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Decentralized Jointly Sparse Optimization by
Reweighted Minimization

Qing Ling, Zaiwen Wen, and Wotao Yin

Abstract—A set of vectors (or signals) are jointly sparse if all their
nonzero entries are found on a small number of rows (or columns). Con-
sider a network of agents that collaboratively recover a set of jointly
sparse vectors from their linear measurements . Assume
that every agent collects its own measurement and aims to recover
its own vector taking advantages of the joint sparsity structure. This
paper proposes novel decentralized algorithms to recover these vectors
in a way that every agent runs a recovery algorithm and exchanges
with its neighbors only the estimated joint support of the vectors. The
agents will obtain their solutions through collaboration while keeping
their vectors’ values and measurements private. As such, the proposed
approach finds applications in distributed human action recognition,
cooperative spectrum sensing, decentralized event detection, as well as
collaborative data mining. We use a non-convex minimization model and
propose algorithms that alternate between support consensus and vector
update. The latter step is based on reweighted iterations, where can
be 1 or 2. We numerically compare the proposed decentralized algorithms
with existing centralized and decentralized algorithms. Simulation results
demonstrate that the proposed decentralized approaches have strong
recovery performance and converge reasonably fast.

Index Terms—Decentralized algorithm, jointly sparse optimization, non-
convex model.

I. INTRODUCTION

In this correspondence, we develop decentralized algorithms for re-
covering a set of jointly sparse vectors (or signals) from their dis-
tributed measurements. Suppose that there are agents constituting
a bidirectionally connected network, and each agent in the network
wants to recover its own signal from its measurement

where is a given matrix
and is noise. Our goal is to recover under the
assumption that they are jointly sparse, namely, every has a small
number of nonzero entries and the nonzero entries of appear
on a small number of common rows of
[1]. Further, the recovery algorithms should be decentralized; no fusion
center is in charge of collecting the distributed data and recovering the
jointly sparse signals. Each agent recovers its own signal, and the com-
putation relies on its local data and limited information exchange with
its one-hop neighbors (those agents within its communication range).
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Most existing jointly sparse optimization algorithms (e.g., [2]–[5])
are centralized. Consider jointly sparse optimization in a multi-agent
network. With centralized computation, all the agents must send their
data to a fusion center, where a jointly sparse optimization
algorithm then tries to obtain the solutions. Such a centralized approach
brings high communication burden when the volume of data is large.
Contrarily, decentralized algorithms eliminate the need of extensive
data transmission, hence simplify traffic routing, balance communica-
tion load, and provide better network scalability. These attractive fea-
tures of decentralized algorithms have been validated in the recent re-
search on decentralized signal estimation [6] and decentralized sparse
optimization [7].
A notable algorithm for decentralized jointly sparse optimization is

[8], which considers the case where all agents measure the same signal
with a group sparse structure. The algorithm requires the agents to ex-
change their estimates of the signal. In contrast, our work considers
different agents measuring different signals with a jointly sparse struc-
ture, and our agents do not exchange their signals.

A. Applications

Decentralized jointly sparse optimization is suitable for a group of
related agents to quickly obtain solutions and reach decisions by them-
selves, instead of spending time and bandwidth on sending all the data
to a distant fusion center for processing. Let us briefly describe some
examples:
Distributed human action recognition: A set of wireless motion

sensors are placed on a person to recognize actions such as sit-
ting, running, walking, and climbing upstairs/downstairs [9]. Associ-
ated with each sensor is an vector sparsely representing the
current action, or a combination of the current actions. In the training
stage, the network collects measurements for each of the actions;
sensor has the training data . In the testing stage,
sensor collects , fromwhich the action vec-
tors are recovered based on the joint sparsity assumption1.
Cooperative spectrum sensing: Suppose that cognitive radios are

sensing sparse wideband spectra2, where the th cognitive radio takes
the time-domain measurement . Each can be sparsely repre-
sented under the Fourier basis, namely, where is the
Fourier transform matrix and is a sparse vector. Due to channel
fading, have different values, yet they are jointly sparse.
The task of cooperative spectrum sensing is to recover from

via the cooperation of the distributed cognitive radios [10].
In [11], a set of distributed cognitive radios, each equipped with a

frequency selective filter, record (dimension-reduced) linear combi-
nations of sparse wideband spectra. The th cognitive radio records

. For the same reason, are subject to jointly
sparse recovery.
Decentralized event detection: In [12], footstep data were collected

by two sets of nine sensors, each set consisting of four acoustic, three
seismic, one passive infrared and one ultrasonic sensors. Jointly sparse
optimization recovers a set of coefficient vectors, which are then used
to classify the subjects and extract their features. Stronger performance
than support vector machine (SVM) and kernel SVM is obtained.
Collaborative data mining: Suppose that a set of data centers per-

form learning tasks, which take advantages of the jointly sparse struc-

1Paper [9] assumes that are identical and sparse, but we argue that
they are jointly sparse. They are not always identical because the same action
can vary in speed and size and thus leads to different readings across different
sensors.
2The number of actives channels is assumed to be small compared to the total

number of channels.
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ture. If the data contain precious or private information belonging to the
individual agents (e.g., medical data, user rating data, or any data whose
sharing are prohibited by law), or if the amount of data is too large to
send over the network, collecting all the data centrally is infeasible.
However, if the data centers are willing to collaborate by exchanging
their estimates of the joint support, properly designed decentralized al-
gorithms become a viable option.

B. Models

To achieve measurement privacy, this paper uses decentralized algo-
rithms based on agents exchanging their estimates of the joint support,
instead of exchanging their solutions or data . The algorithms
are developed from the following non-convex model, which extends
[13] from sparse optimization to jointly sparse optimization:

(1)

where ’s are convex loss functions, or 2, is a
smoothing parameter, and is a penalty parameter. In (1),
the sum-log term is non-convex and promotes the joint sparsity of

. The sum bundles the th elements from
all the vectors. Hence, minimizing the entire sum-log term of (1)
becomes minimizing the logarithmic sum of the bundles, which
tends to make all the bundles zero except for a few.
In model (1), applying quadratic loss to linear measurements (or

linear regression), we obtain:

(2)

Corresponding to and , iteratively reweighted and
algorithms can be used to solve (1) and (2); see Section II. Due to non-
convexity, no guarantees are known for finding the global optimum,
even for (2) with . However, like several algorithms for sparse
signal recovery such as the reweighted and algorithms [13], [14],
our reweighted algorithms empirically return solutions of equal or
better quality than convexmodels including the one based on -norm
minimization.
For joint sparsity under a basis or dictionary , one can use the loss

function:

(3)

Other examples include the absolute (i.e., ), logistic, and hinge loss
functions, which are commonly used in statistical machine learning.
For joint sparsity under transform (namely, is

jointly sparse), the term in the regularization function (the
sum-log term of (1)) should be replaced by .
Furthermore, instead of one signal for each agent, each agent can

be associated with a group of vectors or signals. If the groups for dif-
ferent agents do not overlap, model (1) still applies. If some groups
overlap, additional constraints in the form of , where
and are copies of one common vector in different groups, must be
introduced and will lead to computational overhead in decentralized
algorithms.

The rest of this paper is organized as follows. We describe in
Section II the centralized algorithm for (1). The corresponding decen-
tralized algorithms with exact and inexact consensus are introduced
in Section III. Numerical comparison between the centralized and
decentralized algorithms are presented in Section IV. Finally, we con-
clude this paper with a few remarks on future work in Section V. The
convergence proof of the centralized algorithm is given in Appendix.

II. CENTRALIZED REWEIGHTED MINIMIZATION

This section explains how reweighted iterations, , solve
models (1) (and (2)) and also describes a centralized approach based
on these iterations.

A. Majorization Minimization

In the iterative majorization minimization algorithm [15], given
at iteration (or time) , the sum-log term of (1) is lin-

earized with respect to as:

(4)

where the first term is a constant and the second term is a function of
the unknowns . The surrogate objective function is thus the
first term in (1) plus the linearization term in (4):

(5)

This surrogate objective function is convex in for
and separable with respect to ; before introducing its decen-
tralized algorithms, we first describe a centralized approach based on
reweighted minimization iterations.

B. Centralized Reweighted Minimization

Introduce a weight vector . To mini-
mize (5), the centralized approach performs the following two steps at
iteration :

Step 1: Updating the Weight Vector. Calculate from
:

(6)

Step 2: Updating the Estimates. Minimize (5) with respect to
:

(7)
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If , steps (6) and (7) reduce to the building block of the
reweighted and algorithms [13], [14] for and 2, respec-
tively. One can see that , , are the weight
variables. If , and is relatively

small compared to , then when-

ever ; hence, the last term in (7), summing up over
, becomes approximately the number of nonzero rows in

.
The following theorem elaborates on the convergence of the above

iteration for solving (1).
Theorem 2.1: The sequence generated

by (6) and (7) for or 2 has a convergent subsequence which
converges to a stationary point of (1).
A proof of the theorem can be found in Appendix.

III. DECENTRALIZED REWEIGHTED MINIMIZATION

In the centralized approach, (7) is carried out by each individual
agent , so it is naturally decentralized. It remains to decentralize the
computation of in (6). In this section, we describe an exact and
an inexact decentralized approaches, both of which reduce to average
consensus subproblems. Among several average consensus algorithms,
we use the alternating direction method (ADM) [16].

A. Consensus Optimization

Observe that in (6), is set as the average of
, plus , and this is the well-known average consensus

problem . It has stochastic decentralized solutions, such as the random-
ized gossip algorithm in [17]. Here we solve this average consensus
problem in a deterministic decentralized manner, first formulating it as
a consensus optimization problem and then solving it with the ADM.
Consensus optimization is a powerful tool in designing decentral-

ized networked multi-agent systems. To obtain an optimization vari-
able common to the agents, we let each agent hold a local copy of the
optimization variable and impose consensus constraints on the local
copies. Such a technique has been successfully applied in decentralized
signal recovery [7], [18]. To update according to (6), we introduce
the consensus optimization problem:

(8)

where denotes the local copy of held by agent , is its th
element, and denotes the neighbors of agent . Two agents are neigh-
bors if they are connected by a bidirectional edge. Solving (8) gives a
copy of for each agent , and they all obey (6);
we refer the interested reader to the proof in [7].

B. Decentralized Consensus Optimization

Now we apply the ADM [16] to problem (8) in a decentralized
manner for each . Suppose that time is divided into slots. Given

, a two-step inner loop is used to update :
Step 1.1: Optimizing the Weight Vector. At time slot , agent
updates as:

(9)

where is the th element of the Lagrange multiplier
, denotes the cardinality of the set , and is either fixed

to a positive constant or varying during the optimization process.
Step 1.2: Updating the Lagrange Multipliers. At time slot ,
agent updates as:

(10)

As grows, this loop converges to the centralized solution (6). See
[18] for more details.

C. Inexact Decentralized Consensus Optimization

Running many loops of (9) and (10) is not entirely necessary. We
found that an inexact update of will still allow to improve
quickly. Therefore, we compute (6) inexactly before letting agent
update its in (7), and this will translate to significantly reduced
agent-agent communication. To compute (6) inexactly, we propose to
execute (9) and (10) only once. This leads to the following 3–step de-
centralized iteration at , which replaces the 2–step centralized iteration
(6)–(7):

Step 1: Updating the Weight Vector. The th agent collects
for all (already done in step 2 at last iteration)

and sets:

(11)

Step 2: Updating the Lagrange Multipliers. The th agent collects
and sets:

(12)

Step 3: Updating the Signals. The th agent computes:

(13)

Steps 1–3 are iterated until a certain stopping criterion is met.
The decentralized reweighted minimization algorithm works as

follows. At the initial time 0, each agent takes its measurement vector
with the measurement matrix , coordinates with its neighbors

to decide the value of , and sets the initial values of , , and
as zero. The settings of , , and can be common to all agents.

At time , the agents update as we will discuss below, and broad-
cast to their neighbors. After collecting
from its neighbors, each agent updates the weight vector
with (11), updates the Lagrange multipliers with (12), and up-
dates the local copies with (13). The algorithm is fully de-
centralized, requiring only local information exchange among one-hop
neighbor agents.
We have not been able to prove convergence for the proposed decen-

tralized reweighted minimization algorithms though we numerically
demonstrate their quick convergence in the next section. We compare
all algorithms under the same network topology, and we do not study
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TABLE I
COMPARED ALGORITHMS

how the network topology affects the convergence speed, which is be-
yond the scope of this paper3. Further, it is theoretically interesting to
understand why inexact consensus at each is sufficient and leads to
an overall effective algorithm.

D. Parameter Settings

There are three parameters , , and in the proposed decentral-
ized algorithms. balances data fidelity and signal sparsity, and it
should be chosen based on the prior knowledge on the data and un-
known signals, or determined by cross validation. can be set as a
constant in the algorithms, though our preliminary simulations show
that decreasing gradually may improve the convergence speed.
Regarding the parameter , [13] suggests that be set

slightly smaller than the expected nonzero magnitudes of the signal
vector in their reweighted algorithm. Though this adaptation strategy
is successful in recovering a single sparse signal, it is difficult to be
implemented in recovering jointly sparse signals. If each agent updates
based on its own estimate of the signal vector, different agents may

have different values of . Due to this reason, we simply set
, where is a positive constant. For ,

we adopt the strategy in the reweighted algorithm [14]:
, where is a positive constant. According

to our preliminary numerical experiments, this setting and
works well for different problem dimensions.

IV. NUMERICAL EXPERIMENTS

This section presents the numerical results of solving (2) by the cen-
tralized and decentralized algorithms listed in Table I. The presentation
focuses on their recovery performances, as well as convergence rates.
Due to space limit, we present only one set of results4.

A. Simulation Settings

Our numerical simulations consider agents uniformly ran-
domly deployed in a 100 100 area. Pair-wise agents within a com-
munication radius of are bidirectionally connected. A total
of signal vectors of dimension are jointly -sparse, where

. Each signal is measured by linear projections, which
are corrupted by i.i.d. zero-mean Gaussian noise with standard devi-
ation 0.05. As , the measurements give rise to under-deter-
mined linear systems. The nonzero elements in the signals and those
in the measurement matrices are sampled independently from the stan-
dard Gaussian distribution.
In reweighted algorithms CRLq, DRLq, and IRLq, parameters

and are set as 1, and as 0.8, which is a moderate value. CL21
centrally optimizes the convex model:

(14)

3For the average consensus problem, the impact of network topology on con-
vergence speed is discussed in, e.g., [17].
4The demo is available on http://www.caam.rice.edu/optimization/L1/

decentral/

Fig. 1. Comparison of recovery quality. and are the penalty parameters
in (2) for the reweighted and algorithms, respectively, and is the penalty
parameter in (14) for the -norm minimization algorithm.

Performances of the algorithms are measured in terms of the recovered
absolute error, which is defined as the -norm difference between the
true and obtained signals over the agents.

B. Recovery Performance and Convergence Rate

Fig. 1 depicts the recovery performances of the algorithms in Table I.
Different regularization functions need different parameters, and our
purpose is to evaluate different algorithms over a variety of parameter
values so we can compare them at their better values.
Firstly, whenever on the same parameter, CRL1 (centralized) and

DRL1 (decentralized) give almost the same absolute error. So do CRL2
(centralized) and DRL2 (decentralized). These strongly suggest that
decentralizing the reweighted and algorithms (through carrying
out the average consensus steps incompletely) does not affect their so-
lution quality.
Secondly, comparing CRL1 (non-convex) and CL21 (convex), we

find that the former consistently gives better solutions than the latter
over a set of different parameters. On the other hand, the performance
of CRL2 (non-convex) is more sensitive to the choice of its penalty
parameter . With a small , CRL1 and CRL2, both decentralized
and non-convex, have similar recovery performance and are better than
CL21 (convex and centralized), yet that of CRL2 starts to drop as is
increased. Therefore, we suggest using conservative values of when
applying CRL2.
Finally, no matter convex or not, the joint sparse algorithms, CL21,

CRL1/DRL1, and CRL2/DRL2, have much better performance than
algorithms IRL1 and IRL2, which neglect joint sparsity.
The convergence speed decides how many iterations a decentralized

algorithm requires to take in order to attain a satisfactory solution and
thus directly affects the amount of communication needed. As shown in
Fig. 2, the decentralized algorithms, DRL1 with and DRL2
with , have reasonably fast convergence. We tested other
problem sizes and found that they converged in 100–200 iterations.

V. CONCLUSIONS

(Jointly) sparse optimization has been an active research area during
the last several years, and it is used widely in compressive sensing,
signal/image processing, and machine learning. There is a practical
class of problems where signal measurements or data are located on
distributed agents of a network. To recover jointly sparse signals from
these measurements or to learn jointly sparse features from the data,



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 5, MARCH 1, 2013 1169

Fig. 2. Convergence rates of the algorithms for a single instance. Here
for DRL1 and for DRL2.

the majority of the existing approaches rely on centralized computa-
tion at a fusion center, which must have access to all the measure-
ments or data. There are very few approaches to decentralize the com-
putation to the distributed agents. This work addresses the recovery of
jointly sparse vectors by decentralized computation in which the agents
do not exchange the data or solutions but just exchange their guesses
of a common signal supports. The update of support guesstimates is
based on consensus averaging, and this update is alternated with each
agent update of its own vector. The proposed decentralized algorithms
compare favorably with various existing centralized and decentralized
algorithms.

APPENDIX

Now we prove Theorem 2.1. Our analysis uses the techniques from
[19]; we made changes since [19] only considers single sparse signal
recovery.

Proof: Since is the solution of (7), there exist subgra-
dients such that:

(15)

Hence, we obtain:

(16)

where we have used (15), and the inequality for
any positive number .

Hence, the sequence is monotonically de-
creasing and converges. It is clear that the sequence
is contained in a level set

Obviously, is bounded. Hence, there exists a convergent subse-
quence whose limit is . It follows from
(16) that , which yields

. This together with (16) implies

that:
.

Using and
, we obtain:

. Hence, the subsequence
also converges to . Combining these

fact together and using the upper semi-continuous property of the sub-
gradient, we obtain:

(17)

where . Hence,
is a stationary point [20] of (2).
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