim in (77).
Decompose the KKT condition Ax∗ + Bz∗ = 0 in (78)

based on the definitions of A and B as

Asx∗ − z = 0,Adx∗ − z = 0. (84)

Subtracting the equalities in (80) implies that (As − Ad)x∗ =
0 which by considering the definition Eo = As − Ad , the sec-
ond equation in (77) follows. Summing up the equalities in (80)
yields (As + Ad)x∗ = 2z. This observation in association with
the definition Eu = As − Ad follows the third equation in (77).

�
Proofs of Lemmata 3 and 4: First note that the results in

Lemma 1 are also valid for DLM [30]. Now, consider the first
order optimality condition for primal updates of DQM and DLM
in (12) and (10), respectively. Further, recall the definitions of
error vectors eDQM

k and eDLM
k in (21) and (34), respectively.

Combining these observations we obtain that

∇f (xk+1) + ek + AT λk + cAT (Axk+1 + Bzk) = 0.
(85)

Notice that by setting ek = eDQM
k we obtain the update for

primal variable of DQM; likewise, setting ek = eDLM
k yields to

the update of DLM.
Observe that the relation λk = λk+1 − c (Axk+1 + Bzk+1)

holds for both DLM and DQM according to the update for-
mula for Lagrange multiplier in (8) and (13). Substituting λk by
λk+1 − c (Axk+1 + Bzk+1) in (81) follows

∇f (xk+1) + ek + AT λk+1 + cAT B (zk − zk+1) = 0.
(86)

Based on the result in Lemma 1, the components of the Lagrange
multiplier λ = [α;β] satisfy αk+1 = −βk+1 . Hence, the prod-
uct AT λk+1 can be simplified as AT

s αk+1 − AT
d αk+1 =

ET
o αk+1 considering the definition that Eo = As − Ad . Fur-

thermore, note that according to the definitions we have that

A = [As ;Ad] and B = [−I;−I] which implies that AT B =
−(As + Ad)

T = −ET
u . By making these substitutions into (82)

we can write

∇f (xk+1) + ek + ET
o αk+1 − cET

u (zk − zk+1) = 0. (87)

The first result in Lemma 5 is equivalent to ∇f (x∗) + ET
o α∗ =

0. Subtracting both sides of this equation from the relation in
(83) follows the first claim of Lemmata 3 and 4.

We proceed to prove the second and third claims in Lemmata
3 and 4. The update formula for αk in (45) and the second
result in Lemma 5 that Eox∗ = 0 imply that the second claim
of Lemmata 3 and 4 are valid. Further, the result in Lemma 1
guarantees that Euxk = 2zk . This result in conjunction with
the result in Lemma 5 that Eux∗ = 2z∗ leads to the third claim
of Lemmata 3 and 4.

APPENDIX F
PROOFS OF THEOREMS 1 AND 2

To prove Theorems 1 and 2 we show a sufficient condition
for the claims in these theorems. Then, we prove these theorems
by showing validity of the sufficient condition. To do so, we use
the general coefficient βk which is equivalent to ζk in the DQM
algorithm and equivalent to ρ + M in the DLM method. These
definitions and the results in Propositions 2 and 3 imply that

‖ ek ‖≤ βk ‖ xk+1 − xk ‖, (88)

where ek is eDQM
k in DQM and eDLM

k in DLM. The sufficient
condition of Theorems 1 and 2 is studied in the following lemma.

Lemma 6: Consider the DLM and DQM algorithms as de-
fined in (7)–(9) and (12)–(13), respectively. Further, conducer
δk as a sequence of positive scalars. If Assumptions 1–4 hold
true then the sequence ‖ uk − u∗‖2

C converges linearly as

‖ uk+1 − u∗‖2
C ≤ 1

1 + δk
‖ uk − u∗ ‖2

C , (89)

if the following inequality holds true,

βk ‖ xk+1 − x∗ ‖‖ xk+1 − xk ‖ +δk c‖ zk+1 − z∗ ‖2

+
δk

c
‖ αk+1 − α∗ ‖2

≤ m ‖ xk+1 − x∗‖2 + c ‖ zk+1 − zk‖2 +
1
c
‖ αk+1 − αk ‖2 .

(90)

Proof: Proving linear convergence of the sequence ‖ uk −
u∗‖2

C as mentioned in (85) is equivalent to showing that

δk ‖ uk+1 − u∗‖2
C ≤‖ uk − u∗‖2

C − ‖ uk+1 − u∗ ‖2
C . (91)

According to the definition ‖ a ‖2
C := aT Ca we can show that

2(uk − uk+1)
T C (uk+1 − u∗)

= ‖ uk − u∗‖2
C− ‖ uk+1 − u∗‖2

C − ‖ uk − uk+1 ‖2
C . (92)

The relation in (88) shows that the right hand side of
(87) can be substituted by 2(uk − uk+1)

T C (uk+1 − u∗) +

5170 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

‖ uk − uk+1 ‖2
C . Applying this substitution into (87) leads to

δk‖ uk+1 − u∗ ‖2
C

≤ 2(uk − uk+1)
T C (uk+1 − u∗) + ‖ uk − uk+1 ‖2

C . (93)

This observation implies that to prove the linear convergence as
claimed in (85), the inequality in (89) should be satisfied.

We proceed by finding a lower bound for the term
2(uk − uk+1)

T C(uk+1 − u∗) in (89). By regrouping the terms
in (83) and multiplying both sides of equality by (xk+1 − x∗)T

from the left hand side we obtain that the inner product
(xk+1 − x∗)T (∇f(xk+1) −∇f(x∗)) is equivalent to

(xk+1 − x∗)T (∇f (xk+1) −∇f (x∗))

= −(xk+1 − x∗)T ek − (xk+1 − x∗)T ET
o (αk+1 − α∗)

+ c(xk+1 − x∗)T ET
u (zk − zk+1) . (94)

Based on (25), we can substitute
(xk+1 − x∗)T ET

o (αk+1 − α∗) in (90) by
(2/c) (αk+1 − αk)T (αk+1 − α∗). Further, the result in
(26) implies that the term c(xk+1 − x∗)T ET

u (zk − zk+1) in
(90) is equivalent to 2c(zk − zk+1)

T (zk+1 − z∗). Applying
these substitutions into (90) leads to

(xk+1 − x∗)T (∇f (xk+1) −∇f (x∗))

= −(xk+1 − x∗)T ek +
2
c
(αk − αk+1)

T (αk+1 − α∗)

+ 2c(zk − zk+1)
T (zk+1 − z∗) . (95)

Based on the definitions of matrix C and vector u in (28), the last
two summands in the right hand side of (91) can be simplified
as

2
c
(αk − αk+1)

T (αk+1 − α∗) + 2c(zk − zk+1)
T (zk+1 − z∗)

= 2(uk − uk+1)
T C (uk+1 − u∗) . (96)

Considering the simplification in (92) we can rewrite (91) as

(xk+1 − x∗)T (∇f (xk+1) −∇f (x∗))

= −(xk+1 − x∗)T ek + 2(uk − uk+1)
T C (uk+1 − u∗) .

(97)

Observe that the objective function f is strongly convex with
constant m which implies the inequality m ‖ xk+1 − x∗‖2 ≤
(xk+1 − x∗)T (∇f (xk+1) −∇f (x∗)) holds true. Consider-
ing this inequality from the strong convexity of objec-
tive function f and the simplification for the inner product
(xk+1 − x∗)T (∇f (xk+1) −∇f (x∗)) in (93), the following
inequality holds

m ‖ xk+1 − x∗‖2 + (xk+1 − x∗)T ek

≤ 2(uk − uk+1)
T C (uk+1 − u∗) . (98)

Substituting the lower bound for the term 2(uk −
uk+1)T C (uk+1 − u∗) in (94) into (89), it follows that the fol-

lowing condition is sufficient to have (85),

δk ‖ uk+1 − u∗‖2
C ≤ m‖ xk+1 − x∗ ‖2 + (xk+1 − x∗)T ek

+ ‖ uk − uk+1‖2
C . (99)

We emphasize that inequality (95) implies the linear conver-
gence result in (85). Therefore, our goal is to show that if (86)
holds, the relation in (95) is also valid and consequently the
result in (85) holds. According to the definitions of matrix C
and vector u in (28), we can substitute ‖ uk+1 − u∗‖2

C by c ‖
zk+1 − z∗‖2 + (1/c) ‖ αk+1 − α∗ ‖2 and ‖ uk − uk+1‖2

C by
c ‖ zk+1 − zk‖2 + (1/c) ‖ αk+1 − αk ‖2 . Making these sub-
stitutions into (95) yields

δk c ‖ zk+1 − z∗‖2 +
δk

c
‖ αk+1 − α∗ ‖2

≤ m ‖ xk+1 − x∗‖2 + (xk+1 − x∗)T ek

+ c ‖ zk+1 − zk‖2 +
1
c
‖ αk+1 − αk ‖2 . (100)

The inequality in (84) implies that − ‖ ek ‖ is lower bounded
by −βk ‖ xk+1 − xk ‖. This lower bound in conjunction with
the fact that inner product of two vectors is not smaller than the
negative of their norms product leads to

(xk+1 − x∗)Tek ≥ −βk ‖ xk+1 − x∗ ‖‖ xk+1 − xk ‖ .
(101)

Substituting (xk+1 − x∗)T ek in (96) by its lower bound in (97)
leads to a sufficient condition for (96) as in (86), i.e.,

βk ‖ xk+1 − x∗ ‖‖ xk+1 − xk ‖ +δk c ‖ zk+1 − z∗‖2

+
δk

c
‖ αk+1 − α∗ ‖2

≤ m ‖ xk+1 − x∗‖2 + c ‖ zk+1 − zk ‖2 +
1
c
‖ αk+1 − αk ‖2 .

(102)

Observe that if (98) holds true, then (96) and its equivalence (95)
are valid and as a result the inequality in (85) is also satisfied. �

According to the result in Lemma 6, the sequence ‖ uk −
u∗‖2 converges linearly to 0 as mentioned in (85) if the inequal-
ity in (86) holds true. Therefore, in the following proof we show
that for

δk = min

{
(μ − 1) (cγ2

u − ηk βk) γ2
o

μμ′
(
cΓ2

u γ2
u + 4β2

k /c (μ′ − 1)
) ,

m − βk /ηk

cΓ2
u /4 + μM 2/cγ2

o

}

,

(103)
the inequality in (86) holds and consequently (85) is valid.

Proofs of Theorems 1 and 2: We show that if the constant δk

is chosen as in (99), then the inequality in (86) holds true. To do
this first we should find an upper bound for βk ‖ xk+1 − x∗ ‖‖
xk+1 − xk ‖ regarding the terms in the right hand side of (86).
Observing the result of Lemma 1 that Euxk = 2zk for times k
and k + 1, we can write

Eu (xk+1 − xk) = 2 (zk+1 − zk) . (104)

MOKHTARI et al.: DQM: DECENTRALIZED QUADRATICALLY APPROXIMATED ALTERNATING DIRECTION METHOD OF MULTIPLIERS 5171

The singular values of Eu are bounded below by γu . Hence,
(100) implies that ‖ xk+1 − xk ‖ is upper bounded by

‖ xk+1 − xk ‖≤ 2
γu

‖ zk+1 − zk ‖ . (105)

Multiplying both sides of (101) by βk ‖ xk+1 − x∗ ‖ yields

βk ‖ xk+1 − x∗ ‖‖ xk+1 − xk ‖≤ 2βk

γu
‖ xk+1 − x∗ ‖

‖ zk+1 − zk ‖ . (106)

Notice that for any vectors a and b and positive constant ηk > 0
the inequality 2 ‖ a ‖‖ b ‖≤ (1/ηk) ‖ a ‖2 + ηk‖ b ‖2 holds
true. By setting a = xk+1 − x∗ and b =

(
1/γ2

u

)
(zk+1 − zk)

the inequality 2 ‖ a ‖‖ b ‖≤ (1/ηk) ‖ a ‖2 + ηk‖ b ‖2 is
equivalent to

2
γu

‖ xk+1 − x∗ ‖‖ zk+1 − zk ‖

≤ 1
ηk

‖ xk+1 − x∗‖2 +
ηk

γ2
u

‖ zk+1 − zk ‖2 . (107)

Substituting the upper bound for (2/γu) ‖ xk+1 − x∗ ‖‖
zk+1 − zk ‖ in (103) into (102) yields

βk ‖ xk+1 − x∗ ‖‖ xk+1 − xk ‖

≤ βk

ηk
‖ xk+1 − x∗‖2 +

ηkβk

γ2
u

‖ zk+1 − zk ‖2 . (108)

Notice that inequality (104) provides an upper bound for
βk ‖ xk+1 − x∗ ‖‖ xk+1 − xk ‖ in (86) regarding the terms
in the right hand side of inequality which are ‖ xk+1 − x∗‖2

and ‖ zk+1 − zk‖2 . The next step is to find upper bounds
for the other two terms in the left hand side of (86) re-
garding the terms in the right hand side of (86) which are
‖ xk+1 − x∗‖2 , ‖ zk+1 − zk ‖2 , and ‖ αk+1 − αk‖2 . First we
start with ‖ zk+1 − z∗‖2 . The relation in (26) and the upper
bound Γu for the singular values of matrix Eu yield

δk c ‖ zk+1 − z∗‖2 ≤ δk cΓ2
u

4
‖ xk+1 − x∗ ‖2 . (109)

The next step is to bound (δk/c) ‖ αk+1 − α∗ ‖ in terms of the
term in the right hand side of (47). We use the result of following
lemma to derive an upper bound for ‖ET

o (αk+1 − α∗) ‖2
.

Lemma 7: For any vectors a,b, and c, and constants μ and
μ′ which are larger than 1, i.e., μ, μ′ > 1, we can write

(

1 − 1
μ′

)(

1 − 1
μ

)

‖ c ‖2

≤ ‖ a + b + c ‖2 + (μ′ − 1) ‖ a ‖2

+ (μ − 1)
(

1 − 1
μ′

)

‖ b ‖2 . (110)

Consider the result in (106) and set

a = cET
u (zk − zk+1) ,b = ∇f (x∗) −∇f (xk+1) ,

and c = ET
o (α∗ − αk+1). By choosing these values and ob-

serving equality (24) we obtain a + b + c = ek . Hence, by

making these substitutions for a,b, c, and a + b + c into (106)
we can write

(

1 − 1
μ′

)(

1 − 1
μ

)

‖ET
o (αk+1 − α∗) ‖2

≤ ‖ ek‖2 + (μ′ − 1) ‖cET
u (zk − zk+1) ‖

2

+ (μ − 1)
(

1 − 1
μ′

)

‖∇f (xk+1) −∇f (x∗) ‖2 . (111)

Notice that according to the result in Lemma 1, the La-
grange multiplier αk lies in the column space of Eo for all
k ≥ 0. Further, recall that the optimal multiplier α∗ also lies
in the column space of Eo . These observations show that
α∗ − αk is in the column space of Eo . Hence, there exits a
vector r ∈ Rnp such that α∗ − αk = Eor. This relation im-
plies that ‖ET

o (αk+1 − α∗) ‖2
can be written as ‖ET

o Eor‖2 =
rT

(
ET

o Eo

)2r. Observe that since the eigenvalues of matrix
(
ET

o Eo

)2
are the squared of eigenvalues of the matrixET

o Eo , we

can write rT
(
ET

o Eo

)2r ≥ γ2
o r

T ET
o Eor, where γo is the small-

est non-zero singular value of the oriented incidence matrix Eo .
Observing this inequality and the definition α∗ − αk = Eor we
can write

‖ET
o (αk+1 − α∗) ‖2 ≥ γ2

o ‖ αk+1 − α∗ ‖2 . (112)

Observe that the error norm ‖ ek ‖ is bounded above by
βk ‖ xk+1 − xk ‖ as in (84) and the norm ‖cET

u (zk − zk+1) ‖2

is upper bounded by c2Γ2
u‖ zk − zk+1 ‖2 since all the singular

values of the unoriented matrix Eu are smaller than Γu . Sub-
stituting these upper bounds and the lower bound in (108) into
(107) implies

(

1 − 1
μ′

)(

1 − 1
μ

)

γ2
o ‖ αk+1 − α∗ ‖2

≤ β2
k ‖ xk+1 − xk‖2 + (μ′ − 1) c2Γ2

u‖ zk − zk+1 ‖2

+ (μ − 1)
(

1 − 1
μ′

)

M 2‖ xk+1−x∗ ‖2 . (113)

Considering the result in (101), ‖ xk+1 − xk ‖ is upper by
(2/γu) ‖ zk+1 − zk ‖. Therefore, we can substitute ‖ xk+1 −
xk ‖ in the right hand side of (109) by its upper bound
(2/γu) ‖ zk+1 − zk ‖. Making this substitution, dividing both
sides by (1 − 1/μ′) (1 − 1/μ) γ2

o , and regrouping the terms
lead to

‖ αk+1 − α∗‖2 ≤ μM 2

γ2
o

‖ xk+1 − x∗ ‖2

+
[

4μμ′β2
k

γ2
uγ2

o (μ − 1) (μ′ − 1)
+

μμ′c2Γ2
u

(μ − 1) γ2
o

]

‖ zk − zk+1 ‖2 .

(114)

Considering the upper bounds for βk ‖ xk+1 − x∗ ‖‖ xk+1 −
xk ‖, ‖ zk+1 − z∗‖2 , and ‖ αk+1 − αk‖2 , in (104), (105), and

5172 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

(110), respectively, we obtain that if the inequality
[
βk

ηk
+

δk cΓ2
u

4
+

δkμM 2

cγ2
o

]

‖ xk+1 − x∗ ‖2

+
[

4δkμμ′β2
k

cγ2
uγ2

o (μ − 1) (μ′ − 1)
+

δkμμ′cΓ2
u

(μ − 1) γ2
o

+
ηkβk

γ2
u

]

× ‖ zk+1 − zk‖2

≤ m ‖ xk+1 − x∗‖2 + c ‖ zk+1 − zk‖2 +
1
c
‖ αk+1 − αk ‖2 .

(115)

holds true, (86) is satisfied. Hence, the last step is to show that
for the specific choice of δk in (99) the result in (111) is satisfied.
In order to make sure that (111) holds, it is sufficient to show
that the coefficients of ‖ xk+1 − x∗‖2 and ‖ zk+1 − zk‖2 in the
left hand side of (111) are smaller than the ones in the right hand
side. Hence, we should verify the validity of inequalities

βk

ηk
+

δk cΓ2
u

4
+

δkμM 2

cγ2
o

≤ m, (116)

4δkμμ′β2
k

cγ2
uγ2

o (μ − 1) (μ′ − 1)
+

δkμμ′cΓ2
u

(μ − 1) γ2
o

+
ηkβk

γ2
u

≤ c. (117)

Considering the inequality for δk in (99) we obtain that (112) and
(113) are satisfied. Hence, if δk satisfies condition in (99), (111)
and consequently (86) are satisfied. Now recalling the result
of Lemma 6 that inequality (86) is a sufficient condition for the
linear convergence in (85), we obtain that the linear convergence
holds. By setting βk = ζk we obtain the linear convergence of
DQM in Theorem 1 is valid and the linear coefficient in (99) can
be simplified as (31). Moreover, setting βk = ρ + M follows
the linear convergence of DLM as in Theorem 2 with the linear
constant in (37).

Proof of Lemma 7: First notice that for any two vectors x
and y we can write

−2xT y ≤ 1
ρ
‖ x ‖2 + ρ‖ y ‖2 , (118)

where ρ > 0 is a positive scalar. This result holds since
‖
(
1/
√

ρ
)
x −√

ρy‖2 ≥ 0. By adding ‖ x ‖2 + ‖ y ‖2 to both
sides of (114) and regrouping the terms we obtain

‖ x − y ‖2 ≤
(

1 +
1
ρ

)

‖ x ‖2 + (1 + ρ) ‖ y ‖2 . (119)

The result in (115) holds for any ρ > 0. If we define ζ > 1 as
ζ = ρ + 1 we can rewrite (115) as

‖ x − y ‖2 ≤ ζ

ζ − 1
‖ x ‖2 + ζ‖ y ‖2 , (120)

for any ζ > 1. According to the result in (116), for the vectors
u = x − y and z it is true that

‖ u − z ‖2 ≤ η

η − 1
‖ u ‖2 + η‖ z ‖2 , (121)

where η > 1. Substituting u by x − y in (117) implies

‖ x − y − z ‖2 ≤ η

η − 1
‖ x − y ‖2 + η‖ z ‖2 . (122)

By substituting the upper bound in (116) for ‖ x − y ‖2 into
(118) we obtain that

‖ x − y − z ‖2 ≤ ζ

ζ − 1
η

η − 1
‖ x ‖2 +

ζη

η − 1
‖ y ‖2 + η‖ z ‖2 .

(123)
Multiplying both sides of (119) by (ζ − 1) (η − 1) / (ζη) yields

(

1 − 1
ζ

)(

1 − 1
η

)

‖ x − y − z ‖2

≤ ‖ x ‖2 + (ζ − 1) ‖ y ‖2 + (η − 1)
(

1 − 1
ζ

)

‖ z ‖2 .

(124)

By setting η = μ, ζ = μ′,x = a + b + c,y = a, and z = b the
result in (106) follows.

REFERENCES

[1] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “Decentralized quadratically
approximated alternating direction method of multipliers,” in Proc. IEEE
Global Conf. Signal Inf. Process. (GlobalSIP), Dec. 2015, pp. 795–799.

[2] F. Bullo, J. Cortés, and S. Martinez, Distributed Control of Robotic Net-
works: A Mathematical Approach to Motion Coordination Algorithms.
Princeton, NJ, USA: Princeton Univ. Press, 2009.

[3] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in
the study of distributed multi-agent coordination,” IEEE Trans. Ind. Inf.,
vol. 9, pp. 427–438, 2013.

[4] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive
networks: Formulation and performance analysis,” IEEE Trans. Signal
Process., vol. 56, no. 7, pp. 3122–3136, 2008.

[5] A. Ribeiro, “Ergodic stochastic optimization algorithms for wireless com-
munication and networking,” IEEE Trans. Signal Process., vol. 58, no. 12,
pp. 6369–6386, 2010.

[6] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang,
“Decomposition by partial linearization: Parallel optimization of multi-
agent systems,” IEEE Trans. Signal Process., vol. 62, no. 3, pp. 641–656,
2014.

[7] A. Ribeiro, “Optimal resource allocation in wireless communication and
networking,” EURASIP J. Wireless Commun. Netw., vol. 2012, no. 1,
pp. 1–19, 2012.

[8] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc
WSNS with noisy links—Part I: Distributed estimation of deterministic
signals,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 350–364, 2008.

[9] U. A. Khan, S. Kar, and J. M. Moura, “Diland: An algorithm for distributed
sensor localization with noisy distance measurements,” IEEE Trans. Sig-
nal Process., vol. 58, no. 3, pp. 1940–1947, 2010.

[10] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,”
in Proc. ACM 3rd Int. Symp. Inf. Process. Sensor Netw., 2004, pp. 20–27.

[11] S. Barbarossa and G. Scutari, “Decentralized maximum-likelihood esti-
mation for sensor networks composed of nonlinearly coupled dynamical
systems,” IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3456–3470,
2007.

[12] R. Bekkerman, M. Bilenko, and J. Langford, Scaling Up Machine Learn-
ing: Parallel and Distributed Approaches. Cambridge, U.K.: Cambridge
Univ. Press, 2011.

[13] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Consensus-based distributed
optimization: Practical issues and applications in large-scale machine
learning,” in Proc. 50th Annu. Allerton Conf. Commun., Control, Comput.
(Allerton), 2012, pp. 1543–1550.

[14] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for big data:
Scalable, randomized, and parallel algorithms for big data analytics,” IEEE
Signal Process. Mag., vol. 31, no. 5, pp. 32–43, 2014.

[15] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61,
2009.

[16] D. Jakovetic, J. Xavier, and J. M. Moura, “Fast distributed gradient meth-
ods,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1131–1146, 2014.

[17] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” 2013, arXiv preprint arXiv:1310.7063.

MOKHTARI et al.: DQM: DECENTRALIZED QUADRATICALLY APPROXIMATED ALTERNATING DIRECTION METHOD OF MULTIPLIERS 5173

[18] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton—Part I: Algo-
rithm and convergence,” 2015, arXiv preprint arXiv:1504.06017.

[19] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton—Part II: Conver-
gence rate and implementation,” 2015, arXiv preprint arXiv:1504.06020.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[21] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence
of the admm in decentralized consensus optimization,” IEEE Trans. Signal
Process., vol. 62, no. 7, pp. 1750–1761, 2014.

[22] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Explicit convergence
rate of a distributed alternating direction method of multipliers,” IEEE
Trans. Autom. Control, vol. 61, no. 4, pp. 892–904, 2015.

[23] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal parame-
ter selection for the alternating direction method of multipliers (ADMM):
Quadratic problems,” IEEE Trans. Autom. Control, vol. 60, no. 3,
pp. 644–658, 2015.

[24] M. G. Rabbat et al., “Generalized consensus computation in networked
systems with erasure links,” in Proc. IEEE 6th Workshop Signal Process.
Adv. Wireless Commun., 2005, pp. 1088–1092.

[25] D. Jakovetic, J. M. Moura, and J. Xavier, “Linear convergence rate of
a class of distributed augmented Lagrangian algorithms,” IEEE Trans.
Autom. Control, vol. 60, no. 4, pp. 922–936, 2015.

[26] N. Chatzipanagiotis and M. M. Zavlanos, “On the convergence rate of a
distributed augmented Lagrangian optimization algorithm,” in Proc. IEEE
Amer. Control Conf. (ACC), 2015, pp. 541–546.

[27] T. Erseghe, D. Zennaro, E. Dall’Anese, and L. Vangelista, “Fast consen-
sus by the alternating direction multipliers method,” IEEE Trans. Signal
Process., vol. 59, no. 11, pp. 5523–5537, 2011.

[28] A. Makhdoumi and A. Ozdaglar, “Convergence rate of distributed ADMM
over networks,” 2016, arXiv preprint arXiv:1601.00194.

[29] Q. Ling, and A. Ribeiro, “Decentralized linearized alternating direction
method of multipliers,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), 2014, pp. 5447–5451.

[30] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DLM: Decentralized linearized
alternating direction method of multipliers,” IEEE Trans. Signal Process.,
vol. 63, no. 15, pp. 4051–4064, 2015.

[31] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

Aryan Mokhtari received the B.Sc. degree in elec-
trical engineering from Sharif University of Technol-
ogy, Tehran, Iran, in 2011, and the M.Sc. degree in
electrical engineering from the University of Penn-
sylvania (UPenn), Philadelphia, PA, in 2014. Since
2012, he has been working towards the Ph.D. degree
in the Department of Electrical and Systems Engi-
neering, UPenn. His research interests include opti-
mization, signal processing, and machine learning.
His current research focuses on stochastic optimiza-
tion, online learning, and decentralized/distributed

optimization.

Wei Shi received the B.E. degree in automation
and Ph.D. degree in control science and engineer-
ing from the University of Science and Technol-
ogy of China, Hefei, in 2010 and 2015, respectively.
After his M.Sc. and Ph.D. studies, in 2015 he joined
Coordinated Science Laboratory, the University of
Illinois at Urbana-Champaign, Urbana, as a Postdoc-
toral Research Associate. His research interests are
optimization and its applications in signal processing
and control. Now he is specifically focused on decen-
tralized/distributed/parallel optimization.

Qing Ling received the B.S. degree in automation
and the Ph.D. degree in control theory and control
engineering from University of Science and Technol-
ogy of China, Hefei, Anhui, China, in 2001 and 2006,
respectively. From 2006 to 2009, he was a Postdoc-
toral Research Fellow with Department of Electrical
and Computer Engineering, Michigan Technological
University, Houghton, Michigan, USA. Since 2009,
he has been an Associate Professor with Department
of Automation, University of Science and Technol-
ogy of China. His current research focuses on decen-

tralized network optimization and its applications.

Alejandro Ribeiro received the B.Sc. degree in elec-
trical engineering from the Universidad de la Repub-
lica Oriental del Uruguay, Montevideo, in 1998 and
the M.Sc. and Ph.D. degree in electrical engineering
from the Department of Electrical and Computer En-
gineering, the University of Minnesota, Minneapolis
in 2005 and 2007. From 1998 to 2003, he was a mem-
ber of the technical staff at Bellsouth Montevideo.
After his M.Sc. and Ph.D. studies, in 2008 he joined
the University of Pennsylvania (Penn), Philadelphia,
where he is currently the Rosenbluth Associate Pro-

fessor at the Department of Electrical and Systems Engineering. His research
interests are in the applications of statistical signal processing to the study of
networks and networked phenomena. His current research focuses on wireless
networks, network optimization, learning in networks, networked control, robot
teams, structured representations of networked data structures, and graph signal
processing. Dr. Ribeiro received the 2014 O. Hugo Schuck best paper award,
the 2012 S. Reid Warren, Jr. Award presented by Penn’s undergraduate student
body for outstanding teaching, the NSF CAREER Award in 2010, and student
paper awards at the 2013 American Control Conference (as adviser), as well as
the 2005 and 2006 International Conferences on Acoustics, Speech and Signal
Processing. Dr. Ribeiro is a Fulbright scholar and a Penn Fellow.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

