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Decentralized Sparse Signal Recovery for
Compressive Sleeping Wireless Sensor Networks
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Abstract—This paper develops an optimal decentralized algo-
rithm for sparse signal recovery and demonstrates its application
in monitoring localized phenomena using energy-constrained
large-scale wireless sensor networks. Capitalizing on the spatial
sparsity of localized phenomena, compressive data collection
is enforced by turning off a fraction of sensors using a simple
random node sleeping strategy, which conserves sensing energy
and prolongs network lifetime. In the absence of a fusion center,
sparse signal recovery via decentralized in-network processing is
developed, based on a consensus optimization formulation and
the alternating direction method of multipliers. In the proposed
algorithm, each active sensor monitors and recovers its local re-
gion only, collaborates with its neighboring active sensors through
low-power one-hop communication, and iteratively improves the
local estimates until reaching the global optimum. Because each
sensor monitors the local region rather than the entire large field,
the iterative algorithm converges fast, in addition to being scalable
in terms of transmission and computation costs. Further, through
collaboration, the sensing performance is globally optimal and
attains a high spatial resolution commensurate with the node
density of the original network containing both active and inactive
sensors. Simulations demonstrate the performance of the proposed
approach.

Index Terms—Alternating direction method of multipliers,
compressive sensing, consensus optimization, decentralized sparse
signal recovery, Wireless sensor networks.

I. INTRODUCTION

R ECENT advances in compressive sensing have demon-
strated that signals which are sparse in certain domain

can be recovered from a small set of measurements [1]–[3]. The
appealing reduction in signal acquisition and storage costs has
spawned a range of signal processing applications, particularly
for imaging and spectral analysis. A niche application of in-
terest in this paper is for monitoring localized phenomena using
large-scale wireless sensor networks.

Wireless sensor networks have found increasing applications
in important monitoring problems, but the energy efficiency and
network robustness issues are still quite perplexing for a large-
scale network of battery-powered, low-cost wireless sensors [4],
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[5]. A particularly challenging scenario is when the physical
phenomena under monitoring exhibit localized features that ap-
pear sparsely over a large sensing field; that is, the physical field
of interest can be described by a sparse signal in the spatial do-
main. Examples abound in a broad range of monitoring appli-
cations, such as tracking multiple sources/targets, sensing the
underutilized spectrum in a cognitive radio network, and mon-
itoring civil structural health conditions [6]–[8]. In these cases,
sensory measurements do not contribute equally to the moni-
toring task, because sensors that are far away from source lo-
cations may not be able to collect useful measurements for the
reconstruction of the physical field. Nevertheless, without prior
knowledge of the signal source locations, a large number of sen-
sors need to be densely deployed and always stay on in order
to provide adequate spatial resolution for detection and recon-
struction of the physical field. Note that the spatial resolution of
sensing offered by a uniform network is commensurate to the
minimum spatial spacing of sensors; as such, the sensor density
becomes an indicator of the spatial sampling rate [9]. When tra-
ditional sensing methods are adopted, a wireless sensor network
faces the conflicting design objectives of sensing at low energy
costs and high spatial resolution.

Recognizing the spatial sparsity of localized phenomena and
motivated by the compressive sensing principle, we ask: is it
possible to accurately recover a sparse signal that represents
the physical field, at high spatial resolution but using only a
fraction of sensory measurements? Specifically, our idea is to
turn off some sensors using a random node sleeping strategy
[4], process measurements collected only from active sensors
to conserve energy, and recover localized phenomena at a high
spatial resolution commensurate to the node density of the orig-
inal network containing both active and inactive sensors.

The information processing issue raised above is intimately
related to the network infrastructure. In a centralized network
with a fusion center, the network becomes increasingly energy-
consuming and unreliable as the number of sensors increases,
due to extensive multi-hop communication between sensors and
the fusion center [5]. To improve scalability and robustness of
large-scale wireless networks, we focus on decentralized in-net-
work processing in the absence of a fusion center. Under this
network structure, active sensors collaboratively recover local-
ized phenomena and seek to reach globally optimal solutions
through an iterative in-network procedure, during which each
sensor exchanges information only with neighboring active sen-
sors within its one-hop transmission range.

In this paper, we develop a decentralized in-network pro-
cessing algorithm for recovering spatially sparse signals using a
sleeping wireless sensor network. The sensing field under mon-
itoring is represented as a state vector, in which each element
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describes the signal value of the phenomenon occurring at a
corresponding sensor point. Because the number of occurring
phenomena in the sensing field is smaller than the number of
sensors, the state vector is sparse with only a few nonzero ele-
ments. The sparsity feature motivates compression during data
collection, for which we employ a simple compression scheme
by randomly turning off some sensors and using only a fraction
of sensory measurements. To guarantee the resolution for moni-
toring, the key problem is how to make decisions for both active
and inactive sensors when inactive sensors are unable to nei-
ther collect measurements nor exchange information. This work
addresses this problem via formulating the collaborative sparse
signal recovery problem as a consensus optimization problem,
where an regularized least squares formulation is adopted to
incorporate the sparsity knowledge. An active sensor not only
optimizes for itself, but also optimizes for its inactive neighbors;
the active sensors finally reach consensus for the inactive sen-
sors. As a result, a phenomenon, regardless of whether occurring
at an active or inactive sensor point, can be detected and quanti-
fied. This consensus optimization framework is implemented in
a decentralized manner using the alternating direction method
of multipliers for separable convex programs [10].

The rest of the paper is organized as follows. Section II briefly
surveys related work. In Section III, data compression is in-
troduced by a random node sleeping strategy, and the corre-
sponding sparse signal recovery task is formulated as an regu-
larized least squares problem. A consensus optimization formu-
lation is proposed in Section IV, followed by the development
of a decentralized and collaborative in-network processing algo-
rithm that only requires local communication. Extensive simu-
lations are provided in Section V to verify the effectiveness of
the decentralized sparse signal recovery algorithm. Section VI
summarizes the paper.

II. RELATED WORK

Sparse signal recovery has attracted extensive research in-
terest recently. For centralized sensing systems such as cameras
and radars, compressive sensing based on random reduced-di-
mension projections is discussed for both noise-free and noisy
cases in [1] and [2]. The key idea is to solve a mathematical pro-
gram, which minimizes the norm of the signal subject to con-
straints of measurements. Deterministic projections such as (in-
verse) Fourier transformation, followed by a random selection,
can also guarantee the quality of recovery [3]. For wireless com-
pressive sensing in a distributed system, a widely advocated idea
for data compression is to transform the sensory measurements
via a random matrix and transmit the projected measurements
to a fusion center. The fusion center then recovers the original
sparse signal in a centralized way [11], [12]. In doing so, all sen-
sors are assumed to be active and the compression comes from
the choice of the random projection matrix rather than from the
sensing process for data acquisition. This method conserves en-
ergy by avoiding sending all measurements directly to the fusion
center. However, when in the absence of a fusion center, it in-
volves nontrivial scheduling burden to percolate the randomly
projected measurements to distributed sensors, and it is an un-
solved technical challenge to collaboratively recover the signal
in a decentralized manner. Furthermore, the energy consump-

tion of data acquisition cannot be conserved, since all sensors
still need to sense and collect measurements.

In regard of the data collection issue, this paper considers a
projectionschemethat inducesdatacompressionandenergycon-
servation during the sensing process. The sparse signal to be re-
covered, namely the vector of signal strength of the phenomena
occurring in the sensing field, is transformed by a deterministic
measurement matrix to the sensory measurement domain. The
rows of the measurement matrix are then randomly sampled by
randomly activating a fraction of sensors, while the rest sensors
stay in a sleeping mode without collecting measurements.

Node sleeping strategies have been investigated for wireless
sensor networks where energy efficiency is a primary concern
[4]. Selection of the sleeping nodes can be deterministic by op-
timizing a network utility function, or stochastic by randomly
turning off a fraction of sensors [9], [13]. In this paper, we con-
sider a simple random sleeping strategy. In the beginning of a
reconfiguration period, a random fraction of sensors are forced
to be inactive. At the end of the period, these sensors wake up
to wait for a new round of reconfiguration. For the coverage,
connectivity, synchronization, and scheduling of sleeping net-
works, readers are referred to [14], [15], and related literature.
This work departs from the networking issue by focusing on in-
formation processing for a sleeping network.

In terms of information processing, this paper aims for decen-
tralized in-networkprocessing,which isknownfor improving the
scalability and robustness of large-scale wireless networks [16].
The design objective is to accomplish an otherwise centralized
task in a fully decentralized manner, in the absence of a fusion
center, using a network where each node exchanges information
with its one-hop neighbors only. A well-studied decentralized
in-network processing method is consensus averaging [17],
[18]. Sensors dynamically exchange current estimates with
one-hop neighbors and update their local estimates, until the
whole network reaches consensus on an averaged scalar. A more
complicated task is to collaboratively optimize an objective
function, such as in learning problems [19]. In [20], separable
objective functions are optimized based on the decentralized
incremental subgradient approach. The distributed event-region
detection problem is solved by using hidden Markov random
field models in [21] and by a graph-based method in [22].
For constrained optimization problems, a recently developed
technique is to construct a consensus optimization formulation
[23], [24]. Each sensor holds its own local estimates of all the
unknowns, and the estimates of neighboring sensors are forced
to consent asymptotically. A powerful implementation tool to
solve the constrained consensus optimization problem is the
alternating direction method of multipliers, which is basically
an augmented Lagrangian method [10]. Taking [23] and [24]
as examples, the estimation task is formulated to be with a
separable objective function and a set of consensus constraints.
By iteratively updating local estimates, the network reaches a
consensus which minimizes the estimation error. This idea has
been applied in [7], which discusses decentralized spectrum
sensing for cognitive radios via exploiting sparsity.

This paper also uses the idea of consensus optimization and
the tool of the alternating direction method of multipliers. How-
ever, a key differentiating feature of our problem formulation is
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the number of decision variables updated per node in each it-
eration. Note that an important property of our problem is, the
size of the state vector to be recovered is equal to the number of
sensors, which is quite large for a large-scale network. There-
fore, it can be too costly for each sensor to hold a local estimate
of the entire unknown vector as in [23], [24], and [7]. Alterna-
tively, we let an active sensor hold a scalar estimate for itself, and
several scalar estimates for its inactive neighbors. Neighboring
active sensors then reach consensus for their common inactive
neighbors. This dimension reduction scheme considerably re-
duces the computation and communication costs per sensor, and
improves the scalability of the algorithm for a large-scale net-
work. Further, by imposing restrictions on the measurement ma-
trix, we formulate the problem as a separable convex program,
which has a neat decentralized solution from the alternating di-
rection method of multipliers.

Finally, we emphasize the difference between decentralized
sparse signal recovery and distributed compressed sensing [25],
[26]. The merit of distributed compressed sensing is to recover
signals collected from distributed sensing sources via exploiting
the joint sparsity; the recovery, however, is generally done at a
fusion center in a centralized way. In this paper we also utilize
the sparsity of signals observed by distributively located sen-
sors, but focus on decentralized optimization in a large-scale
sleeping wireless sensor network. In the absence of a fusion
center, we have to deal with the challenge that each node only
has its own measurement, not all measurements from all sen-
sors, in the signal recovery process.

III. PROBLEM FORMULATION

Consider a dense wireless sensor network deployed in a two-
dimensional field. The network has a set of sensors at lo-
cations , indexed by ,
in which is the subset of sensor indices for active sensors
with cardinality and is the subset of inactive sen-
sors in the sleeping mode for energy conservation with cardi-
nality , where denotes cardinality. Transmitting at
low power, each sensor can only communicate locally with its
one-hop neighbors within the communication range , which
is assumed to be the same for all sensors. The network is con-
nected if there is at least one undirected path between any pair
of sensors. To enable decentralized decision-making over the
entire multi-hop network, we make a basic assumption on the
network connectivity: (A1) Given the communication range ,
the original network composed of all sensors in and the ac-
tive network composed of all sensors in are both connected.
For any inactive sensor, the subnetwork consisting of its active
neighboring nodes is also connected.

At each sampling time, multiple phenomena (a.k.a. signal
sources) may occur in the sensing field. When sensors are
densely deployed to provide adequate spatial resolution, the
locations of these phenomena can be well approximated to
coincide with some sensor locations. Let
denote the signal source vector of interest, where corre-
sponds to be source value at . As depicted in Fig. 1,
a unit-intensity phenomenon originating at a sensor point
may influence its neighboring area through an influence
function , which is non-zero only for locations

Fig. 1. A sleeping network of both active sensors (solid circles) and inactive
sensors (unfilled circles). Only a small region of a large sensing field is depicted
to highlight one phenomenon at the sensor point � . This phenomenon influ-
ences the shaded area centered at � , including both active neighbors � � �

and inactive neighbors � � � .

and is normalized to obey . Meanwhile, the field
measurement at a sensor point can be described by the
superposition of the influence of all phenomena on . This
paper focuses on the scenario where phenomena occur sparsely
in the large spatial domain. As aforementioned in Section I,
this scenario not only appears widely in many practical sensor
network applications, but also entails distinct challenges and
opportunities for energy-efficient information processing. As
such, we have the following assumption on the field signals
and measurements: (A2) The measurement of sensor can
be represented as

where is the amplitude of the phenomenon occurring at
sensor point is the influence of this phe-
nomenon on sensor point , and is the random measurement
noise of zero mean. The signal vector is sparse, namely, the
number of phenomena is much smaller than the number of sen-
sors in the dense large network.

Here we have assumed for exposition clarity, without
loss of generality. An illustrative example is acoustic source
localization, in which the networked measurements are gener-
ally modeled as linear superposition of acoustic intensities of
multiple sources [27]. When the signal sources are indepen-
dent random variables with zero means, each sensory measure-
ment of the composite signal power is the summation of indi-
vidual powers after being attenuated by the propagating envi-
ronment. Hence, refers to the non-negative signal power in-
tensity, and indicates the distance-dependent power attenua-
tion. In other applications where is negative, we can re-write
it as where and are both non-negative [28].
Replacing by in the vector , the assumption
still holds.

It is worth clarifying that the signal source vector is sparse,
but through the influence functions , the sensor readings

can be mostly nonzero or non-sparse. A source at location
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is declared not when , but only when . Note that
the occurrence and strength of the phenomena, reflected by the
locations and values of those nonzero entries in , are unknown
and hence to be monitored; yet the influence function values,
described by , can be learned during the network de-
ployment stage. This is done either through on-site calibration
to directly measure , or by modeling the influence
functions by (a few) parameterized basis functions
and then learning those parameters during network initializa-
tion. This paper focuses on the task of online monitoring, as-
suming that have been acquired.

Further, to facilitate decentralized decision-making via local
one-hop communication in a large-scale network, we properly
adjust the transmission power of sensors such that the commu-
nication range is larger than the radius of each influence area

. Specifically, (A3) For any sensor , the influence func-
tion if the distance from to is larger than the com-
munication range .

The assumption (A3) holds for a wide range of sensing prob-
lems where the phenomena under monitoring are local events
compared with the large sensing field. A phenomenon hardly in-
fluences the measurements at a faraway sensor point (cf., Fig. 1).
As a result, when is large enough, is close to 0 for two
non-neighboring sensors at and ; otherwise this assumption
results in a truncation error. We will address the issue of trun-
cation errors in the simulations.

Summarizing the assumptions (A2) and (A3), and denoting
as the set of neighboring sensors of sensor , the measure-

ment becomes:

(1)

or in a matrix form:

(2)

where is the matrix whose -th element is
is the selection matrix which selects the rows of
corresponding to the active sensors, and and are the

measurement vector and noise vector respectively.
Given , the goal of this paper is to recover the

sparse signal vector from the measurements col-
lected from active sensors. In particular, we aim to perform the
sparse signal recovery in a decentralized manner in the absence
of a fusion center.

To solve the inverse problem for the under-determined linear
system in (1), the prior knowledge of being sparse needs to be
utilized. A sparsity metric for is its norm, which reduces
to for . Accordingly, we formulate the
following regularized least squares problem [28], [29], with
additional nonnegative constraints:

(3)

Here the objective function consists of a least-squares norm
term and a sparsity-enforcing norm term, with a nonnega-
tive weighting coefficient reflecting the tradeoff between these
two terms. This formulation is a generalized form of the well-
known basis pursuit de-noising (BPDN) [30] and the least abso-
lute shrinkage and selection operator (LASSO) [31], which are
conventionally solved by convex programming in a centralized
manner.

IV. DECENTRALIZED SPARSE SIGNAL RECOVERY

In this section, we reformulate the sparse signal recovery
problem in (3) to an equivalent consensus optimization problem.
An essential difference from a conventional consensus opti-
mization formulation is that we let each sensor make decisions
for both itself and its inactive neighbors, but not to seek re-
covery of the entire field vector . Decisions on all active and
inactive nodes eventually reach network-wide consensus. This
strategy effectively reduces the number of decision variables
for each active sensor, and in turn alleviates the computational
costs and expedites convergence during iterative consensus
optimization.

A. Consensus Optimization Formulation

During online monitoring, the goal is to decide the signal
strength at each sensor point . The main challenge in
designing a decentralized algorithm for (3) is that inactive sen-
sors are unable to decide for themselves. Our approach to tackle
this challenge is to let each active sensor decide the signal

occurring at its own location as well as the signals occur-
ring at its inactive neighboring sensors . To do so,
we let each active sensor keep local copies of its decisions on

and as and , respectively. The
decisions on each inactive sensor are forced to reach consensus
among all its neighboring active sensors, such that the network
eventually consents on all estimates that are globally optimal.
Based on this idea, we reformulate (3) into an equivalent con-
sensus optimization problem as follows:

(4a)

s.t. (4b)

(4c)

(4d)

Here, denotes the number of active neighbors of a sleeping
node at , and the corresponding signal value inside the
norm term in (3) is replaced in (4a) by averaging the local copies
of all its active neighboring sensors . The con-
straint (4b) enforces consensus on the decisions for each inactive
sensor among all its active neighboring sensors. The non-neg-
ativity constraints in (4c) and (4d) are imposed for all decision
variables.

We have the following proposition for the equivalence of (3)
and (4):
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TABLE I
DECENTRALIZED SPARSE SIGNAL RECOVERY ALGORITHM

Proposition 1: Under the assumption (A1), the formulations
in (3) and (4) are equivalent.

Proof: From (A1), for any inactive sensor , the subnet-
work containing its active neighbors is connected. Hence for any

, and are forced to be equal according
to the consensus constraints (4b). Simply rewriting

and , it follows
immediately that (3) and (4) are equivalent.

B. Decentralized Algorithm Design

To facilitate decentralized processing, we further reformulate
(4) as a separable convex program, and solve it using the al-
ternating direction method of multipliers [10]. To do so, let us
introduce a set of slack variables to indicate the mea-
surement errors. Then (4) can be equivalently rewritten as

(5a)

(5b)

(5c)

(5d)

(5e)

The alternating direction method of multipliers forms a con-
strained augmented Lagrangian function from (5), and then it-
eratively optimizes it based on the block coordinate descent al-
gorithm. During each iteration, each active sensor min-
imizes the constrained augmented Lagrangian function over its

own decision variable , slack variable , and decision vari-
ables for its sleeping neighbors. Meanwhile, the
multipliers are updated and exchanged among neighboring ac-
tive sensors. Two neighboring active sensors also exchange the
estimates on their common neighboring inactive sensors in order
to enforce the consensus constraints. The optimal solution to (5)
is an iterative one, which is derived in detail in the Appendix and
summarized in Proposition 2. Accordingly, we propose a decen-
tralized sparse signal recovery algorithm presented in Table I.

Proposition 2: Let denote the projection operator
denote the number of neighbors of

any active sensor plus 1, , and be a constant coefficient
in the augmented Lagrangian method. The iterative steps in
(6)–(11) converge to the globally optimal solution of (5).

(6)

(7)

(8)
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(9)

(10)

where

(11)

where

For an active sensor in (6) is the slack variable that helps
to construct the separable convex program in (5); and in
(7) and (8) are two intermediate variables held by sensor for its
neighbor , playing the role of Lagrange multipliers associated
with the equality constraint (5b). For any two neighboring ac-
tive sensors and and their common inactive neighbor
in (9) is the Lagrange multiplier held by , associated with the
consensus constraint (5b). Finally, each active sensor iteratively
updates its own decision variable and the decision variables for
its inactive neighbors according to (10) and (11). Evidently, the
operations of each active sensor simply boils down to summa-
tions and multiplications, which are manageable for low-cost
sensor nodes.

In a practical sleeping network, sensors change their sleeping
mode based on a predefined mechanism. Thereafter the network
reconfigures to collect the parameters and .
Each sensor scheduled to sleep needs to count the number
of its neighboring sensors that are scheduled to be active,
and broadcast to its active neighboring sensors, while each
sensor scheduled to be active needs to count the number of
its neighboring sensors. Given the network configuration, the
decentralized sparse signal recovery algorithm is executed
upon new measurements. After the algorithm converges, each
active sensor holds the signal estimates for itself and its in-
active neighbors. Such decentralized in-network processing is
performed for energy-efficient online monitoring, and sensors
may alarm or communicate with a central console to report the
estimated phenomena when needed.

C. Discussions

This section discusses several important application-related
issues for the proposed decentralized sparse signal recovery al-
gorithm, including communication load, recovery accuracy, and
resolution for detection. These issues guide the choice of system
parameters, such as communication range, influence function,
sensor density, the weighting coefficient , and the fraction of
inactive sensors in the network.

Communication Load: Communication consumes a signif-
icant portion of the energy in a wireless sensor network, and
hence communication load is a major concern for decentral-
ized algorithm design. In the proposed algorithm, active sensors
need to exchange intermediate decision variables, slack vari-
ables, and Lagrange multipliers in each iteration. This can be
done via local broadcasting such that all its one-hop active sen-
sors can acquire the data. Fig. 2 depicts the information flow
for an illustrative small network containing two connected ac-
tive sensors at and and one common neighboring inac-
tive sensor at . Each active sensor at transmits one deci-
sion variable, one slack variable, and two multipliers to its active
neighbor . Also, it transmits one decision variable
and one multiplier to its active neighbor , if there is an in-
active sensor within one-hop from both and
. Therefore, the total number of messages transmitted from all

sensors for updating all local estimates during each iteration is
given by .
This quantity can be further reduced if each sensor simply
broadcasts its messages to all neighbors instead of talking to
each neighbor one by one.

The communication overhead analyzed above is to be cali-
brated under the context of large-scale dense networks. Let us
consider a large circular sensing field whose area is
with being the radius. A large number of sensors are ran-
domly deployed at a density . The ratio of the one-hop
communication region to the entire sensing field is indicative of
the network locality, which we define as . Note
that we have selected to be comparable to the radii of the in-
fluence areas of phenomena, as in the assumption (A3). Further,
we denote the fraction of active sensors as .
Given and , the average number of sensors within each
one-hop region is . When and are large,
and assuming uniform distribution of sensor points, the average
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Fig. 2. Information flow for a small network containing two connected active
sensors at � and � and one common inactive neighboring sensor at � . During
each iteration, sensor 1 sends one slack variable � , three multipliers � � � ,
and � , and two decision variables � and � to 3.

number of messages exchanged for all nodes to update their de-
cisions in one iteration is approximately

, which is linear in the network size
for some scalar of localized scale.
Let us assume the free-space model in which power falls off

proportionally to square-distance. Accordingly, the power cost
in communication is on the order of , where is
the number of iterations for convergence. In contrast, in a cen-
tralized network, if each active node raises its transmit power
to send one message (measurement) to a fusion center in the
center of the sensing field, then the power cost is ,
which can be quite large for a large network with a large . Al-
ternatively, each sensor can send its message to the fusion center
via multiple hops, where the number of hops is inversely pro-
portional to . At the expense of routing cost,
this strategy reduces the communication power cost to be on
the order of , which is still quite high for a large

. Overall, our decentralized optimal solution entails an energy
saving on the order of at least , which can be quite signif-
icant for a large-scale network.

Recovery Accuracy: Depending on the practical applications
of interest, it may be unnecessary to accurately recover the
strength of phenomena; rather, the main concerns can be to
avoid false alarms or missed detection. Hence, the recovery ac-
curacy shall be assessed based on the network goal. In general,
there are several major performance-determining factors.

Firstly, the accuracy of field recovery is decided by the choice
of the influence functions. Besides a parameterized approach
that we will illustrate through simulations, a general approach is
to assume a set of common basis functions and then generate the
individual influence functions as linear combinations of them,
where the combining coefficients are acquired through online
learning [8]. In this approach, the basis functions must be care-
fully selected in order to accurately describe the propagation of
phenomena in the sensing area.

Secondly, the collected data shall contain adequate informa-
tion in order to guarantee successful recovery. If the fraction of
active sensors is too small, then the optimization based on (3)
may lead to incorrect result. This problem is analogue to the
choice of compression ratio in compressive sensing.

Thirdly, the communication range affects recovery accuracy.
As discussed in the assumption (A2), the influence of a phe-

nomenon on a sensor is assumed to be negligible, if the phe-
nomenon occurs outside the communication range of the sensor.
Hence the communication range should be large enough such
that the truncation error is negligible or small. A properly se-
lected weight in (3) helps to improve the robustness of re-
covery accuracy against truncation errors, as we will illustrate
via simulations.

Lastly, we briefly discuss the role of the weight in (3) that
trades off the importance of the least squares norm term and
the sparsity-enforcing norm term in the design objective. The
limiting behaviors as and have been discussed in
[29]. As , the limiting point of the optimal solution to
has the smallest norm among all non-negative points that sat-
isfy , if these points exist. And there is
a constant , such that if , the
optimal solution is 0. Suppose that all sensors are active, namely

is an identity matrix, and the measurement matrix is in-
vertible. In the noise-free case, leads to exact recovery.
However, in the presence of measurement noise or modelling
errors, tends to produce a non-sparse solution. On the
other hand, a small results in a sparse solution; it tends to cor-
rectly identify the nonzero support of the signal and hence the
locations of occurring phenomena, but the estimation errors of
those nonzero elements can be large. Nevertheless, should be
larger than in order to avoid the trivial solution of all zeros
and hence alleviate missed detection.

Resolution for Detection: In (A2), it is assumed that a source
only occurs at a sensor point. The modeling error is small when
sensors are densely deployed. To bypass this assumption, it is
possible to assume that sources can occur at any points, whose
positions can be set as optimization variables. However, the re-
sulting nonlinear formulation is computationally intractable in
a practical sensor network. This nonlinear inverse problem can
be avoided by assuming a virtual grid in the sensing field and
confining the sources to appear sparsely on the grid points [7].
The resolution of detection is improved by adopting a fine-scale
grid, at the expense of greatly increased computational and com-
munication costs. Specifically, the number of decision variables
to be solved at each active sensor is the same as the number of
grid points, and active sensors need to reach consensus for all
grid points. In contrast, in this paper the tentative decisions of
each sensor only involve itself and neighboring sensors. Each
sensor does not seek global awareness of the entire field, in ex-
change for lowered communication load and improved network
convergence.

Because of the modeling simplicity in our current setting, the
resolution for detection depends on the sensor density. For a
non-sleeping network, the spatial resolution is , at a
power cost proportional to . For a regular sleeping network
that ignores inactive sensors during decision making, the spatial
resolution is reduced to , at a reduced power cost proportional
to . Our proposed algorithm performs sparse signal recovery
to make decisions for both active and inactive sensors, which
retains the resolution at . Meanwhile, the power cost is reduced
to be proportional to . This is a notable advantage, as we
optimize both the spatial resolution and energy conservation by
coupling the sleeping strategy with sparse signal recovery.
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V. SIMULATION RESULTS

This section provides extensive simulation results to validate
the effectiveness of proposed sparse signal recovery algorithm.
First, small networks are used to demonstrate the basic proper-
ties of the proposed algorithm. Then, large networks are simu-
lated to demonstrate the scalability of the decentralized algo-
rithm. In all simulations, the constant coefficient in the aug-
mented Lagrangian method is set to be .

A. Small Networks

We firstly consider applications in small networks to demon-
strate optimality, noise resilience, recovery accuracy, and detec-
tion resolution of the proposed algorithm. Without loss of gen-
erality, we focus on the scenario in which: 1) sensors are evenly
deployed in a one-dimensional space; 2) only one phenomenon
occurs in the sensing area; and 3) sensors can directly commu-
nicate with each other, namely, the communication range is
infinite. Taking a parameterized approach for modeling, the in-
fluence function is supposed to be a Gaussian shape with a tun-
able width that can be learned. Specifically, if a phenomenon
occurs at sensor point , then the noise-free output at sensor
point is , where is the dis-
tance between and , and is known after learning.

Suppose that three sensors are deployed at
, and . A phenomenon occurs at , with

and . Hence the optimal recovery is . In
the absence of measurement noise, we set the weight in
the proposed algorithm. Fig. 3 depicts the optimization results
of when all sensors are active, and and when the
sensor at is inactive, respectively. When the three sensors are
all active, each sensor makes decision for itself. Decision vari-
ables and remain to be 0, whereas converges to the
optimal solution 0.9781, which is near to the true value 1. When
sensor 2 is inactive, sensors at and need to make decisions
for themselves, and further reach a consensus for the sensor at

. The decision variable converges to 0 after a transient
state, and also converges to its optimal solution 0.9603,
which is also near to the true value 1. Convergence of and

is similar to that of and . Note that in the first case
and in the second case ; both of

them are smaller than the chosen weight . The small bias
in the estimate is due to the norm term in (3), which enforces
a sparse solution in order to reduce the estimation mean-square
error and the false alarm rate in the noisy case [30], [31].

Now, suppose that the measurements are polluted by
Gaussian random noise with zero mean. When the sensor at

is inactive, Fig. 4(a) shows the mean values of under
different standard variances of noise and weights for 100
random realizations. A larger leads to more accurate recovery
of in the mean square-error sense, but also shows weaker
noise resilience in terms of the sparsity of solution, as shown in
Fig. 4(b). In the noisy case, false alarms increase as increases;
when , which is smaller than , the solution is sparsest
but with worst accuracy, namely all missed detections.

Fig. 3. Decision variables: (a) � when all sensors are active; and (b) � and
� when the sensor at � is inactive.

We now discuss the model mismatch issue in the noise-free
case. In practical applications, prior knowledge of the influence
function can be biased. We use different values of
in the Gaussian shape to generate the actual influence function
of the phenomenon, but set in the signal recovery algo-
rithm for all cases. Again, the sensor at is inactive, and the
phenomenon occurs at with . As shown in Fig. 5, es-
timation of is resilient to model mismatch.

The resolution for detection in the sparse signal recovery
algorithm depends on the sensor density. To demonstrate this
dependence, we deploy only two active sensors at and

, and then evenly deploy inactive sensors along the line
between and . The phenomenon occurs at ,
with and noise-free. We set , collect nonzero
elements in the estimates for different node density, and mark
them in Fig. 6. Because we have assumed in (A2) that the
phenomenon occurs at a sensor point, two inactive sensors
beside the phenomenon will have nonzero decision variables
if (A2) does not hold. As the node density increases, we are
able to reach accurate position estimation. That is, the proposed
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Fig. 4. (a) Mean values of � ; and (b) average sparsity of solutions vs. the
standard variance of the noise, for various values of the weight �.

Fig. 5. Decision variables � for different true values of � and weights.

algorithm is able to improve the resolution, even when the node
density is increased by adding inactive sensors only.

B. Large Networks

Now we consider large wireless sensor networks, in which
sensors may not directly communicate with each other. In this

Fig. 6. Positions of sensors which are determined to have nonzero decision
variables versus different node densities. Active sensors are marked as solid cir-
cles and inactive sensors are marked as hollow circles. The sensor points which
have nonzero estimates are marked as cross symbols.

case, if the communication range is smaller than the radius
of influence function, then the assumption (A3) will result in
truncation errors. To address this issue, we demonstrate the re-
lationship between the communication range and the radius of
influence function via an illustrative simulation. Suppose that
11 active sensors are evenly deployed on the line from to

, with the sensor spacing being 20. There is one phe-
nomenon occurring at sensor position with amplitude
1. The influence function has a Gaussian shape
and the measurements are noise-free. Fig. 7 shows the impact
of the communication range on the sparsity of solution. The
communication range is chosen from 10 to 110, such that
one sensor can communicate with 0 to 5 neighboring sensors, re-
spectively. Smaller values result in sparser solutions when the
communication range limits the global information exchange.
From this point of view, truncation errors induced by the lim-
ited communication range can be treated as a kind of systematic
measurement errors. Fig. 7 also suggests that when the influ-
ence function shows a long-tailed property, can be properly
chosen such that the assumption (A3) approximately holds. For
example, if , then is a proper
value since such that the
truncation error is small enough.

Knowing how to handle the truncation error, we consider a
large random network to check the validity of the assumption
(A1) and to illustrate the algorithm performance when the
assumptions (A2) and (A3) are slightly violated. In a 200 200
area, 100 sensors are uniformly randomly deployed, among
which 50% sensors are randomly set to be inactive. There
are four phenomena occurring in the sensing field, denoted as

, and , respectively. All phenomena are of unit
amplitude, and the influence functions are Gaussian-shaped
with . Phenomena and occur at position (50,50)
and (150,150), which do not coincide with any sensor points.
Phenomena and occur at an inactive sensor point and
an active sensor point, respectively. The measurements are
supposed to be noise-free.

To simulate a practical network, we need to decide the
communication range according to the phenomena and the
network connectivity. According to the discussion above,
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Fig. 7. Impact of the communication range � on the sparsity of solution.

Fig. 8. Simulation results for a random network, which contains 100 sensors
with 50% sensors being inactive, in a 200� 200 area. Four phenomena, denoted
as pentagrams, occur in the sensing area. Active sensors are marked as solid cir-
cles and inactive sensors are marked as hollow circles. The sensor points which
have nonzero estimates are marked as cross symbols.

we choose , such that the influence of a unit
phenomenon on the edge of the communication range is

. The weight is set as . Then
we check the network connectivity based on [15]. It is proven
that the assumption (A1) (i.e., connectivity of the network and
subnetworks) satisfies, with high probability, when .

The simulation results are depicted in Fig. 8. The active sen-
sors are marked as solid circles; the inactive sensors are marked
as hollow circles; the phenomena are denoted as pentagrams;
and the sensor points which have nonzero estimates are marked
as cross symbols. Both and are correctly estimated, no
matter whether they occur at an active or inactive sensor point.
The phenomenon is also identified as occurring in a nearby
inactive sensor. The phenomenon can not be identified since
it has no nearby sensors. Instead, multiple neighboring sensors
are identified to be with nonzero amplitudes. It is hence pos-
sible to infer the location of by averaging the locations of
these neighboring sensors with nonzero estimates. This result is
encouraging, because even when the assumption (A2) (i.e., the
phenomena being occurring at the sensor points) is invalid, we
are still able to improve the detection resolution via some clus-
tering technique.

Fig. 8 demonstrates the effectiveness of the proposed sparse
signal recovery algorithm and the random sleeping strategy. By
exploiting sparsity of the signal, we are able to successfully re-
cover it with compressed sensing data without loss of resolution.
In this example, the resolution provided by 50 active sensors is
equal to that of 100 active sensors; thus nontrivial energy con-
sumption is saved for the whole network. On the other hand,
the decentralized in-network processing scheme improves the
robustness and scalability of the network, comparing with its
centralized counterpart.

Finally we further address the issue of compression ratio,
namely the impact of the percentage of inactive sensors and the
number of phenomena on the probabilities of missed detection
and false alarm. There are 100 sensors deployed uniformly ran-
domly in a 200 200 area, and multiple unit-amplitude phe-
nomena occur at sensor points. The measurements are supposed
to be noise-free; the influence function, communication range,
weight are all set as in the previous simulation.

Fig. 9 depicts the mean values and error bars for the numbers
of missed detection and false alarms versus the percentage of in-
active sensors, when the number of phenomena varies from 1 to
4, and a total of 100 trials is simulated for each setting. We de-
clare a missed detection when a phenomenon occurs at a sensor
point but the corresponding recovered signal value is smaller than
0.01. Conversely, we declare a false alarm when no phenom-
enon occurs at a sensor point but the corresponding recovered
signal value is larger than 0.01. It is shown in Fig. 9 that the
number of missed detection remains near to 0 when the com-
pression ratio is smaller than 60%, but increases quickly when
the compression ratio increases beyond 60%. Meanwhile, the
number of false alarms varies slightly as the compression ratio
varies, which suggests that the algorithm tends to provide sparse
solutions. This simulation confirms the advantage of the reg-
ularized least squares formulation in (3) over a traditional least
squaresformulation,becausethelattermayyieldnon-sparsesolu-
tionsandresult inalargeprobabilityoffalsealarmsinthepresence
of measurement noise, model mismatch and truncation errors.

VI. CONCLUSION

This paper investigates the problem of monitoring sparse phe-
nomena using a large-scale and distributed sleeping wireless
sensor network. Random node sleeping strategies are adopted
for energy conservation, which effect compression during the
measurement collection process. A decentralized sparse signal
recovery algorithm is developed based on regularized least
squares and consensus optimization. Each active sensor not only
optimizes for itself, but also optimizes for its inactive neigh-
bors. Through iterative one-hop information exchange, active
sensors are able to reach consensus for inactive sensors. As a
result, a phenomenon, no matter whether it occurs at an active
sensor point or inactive sensor point, can be detected and quanti-
fied. It is theoretically proved that sensors eventually reach glob-
ally optimal decisions for their local regions, at scalable com-
putation and communication costs with respect to the network
size. Benefiting from the decentralized optimization scheme,
the sleeping strategy, and most of all, the recognition of signal
sparsity, the proposed decentralized sparse signal recovery algo-
rithm improves the scalability and robustness of large networks,
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Fig. 9. Mean values and error bars of the numbers of missed detection (MD)
and false alarms (FA) versus the percentage of inactive sensors when the number
of phenomena is (a) 1; (b) 2; and, (c) 4.

preserves energy of wireless sensors, and at the same time guar-
antees high spatial resolution for monitoring.

APPENDIX

This appendix derives a decentralized algorithm for imple-
menting the optimal solution of the consensus optimization
problem in (5).

Let denote the number of neighbors of an active sensor
plus 1. The following auxiliary variables are introduced:

(12)

Substituting (12) into (5b), (5) can be rewritten as

(13)

The augmented Lagrangian function of (13) is given by

s.t.

(14)

Here and are Lagrange multipliers; is a weighting
factor for the augmented quadratic terms.

The basic idea of the alternating direction method of multi-
pliers is to iteratively optimize the constrained augmented La-
grangian function (14) based on the block coordinate descent
algorithm. First, the slack variables and auxiliary variables are
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optimized under corresponding constraints, which result in the
updated , expressed in (6), and

, and ,
respectively, as shown in (7).

Second, the multipliers are updated based on subgradient de-
scent, as in (8) for updating and (9) for updating

.
Finally, the decision that an active sensor makes

for itself, , and the decisions that it makes
for its neighboring sleeping sensors , are
optimized from (14) and described in (10) and (11).

It can be shown straightforwardly from [10, pp. 254–261] that
the above iterative steps in (6)–(11) derived from the alternating
direction method of multipliers converge to the optimal solution
to the original problem formulated in (5) for any positive con-
stant .
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