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Decentralized Consensus Optimization With

Asynchrony

Tianyu Wu, Kun Yuan ', Qing Ling

Abstract—We propose an asynchronous, decentralized
algorithm for consensus optimization. The algorithm runs over a
network in which the agents communicate with their neighbors
and perform local computation. In the proposed algorithm, each
agent can compute and communicate independently at different
times, for different durations, with the information it has even if
the latest information from its neighbors is not yet available. Such
an asynchronous algorithm reduces the time that agents would
otherwise waste idle because of communication delays or because
their neighbors are slower. It also eliminates the need for a global
clock for synchronization. Mathematically, the algorithm involves
both primal and dual variables, uses fixed step-size parameters,
and provably converges to the exact solution under a random agent
assumption and both bounded and unbounded delay assumptions.
When running synchronously, the algorithm performs just as
well as existing competitive synchronous algorithms such as
PG-EXTRA, which diverges without synchronization. Numerical
experiments confirm the theoretical findings and illustrate the
performance of the proposed algorithm.

Index Terms—Asynchronous, consensus optimization, decen-
tralized, delay.

T

I. INTRODUCTION AND RELATED WORK

HIS paper considers a connected network of n agents that
cooperatively solve the consensus optimization problem

fa) = 3 4)

1=1

minimize
zeRP

where f;(x) := s;(x) + ri(x), i =1,...,n. ()

We assume that the functions s; and r; : R? — R are convex
differentiable and possibly nondifferentiable functions, respec-
tively. We call f; = s; + r; acomposite objective function. Each
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s; and r; are kept private by agent ¢ = 1,2,--- ,n, and r; of-
ten serves as the regularization term or the indicator function
to a certain constraint on the optimization variable x € R” that
is common to all the agents. Decentralized algorithms rely on
agents’ local computation, as well as the information exchange
between agents. Such algorithms are generally robust to failure
of critical relaying agents and scalable with network size.

In decentralized computation, especially with heterogeneous
agents or due to processing and communication delays, it can
be inefficient or impractical to synchronize multiple nodes and
links. To see this, let 2% € RP? be the local variable of agent
i at iteration k, and let X* = [z1F 2% . gnF]T € Rvxp
collect all local variables, where k is the iteration index. In
a synchronous implementation, in order to perform an itera-
tion that updates the entire X* to X**!, all agents will need
to wait for the slowest agent or be held back by the slowest
communication. In addition, a clock coordinator is necessary
for synchronization, which can be expensive and demanding to
maintain in a large-scale decentralized network.

Motivated by these considerations, this paper proposes an
asynchronous decentralized algorithm where actions by agents
are not required to run synchronously. To allow agents to
compute and communicate at different moments, for different
durations, the proposed algorithm introduces delays into the
iteration—the update of X* can rely on delayed information re-
ceived from neighbors. The information may be several-iteration
out of date. Under uniformly bounded (but arbitrary) delays and
that the next update is done by a random agent , this paper will
show that the sequence {X*},~( converges to a solution to
Problem (1) with probability one.

What can cause delays? Clearly, communication latency in-
troduces delays. Furthermore, as agents start and finish their
iterations independently, one agent may have updated its vari-
ables while its neighbors are working on their current iterations
that still use old (i.e., delayed) copies of those variables; this
situation is illustrated in Fig. 1. For example, before iteration
3, agents 1 and 2 have finished updating their local variables
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21?2 and 2>'! respectively, but agent 3 is still relying on delayed

neighboring variables {x, %7}, rather than the updated vari-
ables {212, 221}, to update 2**. Therefore, both computation
and communication cause delays.

A. Relationship to Certain Synchronous Algorithms

The proposed algorithm, if running synchronously, can be
algebraically reduced to PG-EXTRA [2]; they solve prob-
lem (1) with a fixed step-size parameter and are typically
faster than algorithms using diminishing step sizes. Also, both
algorithms generalize EXTRA [3], which only deals with dif-
ferentiable functions. However, divergence (or convergence to
wrong solutions) can be observed when one runs EXTRA and
PG-EXTRA in the asynchronous setting, where the proposed
algorithm works correctly. The proposed algorithm in this pa-
per must use additional dual variables that are associated with
edges, thus leading to a moderate cost of updating and commu-
nicating the dual variables.

The proposed algorithm is also very different from decen-
tralized ADMM [3]-[5] except that both algorithms can use
fixed parameters. Distributed consensus methods [6], [7] that
rely on fixed step-sizes can also converge fast, albeit only to
approximate solutions [6], [7].

Several useful diffusion strategies [8]-[13] have also been de-
veloped for solving stochastic decentralized optimization prob-
lems where realizations of random cost functions are observed at
every iteration. To keep continuous learning alive, these strate-
gies also employ fixed step-sizes, and they converge fast to a
small neighborhood of the true solution. The diffusion strate-
gies operate on the primal domain, but they can outperform
some primal-dual strategies in the stochastic setting due to
the influence of gradient noise [14]. These studies focused on
synchronous implementations. Here, our emphasis is on asyn-
chronous networks, where delays are present and become criti-
cal, and also on deterministic optimization where convergence
to the true solution of Problem (1) is desired.

B. Related Decentralized Algorithms Under different Settings

Our setting of asynchrony is different from randomized sin-
gle activation, which is assumed for the randomized gossip
algorithm [15], [16]. Their setting activates only one edge at a
time and does not allow any delay. That is, before each activa-
tion, computation and communication associated with previous
activations must be completed, and only one edge in each neigh-
borhood can be activated at any time. Likewise, our setting is
different from randomized multi-activation such as [17], [18]
for consensus averaging, and [19]-[25] for consensus optimiza-
tion, which activate multiple edges each time and still do not
allow any delay. These algorithms can be alternatively viewed
as synchronous algorithms running in a sequence of varying
subgraphs. Since each iteration waits for the slowest agent or
longest communication, a certain coordinator or global clock is
needed.

Our setting is also different from [26]—[29], in which other
sources of asynchronous behavior in networks are allowed, such
as different arrival times of data at the agents, random on/off

activation of edges and neighbors, random on/off updates by
the agents, and random link failures, etc. Although the results
in these works provide notable evidence for the resilience of
decentralized algorithms to network uncertainties, they do not
consider delays.

We also distinguish our setting from the fixed communication
delay setting [30], [31], where the information passing through
each edge takes a fixed number of iterations to arrive. Different
edges can have different such numbers, and agents can com-
pute with only the information they have, instead of waiting.
As demonstrated in [30], this setting can be transferred into
no communication delay by replacing an edge with a chain of
dummy nodes. Information passing through a chain of 7 dummy
nodes simulates an edge with a 7-iteration delay. The compu-
tation in this setting is still synchronous, so a coordinator or
global clock is still needed. [30], [32] consider random commu-
nication delays in their setting. However, they are only suitable
for consensus averaging, not generalized for the optimization
problem (1).

Our setting is identical to the setting outlined in Section 2.6
of [33], the asynchronous decentralized ADMM. Our algorithm,
however, handles composite functions and avoids solving pos-
sibly complicated subproblems. The recent paper [34] also con-
siders both random computation and communication delays.
However, as the focus of that paper is a quasi-Newton method,
its analysis assumes twice continuously differentiable functions
and thus excludes nondifferentiable functions s; in our problem.
In fact, [34] solves a different problem and cannot be directly
used to solve our Problem (1) even if its objective functions are
smooth. It can, however, solve an approximation problem of (1)
with either reduced solution accuracy or low speed.

Our setting is also related with [35], in which an asynchronous
framework is proposed to solve a composite non-convex opti-
mization problem, where delays and inconsistent reads are al-
lowed. However, the framework in [35] is designed for parallel
computing within one single agent rather than a multi-agent
network, which is a fundamental difference with this paper. A
summary of various decentralized asynchronous algorithms is
listed in Table I.

C. Contributions

This paper introduces an asynchronous, decentralized
algorithm for problem (1) that provably converges to an op-
timal solution assuming that the next update is performed by
a random agent and that communication is subject to arbitrary
and possibly unbounded delays. If running synchronously, the
proposed algorithm is as fast as the competitive PG-EXTRA
algorithms except, for asynchrony, the proposed algorithm in-
volves updating and communicating additional edge variable.

Our asynchronous setting is considerably less restrictive than
the settings under which existing non-synchronous or non-
deterministic decentralized algorithms are proposed. In our
setting, the computation and communication of agents are
uncoordinated. A global clock is not needed.

Technical contributions are also made. We borrow ideas from
monotone operator theory and primal-dual operator splitting to
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TABLE I
A COMPARISON AMONG ASYNCHRONOUS DECENTRALIZED ALGORITHMS

Algorithm Synchronization Cost Allow delays in Recursions Idle Time Cost Function Exact Convergence™*
Gossip [15], [16] Reduced No Yes Average Consensus Yes
Randomized Consensus [17], [18] Reduced No Yes Average Consensus Yes
Randomized DGD [19], [26] Reduced No Yes Aggregate Optimization No
Asynchronous Diffusion [27]-[29] Reduced No Yes Aggregate stochastic Optimization No
Randomized ADMM [20], [22], [25] Reduced No Yes Aggregate Optimization Yes
Randomized Prox-DGD [23] Reduced No Yes Composite Aggregate Optimization No
Asynchronous Newton [34] None Yes No Aggregate Optimization No
Asynchronous ADMM [33] None Yes No Aggregate Optimization Yes
Asynchronous Prox-DGD (22) None Yes No Composite Aggregate Optimization No
Proposed Alg. 2 None Yes No Composite Aggregate Optimization Yes

*Convergence to the exact optimal solution when step size is constant.

derive the proposed algorithms in compact steps. To establish
convergence under delays, we cannot follow the existing anal-
ysis of PG-EXTRA [2]; instead, motivated by [33], [36], a new
non-Euclidean metric is introduced to absorb the delays. In par-
ticular, the foundation of the analysis is not the monotonicity
of the objective value sequence. Instead, the proposed approach
establishes monotonic conditional expectations of certain dis-
tances to the solution. We believe this new analysis can extend
to a general set of primal-dual algorithms beyond decentralized
optimization.

D. Notation

Each agent ¢ holds a local variable ' € R?, whose value at
iteration k is denoted by x*"*. We introduce variable X to stack
all local variables

€ R™*P, )

In this paper, we denote the j-th row of a matrix A as A;.
Therefore, for X defined in (2), it holds that X; = ()", which
indicates that the ith row of X is the local variable ' € R? of
agent i. Now we define functions

n n

s(X) =Y si(2'), r(X):=) mn(h),

i=1 =1

as well as
F(X) = 3 fi(a") = s(X) +x(X).

The gradient of s(X) is defined as

_ (Vsl(xl))T—
Vs(X) := : € R"*P,

T

- (Vsp(z"))

The inner producton R *? is defined as (X, X) := tr(X T X) =
S () T2, where X, X are arbitrary matrices.

II. ALGORITHM DEVELOPMENT

Consider a strongly connected network G = {V,&}
with agents V ={1,2,--- ,n} and undirected edges & =
{1,2,--- ,m}. By convention, all edges (i,j) € £ obey i < j.
To each edge (i, j) € £, we assign a weight w;; > 0, which is
used by agent i to scale the data 2/ it receives from agent j. Like-
wise, let w;j; = w;; for agent j.If (,7) ¢ £, then w;; = wj; =
0. For each 4, we let N; := {j|(i,5) € Eor (j,i) € £} U {i}
denote the set of neighbors of agent ¢ (including agent 7 itself).
We also let & = {(4,7)[(¢,4) € € or (j,i) € £} denote the set
of all edges connected to i. Moreover, we also assume that there
exists at least one agent index ¢ such that w;; > 0.

Let W = [w;;] € R"*" denote the weight matrix, which is
symmetric and doubly stochastic. Such W can be generated
through the maximum-degree or Metropolis-Hastings rules [37].
It is easy to verify that null{7 — W} = span{1}.

The proposed algorithm involves a matrix V, which we
now define. Introduce the diagonal matrix D € R™*™ with
diagonal entries D, . = \/w;; /2 for each edge e = (3, j). Let
C = [ce;] € R™*" be the incidence matrix of G:

+1, 1iis the lower indexed agent connected to e,

cei = { —1, iis the higher indexed agent connected to e,
0, otherwise.
3)
With incidence matrix (3), we further define
V:=DC e R™ ", (@)

as the scaled incidence matrix. It is easy to verify:

Proposition 1 (Matrix factorization identity): When W and
V' is generated according to the above description, we have
VIV =(I-W)/2.

A. Problem Formulation
Let us reformulate Problem (1). First, it is equivalent to

Zsz(x‘) + Zri(xi),
i=1 i=1

1:!’,62:"':1'”.

minimize
zl, - xm eRp

subject to =

)
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Since null{I — W} = span{1} and recall the definition of X
in (2), Problem (5) is equivalent to

L X X
minimize  s(X) +r(X),
subject to (I — W)X = 0. (6)

By Proposition 1, we have (/ - W)X =0=V'VX =
0=X"V'VX =0= VX =0. On the other hand, VX =
0=V'VX=0= (I — W)X = 0. Therefore, we conclude
that (I — W)X = 0 < VX = 0. Therefore, Problem (6) is fur-
ther equivalent to

minimize s(X) + r(X),
xeRm
subject to VX = 0. @)
Now we denote
.
_ (yl) _
Y = : e RM™xP
(™) -

as the dual variable, Problem (7) can be reformulated into the
saddle-point problem

1
m min s(X X)+ =Y, VX
Jlax  min s(X) +r(X) + —(¥, VX), ®)

where o > 0 is a constant parameter. Notice that a similar for-
mulation using the incidence and Laplacian matrices was em-
ployed in [14] to derive primal-dual distributed optimization
strategies over networks.

B. Synchronous Algorithm

Problem (8) can be solved iteratively by the primal-dual
algorithm that is adapted from [38], [39]:

{X’f“ = prox,, [X¥ —aVs(X*) - VT (2vF+l —yh)] |

YR = yh v Xk,
C))

where the proximal operator is defined as

1
prox,,(U) := arg min {r(X) + —|X - U||%} .
X cR» *p 20

Next, in the X -update, we eliminate YE+landuse I —2V'V =
W to arrive at:

{ X*+1 = prox,, [WXF — aVs(XF) - VTYF],

YEH — Yk f Xk, (10)

which computes (Y**1 X*¥+1) from (Y* X*). Algorithm
(10) is essentially equivalent to PG-EXTRA developed in [2].
Algorithm (10) can run in a decentralized manner. To do so,
we associate each row of the dual variable Y with an edge
e = (i,7) € &, and for simplicity we let agent 4 store and up-
date the variable ¢ (the choice is arbitrary). We also define

‘Ci = {6:(7”])657 VJ>1}, (11)

as the index set of dual variables that agent ¢ needs to update.

Algorithm1: Synchronous algorithm based on (12).

Input: Starting point {z*°}, {y*°}. Set counter k = 0;
while all agents i €V in parallel do

Wait until {z9%},cp;, and {y®*}.ce, are received;
Update 2**+1 according to (12);

Update {y®**1} .. according to (12);
Wait until all neighbors finish computing;
Set k +— k+1;

Send out z%-F+1

and {y®**1} <., to neighbors;

Recall V is the scaled incidence matrix defined in (4), while
W is the weight matrix associated with the network. The cal-
culations of VX, VTY and WX require communication, and
other operations are local. For agent i, it updates its local vari-
ables x***1 and {y***1} ..., according to

ikl _ ik ik
Lkl — prox,,,, (Zje/\/, wijal "t — CMVSZ'(;L'L, )

k
- Zee& Vei Y )a
yortl = gk 4 (vt + 2, Ve € L,

12)

where v.; and v,; are the (e,7)-th and (e, j)-th entries of the
matrix V, respectively.

Algorithm 1 implements recursion (12) in the synchronous
fashion, which requires two synchronization barriers in each
iteration k. The first one holds computing until an agent re-
ceives all necessary input; after the agent finishes computing
its variables, the second barrier prevents it from sending out
information until all of its neighbors finish their computation
(otherwise, the information intended for iteration k£ + 1 may
arrive at a neighbor too early).

C. Asynchronous Algorithm

In the asynchronous setting, each agent computes and com-
municates independently without any coordinator. Whenever an
arbitrary agent finishes a round of its variables’ updates, we let
the iteration index k increase by 1 (see Fig. 1). As discussed in
Section I, both communication latency and uncoordinated com-
putation result in delays. Let 7 € R'. and §¥ € R™" be vectors
of delays at iteartion k. We define X*~™" and Y*~°" as delayed
primal and dual variables occurring at iteration k:

[_ (Il,kfﬂk)T _
Xkt : € R"*?,
(xn,kfr,’f) _
[ <y1,k—6’f>T
yEot = : eR™*,
_ (ym,kfé,ﬁ; >T _
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where 7/ is the j-th element of 7; and 6} is the e-th element
of 6*. In the asynchronous setting, recursion (10) is calculated
with delayed variables, i.e.,

{)N(’““ = prox,, {VVX’“‘Tk —aVs(XFT") = VTY]‘"‘S}”},

}7]«4—1 — Yk—(sk' + VXk—Tk .
(13)

Suppose agent ¢ finishes update k£ 4 1. To guarantee conver-

gence, instead of letting z*F*1 = Z#*F+1 and yo k1 = geh+l
directly, we propose a relaxation step
gkl = ik (51',1”1 - xi,k7¢[k> 7
(14)

ye,k’+1 _ yn‘k’ +mi (ge,k-&-l _ ye,k—o‘f’:) , YeeL;

i,kf‘r,.]C

ikl / ~ek+1 _

where T and 3/ ye*k"sf behave as updat-
ing directions, and 7; € (0, 1) behaves as a step size. To distin-
guish from the step size a, we call 7); the relaxation parameter
of agent i. Its value depends on how out of date agent ¢ receives
information from its neighbors. Longer delays require a smaller
n;, which leads to slower convergence. Since the remaining
agents have not finished their updates yet, it holds that

IR = ik g £y
ek+1 2,

15
Y =y~* Ved L. (15)

To write (14) and (15) compactly, we let SIZ) : RP*P — R"*P
be the primal selection operator associated with agent ¢. For
any matrix A € R"?, [SI(A)]; = A; if j =1i; otherwise
[S,(A)]; =0, where [S;(A)]; and A; denote the j-th row
of matrix S (A) and A, respectively. Similarly, we also let
S (f " R™XP — R™*P be the dual selection operator associated
with agent 4. For any matrix B € R™*?, [S(f (B)]e = B, if
e € L;; otherwise [S5" (B)]. = 0. With the above defined se-
lection operators, (14) and (15) are equivalent to

Xt = XE 4,50 ()N(kH —X’“*T">7

Ykl — yk 4 7)fiS§' (?kﬂ _ kaak) . (16)

Recursions (13) and (16) constitute the asynchronous algorithm.
Similar to the synchronous algorithm, the asynchronous re-

cursion (13) and (16) can also be implemented in a decentralized

manner. When agent i is activated at iteration k:

Compute:

~; I R ik
"1 = prox,,, (ZjEM wi T — Vs (ah )
e,k—ok
- Zee& Veily )
~ . _ Sk s 1~k ik
ye,k+1 _ ye,k oF + (veixl,k 4 Uejxjﬁk 7 )’ Ve € »Ci;
Relaxed updates:

ik+1 _ ik ~i k41 ik—7k
zt + = pt +ni(x1,+ — b 7'1)7

ye,kJrl _ ye,k +n; (ge,kJrl — ye_k—(if) R Ve € »Cz

a7

Algorithm 2: Asynchronous algorithm based on (17).

Input: Starting point {z*°}, {y*°}. Set counter k = 0;
while each agent i asynchronously do
Compute per (17) using the information it has
available;
Send out x***! and {y***1}.c, to neighbors;

The entries of X, Y not held by agent ¢ remain unchanged from
k to k + 1. Algorithm 2 summarizes the asynchronous updates.

D. Asynchronous Proximal Decentralized Gradient Descent

Section II-C has presented a decentralized primal-dual algo-
rithm for problem (1). In [12], [13], [40], proximal gradient
descent algorithms are derived to solve stochastic composite
optimization problems in a distributed manner by networked
agents. Using techniques similar to those developed in [12],
[13], [40] we can likewise derive a proximal variant for the
consensus gradient descent algorithm in [6]; see (21) below.
Following Section II-C, its asynchronous version will also be
developed; see (22) below.

To derive the synchronous algorithm, we penalize the con-
straints of Problem (7) (which is equivalent to Problem (1)) and
obtain an auxiliary problem:

1
inimi X X)+—|vX|? 18
minimize (X)) +r(X) + —|VX]", (18)
where o > 0 is a penalty constant. By V'V = L(I — W) in
Proposition 1, Problem (18) is exactly
1
inimi X)+ —X"(I-W)X +r(X 1
minimize s(X)+ X" (I -W)X +r(X), (19

smooth

which has the smooth-plus-proximable form. Therefore, apply-
ing the proximal gradient method with step-size « yields the
iteration:

x"*1 = prox,, <X’“ — a[Vs(X*) - é([ - W)Xk]>

= prox,, (WX" — aVs(X")), (20)

Recursion (20) is ready for decentralized implementation —
each agent ¢ € V performs

mz.k’-&-l § : wijxj,k: _ aVsi(:I:“]")
JEN;

2n

= Pprox,,,

Since algorithm (21) solves the penalty problem (19) instead of
the original problem (1), one must reduce « during the iterations
or use a small value. Recursion (21) is similar to the proximal
diffusion gradient descent algorithm derived in [12], [13] in
which each agent first applies local proximal gradient descent
and then performs weighted averaging with neighbors. Accord-
ing to [11], [37], the diffusion strategy removes the asymmetry
problem that can cause consensus implementations to become
unstable for stochastic optimization problems.
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The asynchronous version of (21) allows delayed variables
and adds relaxation to (21); each agent ¢ performs

~ gk S

! = prox,,. (§ Jen; wi T — Vs (ah T ))7
i ik ~i I P LTk

gkl = gk 4. (xz,k+l Lik—T! ) _

(22)

Its convergence follows from treating the proximal gradient it-
eration as a fixed-point iteration and applying results from [33].
Unlike Algorithm 2, the asynchronous algorithm (22) uses only
primal variables, so it is easier to implement. Like all other dis-
tributed gradient descent algorithms [6], [11]-[13], [40], how-
ever, algorithm (21) and its asynchronous version (22) must use
diminishing step sizes to guarantee exact convergence, which
causes slow convergence.

III. CONVERGENCE ANALYSIS
A. Preliminaries

Our convergence analysis is based on the theory of nonex-
pansive operators, as used in e.g., [24].

In this section we first present several definitions, lemmas and
theorems that underlie the convergence analysis.

First we introduce a new symmetric matrix

L, VT
Gi= [V I

:| c R™ +n .

As we will discuss later, G is an important auxiliary matrix that
helps establish the convergence properties of the synchronous
Algorithm 1 and asynchronous Algorithm 2. Meanwhile, it also
determines the range of step size « that enables the algorithms
to converge. Recall that the weight matrix W associated with
the network is symmetric and doubly stochastic. Besides, there
exists at least one agent ¢ such that w;; > 0. Under these con-
ditions, it is shown in [37] that W has an eigenvalue 1 with
multiplicity 1, and all other eigenvalues are strictly inside the
unit circle. With such W, we can show that G is positive definite.

Lemma 1: It holds that G > 0.

Proof: According to the Schur Complement condition
on positive definiteness, we known G > 0<= 1 > 0,1 —
VTV = 0. Recall Proposition 1 and A, (W) > —1, it holds
that I — V'V = (I + W) > 0, which proves G > 0.

To analyze the convergence of the proposed Algorithms 1 and
2, we still need a classic result from the nonexpansive opera-
tor theory. In the following we provide related definitions and
preliminary results.

Definition 1: Let H be a finite dimensional vector space (e.g.
RP or R"*P) equipped with a certain inner product (-, -) and its
induced norm ||x|| = 1/(x,x),Vx € H. An operator P : H —
‘H is called nonexpansive if

[Px =Pyl < lx -y, vx,y € H.

Definition 2: For any operator P : ‘H — H (not necessarily
nonexpansive), we define FixP := {x € H|x = Px} to be the
set of fixed points of operator P.

Definition 3: When the operator P is nonexpansive and 5 €
(0,1), the combination operator

Q:=01-p)I+pP

is defined as the averaged operator associated with P.

With Definition 2 and 3, it is easy to verify FixQ = FixP.

The next classical theorem states the convergence property of
an averaged operator.

Theorem 1 (KM iteration [41], [42]): Let P : H — H be a
nonexpansive operator and 3 € (0,1). Let Q be the averaged
operator associated with P. Suppose that the set FixQ is
nonempty. From any starting point z°, the iteration

Zk+l —_ sz‘ —_ (1 _ ﬁ)zk —|—ﬁ'sz

produces a sequence {z* };.~o converging to a point z* € FixQ
(and hence also to a point z* € FixP).

For the remainder of the paper, we consider a specific Hilbert
space ‘H for the purpose of analysis.

Definition 4: Define H to be the Hilbert space Ing('”J””) xp
endowed with the inner product (7, Z) 4 := tr(Z" AZ) and the
norm || Z||a := \/(Z, Z) 4, where A € R("+m)x(n+m) 5 3 pos-
itive definite matrix, and Z € R("+m)xp

B. Convergence of Algorithm 1

In this section we prove the convergence of Algorithm 1. We
first re-derive the iteration (9) using operator splitting techniques
and identify it as an averaged operator. Next, we apply Theorem
1 and establish its convergence property.

Let pin := Amin (G) > 0 be the smallest eigenvalue of G. In
the following assumption, we specify the properties of the cost
functions s; and r;, and the step-size a.

Assumption 1:

1) The functions s; and r; are closed, proper and convex.
2) The functions s; are differentiable and satisfy:
|Vsi(x) - Vsi(@)|| < Lillz — &, Va5 € RP,
where L; > 0 is the Lipschitz constant.

(3) The parameter « in synchronous algorithm (12) and
asynchronous algorithm (17) satisfies 0 < o < 2ppin /L,
where L := max; L;.

Since r and s are convex, the solution to the saddle point

problem (8) is the same as the solution to the following Karush-
Kuhn-Tucker (KKT) system:

o< (5 8 [5 2 L3 D)

operator A

operator 3 Z

which can be written as

X

0e AZ+BZ, with Z:= {Y

:| e R(7L+7n)><p.
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For any positive definite matrix M € R("+7)*("+m) e have
0cAZ+BZ < MZ—-AZ e MZ +BZ
S Z-M'AZeZ+M 'BZ
S Z=T+M'By Y (T-M"'A)Z 24

Note that (Z + M~1B)~! is well-defined and single-valued; it
is called resolvent [42]. From now on, we let

M = lG =0 (25)
o

and define the operator
T:=Z+M'By Y (T-M"1A). (26)

From (23), (24) and the definition of operator 7 in (26), we
conclude that the solutions to the KKT system (23) coincide
with the fixed points of 7.

Now we consider the fixed-point iteration

ZM =Tz = (T + M 'B)y T - M A)ZE,  @7)
which reduces to
MZF — AZ* € MZFY + BZM+1. (28)

Substituting M defined in (25) into (28) and multiplying « to
both sides, we will achieve

XF 4 VTYFR —aVs(XF) e XFFL oV Ty R+L L agr(XF+),
Yk + VXk: — Yk?+1 + VXk+1 _ VXkJrl,

which, by cancellation, is further equivalent to Recursion (9).

Until now, we have rewritten the primal-dual algorithm (9)
as a fixed-point iteration (27) with operator 7 defined in (26).
Besides, we also established that Fix7 coincide with the solu-
tions to the KKT system (23). What still needs to be proved is
that { Z*} generated through the fixed-point iteration (27) will
converge to Fix7. Below is a classic important result of the
operator 7. For a proof, see [43].

Theorem 2: Under Assumption 1 and the above-defined
norm with M = G/a«, there exists a nonexpansive operator
O and some [ € (0,1) such that the operator 7 defined in
(26) satisfies 7 = (1 — )] + BO. Hence, 7 is an averaged
operator.

The convergence of the synchronous update (9) follows
directly from Theorems 1 and 2.

Corollary 1: Under Assumption 1, Algorithm 1 produces
Z* that converges to a solution Z* = [X*; Y*] to the KKT sys-
tem (23), which is also a saddle point to Problem (8). Therefore,
X ™ is a solution to Problem (7).

Corollary 1 states that if we run algorithm 1 in the syn-
chronous fashion, the agents’ local variables will converge to a
consensual solution to the problem (1).

C. Convergence of Algorithm 2

Algorithm 2 is an asynchronous version that involves ran-
dom variables. In this subsection we will establish its almost
sure (a.s.) convergence (i.e., with probability 1). The analysis is
inspired by [33] and [36].

1) Algorithm Reformulation: It was shown in Section III-
B that Algorithm 1 can be rewritten as a fixed-point iteration
(27). Now we let 7; be the operator corresponding to the update
performed by agent 4, i.e., 7; only updates 2’ and {y°}.cr, (the
definition of £; can be referred to (11)) and leaves the other
variables unchanged. We define

Z; = {i} U {n + e e is the edge index of (i, j) € L;}

to be the set of all row indices of Z that agent ¢ needs to update.
The operator 7; : R +7)xp — R(m+1)%p 5 defined as follows.
For any Z € RU"+m)>p T, 7 € RU™+1)*P is a matrix with

(T2);, ifjel;

o (29)
Z]' lf] ¢ I,j,

(T:2); = {
where Z;, (TZ); and (7;Z); are the j-th row of Z, 7Z and

T, Z, respectively (see the notation section I-D). Moreover, we
define

S:=1-1T, S =1-1,. (30)
Based on the definition of the operator 7;, for any Z €

R(m+n)xp S 7 e RM+E1)%D ig also a matrix with

(Z—’TZ‘Z)j7 lf]GIZ,
(8iZ); = L 31)
0, lfj §é Zi~
We also define the delayed variable used in iteration k as
~ kar" .
JARE [Y,Mk} e RM+M*p, (32)

Suppose agent 7, is activated at iteration k, with definitions
(29) and (32) it can be verified that recursions (13) and (16) are
equivalent to:

7k :Tkgk
23 b R . 33
{Zk+1:Zk—77ik(Zk—Zk). ( )

From recursion (33) we further have

(31)

gkl _ gk _ i, (2k ~T, Zk) = zh Si, Zk. (34)

k

Therefore, the asynchronous update algorithm (17) can be
viewed as a stochastic coordinate-update iteration based on de-
layed variables [33], [36], with each coordinate update taking
the form of (34). R

2) Relation between Z* and Z* : The following assumption
introduces a uniform upper bound for the random delays.

Assumption 2: At any iteration k, the delays 7']]-“ ,j =
1,2,...,n and 55,6 =1,2,...,m defined in (17) have a uni-
form upper bound 7 > 0.

As we are finishing this paper, the recent work [44] has re-
laxed the above assumption by associating step sizes to poten-
tially unbounded delays. We still keep Assumption 2 in our
main analysis and shall discuss the case of unbounded delays in
Section III-E. R

Under Assumption 2, the relation between Z k and Z* can be
characterized in the following lemma [33].
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Lemma 2: Under Assumption 2, it holds that

=7+ > (2

deJ (k)

Zd+1 (35)

where J(k) C {k —1,....,k — 7} is an index set.

The proof of relation (35) can be referred to [33].

3) Convergence Analysis: Now we introduce an assumption
about the activation probability of each agent.

Assumption 3: For any k > 0, let i;, be the index of the agent
that is responsible for the k-th completed update. It is assumed
that each 7 is a random variable. The random variable 7;, is
independent of 71,49, -+ ,7;_1 as

P(Zk :’i) =:q; >0,

where ¢;’s are constants.

This assumption is satisfied under either of the following sce-
narios: (i) every agent ¢ is activated following an independent
Poisson process with parameter X;, and any computation oc-
curring at agent ¢ is instant, leading to ¢; = A; /(D1 A;); (i)
every agent ¢ runs continuously, and the duration of each round
of computation follows the exponential distribution exp(/3; ),
leading to ¢; = 8,1 /(31— B;"). Scenarios (i) and (ii) often
appear as assumptions in the existing literature.

Definition 5: Let (2, F, P) be the probability space we work
with, where €2, F and P are the sample space, o-algebra and
the probability measure, respectively. Define

ZF=g(2°,2°, 2", 2" ..., 2", ZF)

to be the o-algebra generated by 2°, 20, -, Z¥ ZF.
Assumption 4: Throughout our analysis, we assume

P(iy =i|2¥) = P(iy, = 1) = g,

Remark 1: Assumption 4 indicates that the index responsible
for the k-th completed update, i, is independent of the delays
in different rows of Z*. Although not always practical, it is a
key assumption for our proof to go through. One of the cases
for this assumption to hold is when every row of Z* always
has the maximum delay 7. In reality, what happens is between
this worst case and the no-delay case. Besides, Assumption 4 is
also a common assumption in the recent literature of stochastic
asynchronous algorithms; see [33] and the references therein.

Now we are ready to prove the convergence of Algorithm 2.
For simplicity, we define

ZM = Zk —77S/Z\k7

Vi, k.

Gmin = rnlln{%} > 07

)\max = )\max(M)7 )"min = )\min (M)u (36)

where 1 > 0 is some constant, and M > 0 is defined in (25).
Note that Z**1 is the full update as if all agents synchronously
compute at the k-th iteration. It is used only for analysis.

Lemma 3: Define Q :=1—P. When P :Rm+m)xpr
RO +7)%P i nonexpansive under the norm | - || 4, we have

~ ~ 1 -
(2-2,02-Q7Z)x > 5|92 -Q 7|},  (7)

where Z, Z € R0 +7)*P are two arbitrary matrices.

Proof: By nonexpansiveness of P, we have

|1PZ-PZ|} <||Z-Z|4, ¥YZ ZecRMM*P  (38)
Notice that
1PZ-PZ|%=1Z2-2-(QZ-Q2)|
= |12~ ZI1A —2(Z ~ 2,02 — QZ)1 +11QZ — Q Z}.
(39)
Substituting (39) into (38), we achieve (37). |

Let x be its condition number of matrix G. Since M = G/a,
k is also the condition number of M. The following lemma
establishes the relation between S; Z and SZ.

Lemma 4: Recall the definition of S, S; and M in (30) and
(25). It holds that

isﬁk
i=1

Proof: The first part comes immediately from the definition
of S and §; in (30) and (34). For the second part,

n
DOISZE A, < KIS 281

i=1

=S7F, (40)

n n
Z HS'I?Z]{”?\/I < Z)‘maxnsizk”% = )‘mHXHSZkH%‘

i=1 =1

< TS THR, = wllSZF R,
min
|
The next lemma shows that the conditional expectation of the
distance between Z**1 and any Z* € Fix7 for given Z* has
an upper bound that depends on Z* and Z* only. From now on,
the relaxation parameters will be set as

(41)

where 77 > 0 is the constant appearing at (36).
Lemma 5: Let {ZF},>o be the sequence generated by
Algorithm 2. Then for any Z* € Fix7, we have

E(IZ41 - 2|3 | 2¥)
€ (
< |z -z + = Z |1Z% — Z441)3,
k—7<d<k
1 1
+ - <T+ . ) 125 = ZY3,, @2
n E Nqmin Ui

where E (- | Z¥) denotes conditional expectation on Z* and ¢ is
an arbitrary positive number.
Proof: We have

E (|25 = Z* (3 | 2")
; n 7k * 2 k
= E HZ"— AR ’Z by (34), (41
( — y ) (by (34), (41))
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2n Sk v ok .
:E< _ <Sika’Z _Zk>M+ 2q2 [|Si ZkM’Zk>

23

+ ”Zk

(@) 21 Sk 7~ 1
@ ;Z@‘Zk’Z —Zk> 72452%1
i=1 =1 qi

+ || Z*

~Z"|I3

~Z’|I3

O zF — z3, +—<8Zk 7z — Z"'>

L
+t3 Z *IIS Z 134

where the equality (a) holds because of Assumptions 3 and 4.
On the other hand, note that

M

(43)

n

1 2k |2 1 ¢ ez U K - Sk |2
ZfHSz‘Z 2 < fZHSiZ I < fZHSZ'HM
ql qnl mn Z -1 qnl m Z -1

i=1

36) =1
e LA 12 (44)
and
<SZk,Z* Zk>
M
35 )
(:> <8Zk,Z* Zk 4 Z (Z Zd+1)>[t[
delJ (k)
(3:6> <SZk7Z* _ Zk>]u i Z <Zk _ Zk7+l’Zd _ Zd+1>]u
deJ (k)
(SZF—-8z", 2" - 7"y
1 1 ., =
to D (ka - ZME €l 2 - Zd“uﬁf)
U deJ (k)
37) 1 ~ 1
< - SISZ R o 2
n
deJ (k)
1 =
x <£||Zk — 2N +€llzt - Zd“l?u)
@) _ 1 " il
2 a2t 2+ 2 - 2
= > IIZd—Zd“lm (45)

deJ(k)

where the inequality (b) follows from Young’s inequality and
the fact that SZ* = (I —7)Z* = 0 since Z* is a fixed point
of 7. Substituting (44) and (45) into (43) and using J(k) C
{k —1,...,k — 7} we get the desired result.

The term £ 3", _,_;. [ Z¢ — Z9+1||? in the inequality (42)
appears because of the delay. Next we stack 7 + 1 iterates to-
gether to form a new vector and introduce a new metric in order
to absorb these terms.

Let H™™'=TJ[[_,H be a product space (Recall
‘H  denotes ]Rg“"*’”f, see Definition 4). For any
(Zoy.. s Z:),(Zo,..., Z;) € HT L, we let (-,-) be the in-

duced inner product, i.e., <(Z0,...,ZT),(ZO,...,ZT)> =

ST Zis Ziyr = Sy tr(Z] M Z;). Define a matrix U’ €
R(TJrl)x(TJrl) as

U :=U, +Us,
where
1 0 0
0 0 0
U1:: .
0 0 0
o . -
-7 2r1—1 1-—7
Gmin l—7 27—-3 2-—171
UQZ: . )
K ..
—2 3 -1
- _1 1_

and let U = U’ ® I where ® represents the Kronecker prod-
uct and [ is the identity operator. For a given (A, -+, A;) €
H‘r+1’

(BOa"' 7BT) :U(A07 )AT)

is given by:

= A +Tﬁ(A()_Al)a
B = \/T[(z — T = 1) A + (27 — 20+ 1)A;
K

+ (i = 7)Ais1],

BT — /qn:n (AT _ AT—l),

where the index ¢ for B; is from 1 to 7 4 1.The linear operator U
is a self-adjoint and positive definite since U’ is symmetric and
positive definite. We define (-, )y = (-, U-) as the U-weighted
inner product and || - ||y as the induced norm. We further let

(46)

Zh = (zF, Z" 2Ty e Tt k>0,
7= (Z%,..., 7)Y e H ",
where ZF = Z for k < 0. We have
1Z" —z* |7,
(46) k 12 Gmin — d
= |Z" =2y + p Z(d_ k—7)+1)[|Z2
d=k—1
- 2", 47)

and the following fundamental inequality.
Theorem 3 (Fundamental inequality): Let {Z"};~o be the
sequence generated by Algorithm 2. Then for any Z* =
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(Z*,...,Z%), it holds that

1(1_ 21k K )||Zk+1
NGgmin

< Zk A 2 -
o H HU n n T'y/Gmin

- Z"3 (48)

Proof: Let £ = n\/qmin /<. We have
E(|ZM" - 27312
(47) X :
= E(|Z"" - 2|3, 127)

k d—(k—1) d d+1112 k
+& Y = E(129 - 2915 127)
d=k+1—-71
(34) s ' - 2 ~ ’
=" E(|Z" - 213 12%) + SE( ”;k 1S5, Z*13,12%)

n n?q

' deten g pa d+1p2
+& > |24 = Z |5,
d=k+1-1
(44) : TK 7
< E(HZk-H -z H?&[‘Zk) + ngﬁqm,m ”Zk _ Zk+1||?\1
' dher) d+172
+& > T/ Zt =z,
d=k+1-71

(42)
< N2 -2+ L (4 e - L) )12
- ZMN%
+5 0 zd -z,
k—1<d<k

" () d+172
+& > Nzt = Z |y,
d=k+1-1

= 12" - 21 + & (F+ 2 + 72 - 1) 112

1% uin
- 2"y
k-1
+ %d;k;T (d—(k—7)+ 1127 = 273,
Dzt -zl + L (R + i - )26 - 25,
Hence, the desired inequality (48) holds. |

Remark 2 (Stochastic Fejér monotonicity [45]): From (48),
suppose

NQmin

27—\/ RGmin + K’

0<n< (49)

then we have
E(|Z"" - Z*|5|2%) < | ZF - 2|7,

i.e., the sequence {Z"};~ is stochastically Fejér monotone,
which means the covariance of Z* is non-increasing as the
iteation k evolves.
Based on Theorem 3, we have the following corollary:
Corollary 2: When 7 satisfies (49), we have

D S 124 = 24, < coas:
2) the sequence {||Z* — Z*||? } >0 converges to a [0, +00)-
valued random variable a.s.

3 .. . . l o 27—\/E o
Proof: The condition (49) implies that PR e

nqhﬁ > 0. Applying [46, Theorem 1] to 48 directly gives the
two conclusions. |

The following lemma establishes the convergence properties
of the sequences {Z"}?° | and {Z*}3 .

Lemma 6: Define S* = {(Z*,...,Z")|Z* € FixT}, let
(Z")k>0 C 'H be the sequence generated by Algorithm 2,
1 € (0, Pmax] for certain 1y, satisfying (49). Let 2°(Z*) be
the set of cluster points of {Z*};~o. Then, Z°(Z*) C S* as.

Proof: We take several steps to complete the proof of this
lemma.

i) Firstly, from Corollary 2, we have Z¥ — ZF*! — 0 as.

Since || Z% — ZFH1||p < || 2k — ZFFL |, (cf. (44)), we

= Nquin
have Z¥ — ZF+1 — 0 a.s. Then from (35), we have Z* — ZF —
0a.s.

ii) From Corollary 2, we have that (||Z* — Z*||})).>0 con-
verges a.s., and so does (||Z* — Z*||¢ )r>0. Hence, we have
limy o | Z¥ — Z*||y = 7 ass., where 7 is a [0, 400)-valued
random variable. Hence, (||Z* — Z*||¢)x>0 must be bounded
a.s., and so is (Z*);.>.

iii) We claim that there exists 2 € F such that P(€) = 1
and, for every w € Qand every Z* € S*, (| Z* (w) — Z*||v )0
converges.

The proof follows directly from [45, Proposition 2.3 (ii)]. It
is worth noting that € in the statement works for all Z* € S*,
namely, {2 does not depend on Z. R

iv) By (i), there exists Q€ F such that P(2) =1
and ZF(w) — Z"(w) -0, Ywe Q. For any w e,
let (Z*(w))>0 be a convergent subsequence of
(ZF (w))k>0, ie., ZF(w)— Z, where ZF (w) = (Z" (w),
ZM=Y(w)..., 287 (w)) and Z = (u’,..,u”). Note that
Z" (w) — Z implies Z*' =7 (w) — w/, Vj. Therefore, u’ = w/,
for any 4,5 € {0,--- ,7} because Z" ¥ (w) — ZF 7 (w) — 0.
Furthermore, observing n > 0, we have

iy se 2% (w) — T 2% (w)

~ 1 _
= lim SZ" (w) = lim =(Z" (w) — Z" ' (w)) = 0.
|—o0 l—00 n

From the triangle inequality and the nonexpansiveness of 7,
it follows that

124 (W) = TZ" ()|

= (12" (@) = Z¥ (w) + 2" (w) = T 2" (w) + TZ" (w)
— TZ"(w)||u

<128 (W) = ZM ()llar + 1128 () — TZ* (w)|r
+ITZ" (@) = TZM (W)l

<228 (W) = Z5 ()|l + 12" (w) = TZ" () s

<2 Y [|1Z2%w) = 27 (W)l + 127 (w) = T2 () -
ded (k)
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By (III-C3) and (III-C3), we have from the above inequality
that lim; ., Z¥ (w) — T Z¥ (w) = 0. Now the demiclosedness
principle [42, Theorem 4.17] implies u’ € Fix7, and this im-
plies the statement of the lemma. |

From Lemma 6 and Opial’s Lemma [47], we have the con-
vergence theorem of the asynchronous algorithm.

Theorem 4: Let (Z*);>y C H be the sequence generated by
Algorithm 2, 1 € (0, 9ax] for certain ny, .y satisfying (49). If
Assumptions 3, 2 and 4 hold, then (Z*);>o converges to a
Fix7 -valued random variable a.s.

This theorem guarantees that, if we run the asynchronous
algorithm 2 with an arbitrary starting point Z°, then the se-
quence {Z*} produced will converge to one of the solutions
to problem (8) almost surely. From the upper bound of 7y, ax,
we can see that we must relax the update more if maximum
delay 7 becomes larger, or if the matrix M becomes more ill-
conditioned. The relative computation speed of the slowest agent
will also affect the relaxation parameter.

D. New Step Size Rules

For both the synchronous and asynchronous algorithms, we
require the step size « be less than 2py,1, /L (Assumption 1).
Both py,i, and L involve global properties across the network:
Pmin 18 related to the property of the matrix V" and L is related
to all the functions s;. Unless they are known a priori, we need
to apply a consensus algorithm to obtain them.

In this section we introduce a step size «; for each agent ¢ that
depends only on its local properties. The following theorem is
a consequence of combining results of [48, Lemma 10] and the
monotone operator theory.

Theorem 5: Let the iteration Z*+! = 7 Z* be defined as

ikl _ j ik
x = prox, ., (Zje\f, wi;xl* — a; Vs (xh")

- Zfieg,j UEiyEi’k)7Via
YRt = gk 4 (vgixi'k + vgjxj’k), Ve = (i,j) € L;,

with o; = m for an arbitrary 0 < v < 2. Then under
assumption 1, the operator 7 is an averaged operator.
Because this new operator 7 is still an averaged operator, the

convergence results, Corollary 1 and Theorem 4, still hold.

E. Allowing Unbounded Delays

Using the analytical tools developed in [44], we can further
prove that our algorithm allows unbounded delays. The detailed
proofs are omitted due to the page limit; interested readers are
referred to [44].

We make the following assumption.

Assumption 5:

1
q; = —, V'L = 1,27...77”,.
n

Assumption 5 is made for simplicity of formulas. Only ¢; >
€ > 0 for 7 is needed.

Stochastic unbounded delays

Instead of Assumption 2, we make the following assumptions
on the delay vectors 7", 6*.

Assumption 6: The delay vectors {7*}; >0 are i.i.d. random
variables; so are the delay vectors {0" };~. In addition, they are
independent of the agents ¢y, ..., i, ...

Assumption 7 (Evenly old delays): We assume that the de-
lays are evenly old, meaning that there exists an integer B > 0,
such that forall £ > 0,all4,j =1,...,n,alle, f =1,...,m,

|T'1',k 77_]“ < Ba
[ —o:| < B,
|0F — &}| < B.

In Assumption 7, only the existence of B is required. It can be
as long as it needs to be. In practice, it is often the case that one
node constantly works slower than others or the communication
involving one node is constantly more unreliable than with oth-
ers. Nevertheless, such a bound B always exists provided that
this heterogeneity does not become worse progressively in an
uncontrollable fashion.

Definition 6: We define

AF = max{rf, ... 7k o, ... 0k )

v Ino rYm

P, :=P(A*>1), 1=0,1,... (50)

We have the following theorem.
Theorem 6: Let (Z*);~o C H be the sequence generated by
Algorithm 2, Let Assumptions 5, 4, 6 and 7 hold. Then (Z*);>
converges to a Fix7 -valued random variable a.s. if either of the
following holds:
1) 3272, (IP;))Y/? < oo; the step sizes for each agent i are
equal and satisfy
0<mi < (k4 2= 02 P22 +1712)) 7,

2) S, (P))Y/? < o, the 7;’s are equal and satisfy 0 <
m< (h+ 22 P

In both scenarios of Theorem 6, P; are required to decay fast
when [ grows. Bigger step sizes can be taken when the delay
distribution has thinner tails. In particular, bounded delays and
delays following a geometric distribution are special cases of
both scenarios.

Unbounded deterministic delays

In the following, we allow the delays to be arbitrary.

Assumption 8: The delay vectors 7", 6% are arbitrary, with
liminf A* < oo where A is defined in (50).

Assumption 8 means that there exists an bound 15, as large as
it needs to be, such that for infinite many iterations, the delays
are no larger than 5.

Definition 7: Let (Z*);>0 C H be the sequence generated
by Algorithm 2. For all positive integers 7', define ()7 be a
subsequence of (Z*);>, obtained by removing the iterates with
AF>T.

We have the following convergence result.

Theorem 7: Let (Z*);>o C H be the sequence generated by
Algorithm 2. Let Assumptions 5, 4 and 8 hold. Fix v > 0, and
let the step sizes 7); vary by each iteration and satisfy

1 1 1 . N\
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Then for all T > lim inf A¥, the sequence Q7 converges to the
same Fix7 -valued random variable a.s.

Theorem 7 requires the step sizes to change according to the
current delay and the convergence is applied to the subsequence
with some iterates excluded as in Definition 6.

IV. NUMERICAL EXPERIMENTS

In this part we simulate the performance of the proposed
asynchronous algorithm (17). We will compare it with its
synchronous counterpart (12) (synchronous PG-EXTRA) as
well as the proximal gradient descent algorithms (synchronous
algorithm (21) and asynchronous algorithm (22)).

In the following experimental settings, we generate the net-
work as follows. The location of the n agents are randomly
generated in a 30 x 30 area. If any two agents are within a dis-
tance of 15 units, they are regarded as neighbors and one edge is
assumed to connect them. Once the network topology is gener-
ated, the associated weighting matrix W is produced according
to the Metropolis-Hastings rule [37].

In all simulations, we let each agent start a new round of
update, with available neighboring variables which involves de-
lays in general, instantly after the finish of last one. To guarantee
each agent to be activated i.i.d, the computation time of agent  is
sampled from an exponential distribution exp(1/y;). For agent
i, u; is set as 2 + || where i follows the standard normal distri-
bution N (0, 1). The communication times is also simulated. The
communication time between agents are independently sampled
from exp(1/0.6). After the computation time is generated, the
probability g; can be computed accordingly.

In all curves in the following figures, the relative error
H)}gtii((”i against time is plotted, where X™ is the exact so-
lution to (1).

A. Decentralized Compressed Sensing

For decentralized compressed sensing, each agent 1 €
{1,2,--- ,n} holds some measurements: b; = A;x +¢; €
R™i, where A; € R™ P is a sensing matrix, x € R? is the
common unknown sparse signal, and e; is i.i.d. Gaussian noise.
The goal is to recover . The number of measurements » ;| m;
may be less than the number of unknowns p, so we solve the

£ -regularized least squares:
n

o1
minimize ; si(x) +ri(x),
where S; (1’) = %”Azl’ — bZ”%, ’I’Z'(!E) = 91H£17||1, and 01' is the
regularization parameter with agent 7.

The tested network has 10 nodes and 14 edges. We setm; = 3
fori =1,---,10and p = 50. The entries of A;, ¢; are indepen-
dently sampled from the standard normal distribution N (0, 1),
and A; is normalized so that || 4;]]2 = 1. The signal z is gener-
ated randomly with 20% nonzero elements. We set the regular-
ization parameters 6; = 0.01.

The step sizes of all the four algorithms are tuned by
hand and are nearly optimal. The step size a for both the
primal synchronous algorithm (21) and the asynchronous
algorithm (22) are set to be 0.05. This choice is a compromise
between convergence speed and accuracy. The relaxation

A T = A~ -A- A - A --A--2 - —A-"a_
I-?'t—“’——b_—b— > > ﬁ‘: - A

» P> I>

> >
P

Relative error

- A - Synchronous Primal (23)
s[ | —— Asynchronous Primal (24)

F | - m - Synchronous PG-EXTRA Alg. 1
—e— Asynchronous Primal-Dual Alg. 2

10 -
0 500

1000 1500 2000

Time(ms)

Fig. 2. Convergence comparison between synchronous algorithm (21), asyn-
chronous algorithm (22), synchronous PG-EXTRA Algorithm 1 and the asyn-
chronous Algorithm 2 for compressed sensing.

TABLE II
SAMPLED COMPUTATION TIME IN THE 1ST ITERATION

agent 1 2 3 4 5
time (ms) 0497  0.033 0944 0551 1.152
agent 6 7 8 9 10
time (ms)  0.072  0.112 0996 0.049  0.025

parameters for the asynchronous algorithm (22), are chosen
to be 7; = 0.036/¢;. The step size « for both synchronous
PG-EXTRA Algorithm 1 and asynchronous Algorithm 2
are set to be 1. The relaxation parameters for asynchronous
Algorithm 2 are chosen to be 7; = 0.0288/¢;. From Fig. 2 we
can see that asynchronous primal algorithm (22) is faster than
its synchronous version (21), but both algorithms are far slower
than synchronous PG-EXTRA Algorithm 1 and asynchronous
Algorithm 2. The latter two algorithms exhibit linear conver-
gence and Algorithm 2 converges significantly faster. Within
the same period (roughtly 2760 ms), the two asynchronous
algorithm finishes 21 times as many rounds of computation
and communication as the synchronous counterparts, due to
the elimination of waiting time.

To better illustrate the reason why the asynchronous
Algorithm 2 is much faster than the synchronous Algorithm 1,
we list the computation and communication time during the
first iteration in Tables II and III, respectively. In Table III each
edge corresponds to two rounds of communication time: com-
munications from agent ¢ to j and from 5 to i. From Table II
it is observed that the longest computation time is 1.152 ms.
From Table III it is observed that the longest communication
time is 4.592 ms. Therefore, the duration for the first iteration
in the synchronous Algorithm 1 is 1.152 + 4.592 = 5.744 m:s.
However, in the asynchornous Algorithm 2, each agent will
start a new iteration right after the finish of its previous update.
The average duration for the first iteration is Y, ¢;/10 =
0.443 ms. Therefore, during the first iteration the asynchronous
Algorithm 2 is 5.744/0.443 ~ 13 times faster than the syn-
chronous Algorithm 1. The data listed in Tables II and III il-
lustrates the necessity to remove the idle time appearing in the
synchronous algorithm.
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TABLE III
SAMPLED COMMUNICATION TIME IN THE 1ST ITERATION

edge (1,2) (1, 10) (1,8) (2,3) 2,5) 2,8) 2,9
time(ms) 0.489 1.425 0.024 1.191 2.862  2.140 0.091
edge (3,6) (4,6) 4,7 4,9) 6,7) (7,8)  (8,10)
time(ms) 1.429 0.018 2359 2233 0.003 1.952 2.412
edge 2,0 (10, 1) @8, 1 3,2) 5,2) 8,2) 9,2)
time (ms)  2.762 1.165 1.672 1.828  0.569 4592 0.617
edge 6, 3) (6,4) (7,4) 9,4) (7,6) 8,7 (10,8)
time (ms)  0.385 0.887 1.152  0.744 2716  0.649 3.031

Since both synchronous and asynchronous proximal-
gradient-descent-type algorithms are much slower compared
to the synchronous PG-EXTRA Algorithm 1 and asynchronous
Algorithm 2, in the following two simulations we just show
convergence performance of PG-EXTRA Algorithm 1 and asyn-
chronous Algorithm 2.

B. Decentralized Sparse Logistic Regression

In this subsection the tested problem is decentralized sparse
logistic regression. Each agent i € {1,2,--- ,n} holds local
data samples {h’,d 5. dj j:"p where the supscript ¢ indiates the
agentindex and subscript j indicates the data index. h; € RPisa
feature vector and d;- € {+1, —1}isthe corresponding label. m;
is the number of local samples kept by agent 7. All agents in the
network will cooperatively solve the sparse logistic regression
problem

n

=3 lsiCe) + i),
where s;(z) = 77}[ ity z)), ri(z) =
Oill|:-

In the simulation, we set n = 10, p = 50, and m; = 3 for
all 7. For local data samples {h7,d;}]"", at agent i, each A
is generated from the standard normal dlstribution N(0,1). To
generate d’, we first generate a random vector z° € RP with
80% entries being zeros. Next, we generate d; from a uniform
distribution U (0, 1). If d < 1/[1 4 exp(—(h’)"x°)] then d is
set as +1; otherwise d} is set as —1. We set the regularization
parameters 0; = 0.1.

The step sizes of both algorithms are tuned by hand and
are nearly optimal. The step sizes a for both synchronous
PG-EXTRA Algorithm 1 and asynchronous Algorithm 2 are
set to be 0.4. The relaxation parameters for asynchronous
Algorithm 2 are chosen to be 7; = %222, From Fig. 3 we can
see that both algorithms exhibit convérgence almost linearly
and that Algorithm 2 converges significantly faster. In our ex-
periments, within the same period, the asynchronous algorithm
finishes 21 times as many rounds of computation and commu-
nication as that performed by the synchronous algorithm, due
to the elimination of waiting time.

minimize, cr»

In (1+ exp(—dj (%)’

C. Decentralized Low-Rank Matrix Completion

Consider a low-rank matrix A = [A,---, A,] € RV*K of
rank 7 < min{N, K'}.Inanetwork, each agent i observes some
entries of A; € RV*F:i S | K; = K. The set of observations
is Q = U!"_, ;. To recover the unknown entries of A, we intro-

10° e
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-
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o 10
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=
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T 107 ]
[an
107k 1
107°% E
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—e— Asynchronous Primal-Dual Alg. 2
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Fig. 3. Convergence comparison between synchronous PG-EXTRA and the

asynchronous Algorithm 2 for sparse logistic regression.

duce a public matrix X € RV *", which is known to all agents,
and a private matrixY = [Y' ... [ Y"] € R"™*X where each
Y € RV*K: corresponds to A; and is held by agent i. The
supscript ¢ indicates the agent index. We reconstruct A = XY,
which is at most rank 7, by recovering X and Y in a decentral-
ized fashion. The problem is formulated as follows (see [49] for
reference).

minimize
XAV A2}

aZ XY= 2|},

subject to  (Z")ay = (Ai)ap, Y(a,b) €, (51)

where Z' € RV>*Ei is an auxiliary matrix, and (Z'),; is the
(a, b)-th element of A;.

1) Synchronous Algorithm: [49] proposes adecentralized al-
gorithm to solve Problem (51). Let each agent hold X" as a local
copy of the public matrix X, the algorithm is: Step I: Initializa-
tion. Agent i initializes X 50 and Y9 as random matrices, Z%°
is also initialized as a random matrix with (Z%%),;, = (A;)ap
for any (a,b) € ;.

Step 2: Update of X'. Each agent i updates X***1 by solving
the following average consensus problem:

mlm?nze Z [ X — Z0F (YR T2,

subject to X' = X2 =... = X", (52)

Step 3: Update of Y. Each agent i updates
[(Xz‘,kﬂ)TXi,kH]*l (Xi.kJrl)TZz',k.
Step 4: Update of Z;. Each agent ¢ updates
_ Xi7k+1yi,k+l +.ZDQ (AZ _Xi7k+1yi,k+l)
where Py (-) is defined as follows: for any matrix A, if (a,b) €
Q, then [Py (A)]ap = Aap; otherwise [P (A)]ap = 0.

In problem (52) appearing at Step 2, we can let 7;(X') =
LI X" — ZF(YIR) T3 and s;(X;) = 0 and hence problem
(52) falls into the general form of problem (1), for which we

can apply the synchronous PG-EXTRA Algorithm 1 to solve it.
We introduce matrices {Q°, Ve € £} as dual variables. Instead

Yi,k+l _

Zi,k+1



306 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 4, NO. 2, JUNE 2018

Relative error

F | - m - Synchronous PG-EXTRA Alg. 1
—e— Asynchronous Primal-Dual Alg. 2

I I ! .
0 200 400 600 800
Time(ms)

1000

Fig. 4. Convergence comparison between synchronous PG-EXTRA and the
asynchronous Algorithm 2 for matrix completion.

of solving (52) exactly, we just run (12) once for each iteration

k. Therefore, Step 2 becomes }
Step 2': Update of X'. Each agent i updates X***1 by

. 1 j
XL = a—i—l( > wi X = Qe

JEN; eect;
+ OéZi’k (Yi,k)T> ,

Q€7k+1 = QE’k + (veiXi’k +'Uerj7k)v Ve = (27]) € ‘Cz

2) Asynchronous Algorithm: For the asynchronous algo-
rithm, agent ¢, when activated, updates X; and {Q°,Ve =
(1,7) € L;} per Step 2’ using the neighboring information it
has available, then performs Step 3 and Step 4 to update its pri-
vate matrices Y; and Z;, and sends out the updated X; and Q°
to neighbors.

We test our algorithms on a network with 20 nodes and
41 edges. In the simulation, we generate a rank 4 matrix A €
R40x140 "hence each A; € R***7. To generate A, we first pro-
duce E € R*** ~ N(0,1) and F € R0 ~ N(0,1). We
also produce a diagonal matrix D € R*** ~ N(0,1). With
E,F and D, we let A= EDFT. A total of 80% entries of
A are known. To generate §2, we first sample its entries inde-
pendently from the uniform distribution U (0, 1). If any entry of
) is less than 0.8, it will be set as 1, which indicates this entry
is known; otherwise it will be set as 0.

We run the synchronous PG-EXTRA Algorithm 1 and
the proposed asynchronous primal-dual Algorithm 2 and plot
the relative error ll‘étiﬁ”; against time, as depicted in Fig. 4.
The step sizes of both algorithms are chosen to be &« = 0.1. The
relaxation parameters for asynchronous Algorithm 2 are chosen
toben, = Ogﬂ The performance of the algorithms are simi-
lar to the prevfous experiments. In this 20-node network, within
the same period, the asynchronous algorithm finishes 29 times
as many rounds of computation and communication as those
finished by synchronous Algorithm 1.

—e&— Asynchronous Primal-Dual Alg.2
—»— Asynchronous ADMM [33]

Relative error

. . . . .
0 100 200 300 400 500 600
Time(ms)

Fig.5. Convergence comparison between asynchronous ADMM and the pro-
posed Alg. 2 for decentralized geometric median problem.

D. Decentralized Geometric Median

In the literature there are limited asynchronous algorithms
proposed to solve problems with composite cost function as
in Problem (1). When there is no differentiable term, i.e.,
si(x) = 0, the most closely related algorithm to the proposed
asynchronous primal-dual Alg. 2 is the asynchronous ADMM
[33]. In this subsection, we compare these two algorithms when
solving the geometric-median problem:

1 n
- > llz = bill2,
i—1

where {b;}7_, are given constants. Computing decentralized
geometric medians have various interesting applications, see [2]
for more detail. In this simulation, we set n = 11, p = 4, and
each b; is generated from the Gaussian distribution N (0, A),
where A is a diagonal matrix with each entry follows uniform
distribution U(0,10). The parameters of both algorithms are
hand-optimized. The augmented coefficient in the asynchronous
ADMM is 0.3, and the step-size in Alg. 2 is 1. The relaxation
parameter for both algorithms is set as 0.4. It is observed in
Fig. 5 that Alg. 2 is faster than the asynchronous ADMM.

min
zeRP

V. CONCLUSION

This paper developed an asynchronous, decentralized algo-
rithm for concensus optimization. The agents in this algorithm
can compute and communicate in an uncoordinated fashion; lo-
cal variables are updated with possibly out-of-date information.
Mathematically, the developed algorithm extends the existing
algorithm PG-EXTRA by adding an explicit dual variable for
each edge and to take asynchronous steps. The convergence of
our algorithm is established under certain statistical assump-
tions. Although not all assumptions are satisfied in practice,
the algorithm is practical and efficient. In particular, step size
parameters are fixed and depend only on local information.

Numerical simulations were performed on both convex and
nonconvex problems, and synchronous and asynchronous algo-
rithms were compared. In addition, we introduced an asyn-
chronous algorithm without dual variables by extending an
existing algorithm and included it in the simulation. All sim-
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ulation results clearly show the advantages of the developed
asynchronous primal-dual algorithm.
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