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A Decentralized Second-Order Method with Exact
Linear Convergence Rate for Consensus Optimization

Aryan Mokhtari, Wei Shi, Qing Ling, and Alejandro Ribeiro

Abstract—This paper considers decentralized consensus opti-
mization problems where different summands of a global objective
function are available at nodes of a network that can communi-
cate with neighbors only. The proximal method of multipliers is
considered as a powerful tool that relies on proximal primal de-
scent and dual ascent updates on a suitably defined augmented
Lagrangian. The structure of the augmented Lagrangian makes
this problem nondecomposable, which precludes distributed im-
plementations. This problem is regularly addressed by the use of
the alternating direction method of multipliers. The exact second-
order method (ESOM) is introduced here as an alternative that
relies on: First, the use of a separable quadratic approximation
of the augmented Lagrangian, and second, a truncated Taylor’s
series to estimate the solution of the first-order condition im-
posed on the minimization of the quadratic approximation of the
augmented Lagrangian. The sequences of primal and dual vari-
ables generated by ESOM are shown to converge linearly to their
optimal arguments when the aggregate cost function is strongly
convex and its gradients are Lipschitz continuous. Numerical
results demonstrate advantages of ESOM relative to decentral-
ized alternatives in solving least-squares and logistic regression
problems.

Index Terms—Decentralized optimization, method of multipli-
ers, multi-agent networks, second-order methods.

I. INTRODUCTION

IN DECENTRALIZED consensus optimization problems,
components of a global objective function that is to be

minimized are available at different nodes of a network. For-
mally, consider a decision variable x̃ ∈ Rp and a connected
network containing n nodes where each node i has access to
a local objective function fi : Rp → R. Nodes can exchange
information with neighbors only and try to minimize the global
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cost function
∑n

i=1 fi(x̃),

x̃∗ := argmin
x̃∈Rp

n∑

i=1

fi(x̃). (1)

We assume that the local objective functions fi(x̃) are
strongly convex. The global objective function

∑n
i=1 fi(x̃),

which is the sum of a set of strongly convex functions, is also
strongly convex. Problems like (1) arise in decentralized con-
trol [1]–[3], wireless communication [4], [5], sensor networks
[6]–[8], and large scale machine learning [9]–[11].

Decentralized methods for solving (1) can be divided into
two classes: primal domain methods and dual domain methods.
Decentralized gradient descent (DGD) is a well-established pri-
mal method that implements gradient descent on a penalized
version of (1) whose gradient can be separated into per-node
components. Network Newton (NN) is a more recent alterna-
tive that accelerates the convergence of DGD by incorporating
second order information of the penalized objective [12], [13].
Both, DGD and NN, converge to a neighborhood of the opti-
mal argument x̃∗ when using a constant stepsize and converge
sublinearly to the exact optimal argument if using a diminishing
stepsize.

Dual domain methods build on the fact that the dual func-
tion of (1) has a gradient with separable structure. The use of
plain dual gradient descent is possible but generally slow to
converge [14]–[16]. In centralized optimization, better conver-
gence speeds are attained by the method of multipliers (MM)
that adds a quadratic augmentation term to the Lagrangian [17],
[18], or the proximal (P)MM that adds an additional term to
keep iterates close. In either case, the quadratic term that is
added to construct the augmented Lagrangian makes distributed
computation of primal gradients impossible. This issue is most
often overcome with the use of decentralized (D) versions of
the alternating direction method of multipliers (ADMM) [6],
[19], [20]. Besides the ADMM, other methods that use different
alternatives to approximate the gradients of the dual function
have also been proposed [21]–[27]. The convergence rates of
these methods have not been studied except for the DADMM
and its variants that are known to converge linearly to the op-
timal argument when the local functions are strongly convex
and their gradients are Lipschitz continuous [20], [28], [29]. An
important observation here is that while all of these methods try
to approximate the MM or the PMM, the performance penalty
entailed by the approximation has not been studied.

This paper introduces the exact second order method (ESOM)
which uses quadratic approximations of the augmented La-
grangians of (1) and leads to a set of separable subprob-
lems. Similar to other second order methods, implementation

2373-776X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



508 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 2, NO. 4, DECEMBER 2016

of ESOM requires computation of Hessian inverses. Distributed
implementation of this operation is infeasible because while
the Hessian of the proximal augmented Lagrangian is neighbor
sparse, its inverse is not. ESOM resolves this issue by using the
Hessian inverse approximation technique introduced in [12],
[13], [30]. This technique consists of truncating the Taylor’s
series of the Hessian inverse to order K to obtain the family of
methods ESOM-K. Implementation of this expansion in terms
of local operations is possible. A remarkable property of all
ESOM-K methods is that they can be shown to pay a perfor-
mance penalty relative to (centralized) PMM that vanishes with
increasing iterations.

We begin the paper by reformulating (1) in a form more
suitable for decentralized implementation (Proposition 1) and
proceed to describe the PMM (Section II). ESOM is a variation
of PMM that substitutes the proximal augmented Lagrangian
with its quadratic approximation (Section III). Implementation
of ESOM requires computing the inverse of the Hessian of the
proximal augmented Lagrangian. Since this inversion cannot be
computed using local and neighboring information, ESOM-K
approximates the Hessian inverse with the K-order truncation
of the Taylor’s series expansion of the Hessian inverse. This
expansion can be carried out using an inner loop of local op-
erations. This and other details required for decentralized im-
plementation of ESOM-K are discussed in Section III-A along
with a discussion of how ESOM can be interpreted as a saddle
point generalization of the Network Newton methods proposed
in [31] (Remark 2) or a second order version of the EXTRA
method in [32] (Remark 3).

Convergence analyses of PMM and ESOM are then pre-
sented (Section IV). Linear convergence of PMM is established
(Section IV-A) and linear convergence factors explicitly de-
rived to use as benchmarks (Theorem 1). In the ESOM
analysis (Section IV-B) we provide an upper bound for
the error of the proximal augmented Lagrangian approxi-
mation (Lemma 3). We leverage this result to prove lin-
ear convergence of ESOM (Theorem 2) and to show that
ESOM’s linear convergence factor approaches the correspond-
ing PMM factor as time grows (Section IV-C). This indi-
cates that the convergence paths of (distributed) ESOM-K
and (centralized) PMM are very close. We also study the de-
pendency of the convergence constant with the algorithm’s
order K.

ESOM tradeoffs and comparisons with other decentralized
methods for solving consensus optimization problems are illus-
trated in numerical experiments (Section V) for a decentralized
least squares problem (Section V-A) and a decentralized logis-
tic regression classification problem (Section V-B). Numerical
results in both settings verify that larger K leads to faster conver-
gence in terms of number of iterations. However, we observe that
all versions of ESOM-K exhibit similar convergence rates in
terms of the number of communication exchanges. This implies
that ESOM-0 is preferable with respect to the latter metric and
that larger K is justified when computational cost is of interest.
Faster convergence relative to EXTRA, Network Newton, and
DQM is observed. We close the paper with concluding remarks
(Section VI).

Notation: Vectors are written as x ∈ Rn and matrices as
A ∈ Rn×n . Given n vectors xi , the vector x = [x1 ; . . . ;xn ]
represents a stacking of the elements of each individual xi . We
use ‖x‖ and ‖A‖ to denote the Euclidean norm of vector x
and matrix A, respectively. The norm of vector x with respect
to positive definite matrix A is ‖x‖A := (xT Ax)1/2 . Given a
function f its gradient x is denoted as ∇f(x) and its Hessian
as ∇2f(x).

II. PROXIMAL METHOD OF MULTIPLIERS

Let xi ∈ Rp be a copy of the decision variable x kept at node
i and define Ni as the neighborhood of node i. Assuming the
network is bidirectionally connected, the optimization problem
in (1) is equivalent to the program

{x∗
i }n

i=1 := argmin
{x i }n

i = 1

n∑

i=1

fi(xi),

s.t. xi = xj , for all i, j ∈ Ni . (2)

Indeed, the constraint in (2) enforces the consensus condition
x1 = · · · = xn for any feasible point of (2). With this condition
satisfied, the objective in (2) is equal to the objective function
in (1) from where it follows that the optimal local variables x∗

i

are all equal to the optimal argument x̃∗ of (1), i.e., x∗
1 = · · · =

x∗
n = x̃∗.
To derive ESOM define x := [x1; . . . ;xn ] ∈ Rnp as the

concatenation of the local decision variables xi and the ag-
gregate function f : Rnp → R as f(x) = f(x1 , . . . ,xn ) :=∑n

i=1 fi(xi) as the sum of all the local functions fi(xi). In-
troduce the matrix W ∈ Rn×n with elements wij ≥ 0 rep-
resenting a weight that node i assigns to variables of node
j. The weight wij = 0 if and only if j /∈ Ni ∪ {i}. The ma-
trix W is further required to satisfy

WT = W, W1 = 1, null(I − W) = span(1). (3)

The first condition implies that the weights are symmetric,
i.e., wij = wji . The second condition ensures that the weights
of a given node sum up to 1, i.e.,

∑n
j=1 wij = 1 for all i. Since

W1 = 1 we have that I − W is rank deficient. The last condi-
tion null(I − W) = span(1) makes the rank of I − W exactly
equal to n − 1 [33].

The matrix W can be used to reformulate (2) as we show in
the following proposition.

Proposition 1: Define the matrix Z := W ⊗ Ip ∈ Rnp ×
Rnp as the Kronecker product of the weight matrix W and
the identity matrix Ip , and consider the definitions of the
global vector x := [x1 ; . . . ;xn ] and aggregate function f(x) :=∑n

i=1 fi(xi). The optimization problem in (2) is equivalent to

x∗ = argmin
x∈Rn p

f(x) s.t. (I − Z)1/2x = 0. (4)

I.e., x∗ = [x∗
1 ; . . . ;x

∗
n ] with {x∗

i }n
i=1 the solution of (2). �

Proof: We just show that the constraint ((In − W) ⊗
Ip)x = (Inp − Z)x = 0 is also a consensus constraint. To do
so begin by noticing that since I − W is positive semidefinite,
I − Z = (I − W) ⊗ Ip is also positive semidefinite. Therefore,
the null space of the square root matrix (I − Z)1/2 is equal
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to the null space of I − Z and we conclude that satisfying the
condition (I − Z)1/2x is equivalent to the consensus condition
x1 = · · · = xn . This observation in conjunction with the defini-
tion of the aggregate function f(x) =

∑n
i=1 fi(xi) shows that

the programs in (4) and (3) are equivalent. In particular, the
optimal solution of (4) is x∗ = [x∗

1 ; . . . ;x
∗
n ] with {x∗

i }n
i=1 the

solution of (2). �
The formulation in (4) is used to define the proximal method

of multipliers (PMM) that we consider in this paper. To do
so introduce dual variables v ∈ Rnp to define the augmented
Lagrangian L(x,v) of (4) as

L(x,v) = f(x) + vT (I − Z)1/2x +
α

2
xT (I − Z)x, (5)

where α is a positive constant. Given the properties of the matrix
Z, the augmentation term (α/2)xT (I − Z)x is null when the
variable x is a feasible solution of (4). Otherwise, the inner
product is positive and behaves as a penalty for the violation of
the consensus constraint.

Introduce a time index t ∈ N and define xt and vt as primal
and dual iterates at step t. The primal variable xt+1 is updated
by minimizing the sum of the augmented Lagrangian in (5) and
the proximal term (ε/2)‖x − xt‖2 . We then have that

xt+1 = argmin
x∈Rn p

{
L(x,vt) +

ε

2
‖x − xt‖2

}
, (6)

where the proximal coefficient ε > 0 is a strictly positive con-
stant. The dual variable vt is updated by ascending through the
gradient of the augmented Lagrangian with respect to the dual
variable ∇vL(xt+1 ,vt) with stepsize α

vt+1 = vt + α(I − Z)1/2xt+1 . (7)

The updates in (6) and (7) for PMM can be considered as
a generalization of the method of multipliers (MM), because
setting the proximal coefficient ε = 0 recovers the updates of
MM. The proximal term (ε/2)‖x − xt‖2 is added to keep the
updated variable xt+1 close to the previous iterate xt . This does
not affect convergence guarantees but improves computational
stability.

The primal update in (6) may be computationally costly—
because it requires solving a convex program—and cannot be
implemented in a decentralized manner—because the augmen-
tation term (1/2α)xT (I − Z)x in (5) is not separable. In the
following section, we propose an approximation of PMM that
makes the minimization in (6) computationally economic and
separable over nodes of the network. This leads to the set of
decentralized updates that define the ESOM algorithm.

III. ESOM: EXACT SECOND-ORDER METHOD

To reduce the computational complexity of (6) and obtain
a separable update we introduce a second order approxima-
tion of the augmented Lagrangian in (5). Consider then the
second order Taylor’s expansion L(x,vt) ≈ L(xt ,vt) + ∇xL
(xt ,vt)T (x − xt) + (1/2)(x − xt)T ∇2

xL(xt ,vt)(x − xt) of
the augmented Lagrangian with respect to x centered around
(xt ,vt). Using this approximation in lieu of L(x,vt) in (6)

leads to the primal update

xt+1 = argmin
x∈Rn p

{
L(xt ,vt) + ∇xL(xt ,vt)T (x − xt)

+
1
2
(x − xt)T

(
∇2

xL(xt ,vt) + εI
)
(x − xt)

}
.

(8)

The minimization in the right hand side of (8) is of a positive
definite quadratic form. Thus, upon defining the Hessian matrix
Ht ∈ Rnp × np as

Ht := ∇2f(xt) + α(I − Z) + εI, (9)

and considering the explicit form of the augmented Lagrangian
gradient ∇xL(xt ,vt) [cf. (5)] it follows that the variable xt+1
in (8) is given by

xt+1 = xt − H−1
t

[
∇f(xt) + (I − Z)1/2vt + α(I − Z)xt

]
.

(10)

A fundamental observation here is that the matrix Ht , which
is the Hessian of the objective function in (8), is block neigh-
bor sparse. By block neighbor sparse we mean that the (i, j)th
block is non-zero if and only if j ∈ Ni or j = i. To confirm
this claim, observe that ∇2f(xt) ∈ Rnp×np is a block diagonal
matrix where its ith diagonal block is the Hessian of the ith local
function, ∇2fi(xi,t) ∈ Rp×p . Additionally, matrix εInp is a di-
agonal matrix which implies that the term ∇2f(xt) + εInp is a
block diagonal matrix with blocks ∇2fi(xi,t) + εIp . Further, it
follows from the definition of the matrix Z that the matrix I − Z
is neighbor sparse. Therefore, the Hessian Ht is also neighbor
sparse. Although the Hessian Ht is neighbor sparse, its inverse
H−1

t is not. This observation leads to the conclusion that the
update in (10) is not implementable in a decentralized manner,
i.e., nodes cannot implement (10) by exchanging information
only with their neighbors.

To resolve this issue, we use a Hessian inverse approximation
that is built on truncating the Taylor’s series of the Hessian
inverse H−1

t as in [12], [30]. To do so, we try to decompose the
Hessian as Ht = Dt − B where Dt is a block diagonal positive
definite matrix and B is a neighbor sparse positive semidefinite
matrix. In particular, define Dt as

Dt := ∇2f(xt) + εI + 2α(I − Zd), (11)

where Zd := diag(Z). Observing the definitions of the matri-
ces Ht and Dt and considering the relation B = Dt − Ht we
conclude that B is given by

B := α (I − 2Zd + Z) . (12)

Notice that using the decomposition Ht = Dt − B and by
factoring D1/2

t , the Hessian inverse can be written as H−1
t =

D−1/2
t (I − D−1/2

t BD−1/2
t )−1D−1/2

t . Observe that the inverse
matrix (I − D−1/2

t BD−1/2
t )−1 can be substituted by its Tay-

lor’s series
∑∞

u=0(D
−1/2
t BD−1/2

t )u . Note that this is true if the

eigenvalues of the matrix D−1/2
t BD−1/2

t are smaller than 1. We
prove in Appendix D that this condition is satisfied. However,
computation of the series requires global communication which
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is not affordable in decentralized settings. Thus, we approx-
imate the Hessian inverse H−1

t by truncating the first K + 1
terms of its Taylor’s series which leads to the Hessian inverse
approximation H̃−1

t (K),

H̃−1
t (K) := D−1/2

t

K∑

u=0

(
D−1/2

t BD−1/2
t

)u

D−1/2
t . (13)

Notice that the approximate Hessian inverse H̃−1
t (K) is

K-hop block neighbor sparse, i.e., the (i, j)th block is nonzero
if and only if there is at least one path between nodes i and j
with length K or smaller.

We introduce the Exact Second-Order Method (ESOM) as
a second order method for solving decentralized optimization
problems which substitutes the Hessian inverse in update (10)
by its K block neighbor sparse approximation H̃−1

t (K) defined
in (13). Therefore, the primal update of ESOM is

xt+1 = xt−H̃−1
t (K)

[
∇f(xt) + (I − Z)1/2vt + α(I−Z)xt

]
.

(14)

The ESOM dual update is identical to the update in (7),

vt+1 = vt + α(I − Z)1/2xt+1 . (15)

Notice that ESOM is different from PMM in approximating
the augmented Lagrangian in the primal update of PMM by a
second order approximation. Further, ESOM approximates the
Hessian inverse of the augmented Lagrangian by truncating the
Taylor’s series of the Hessian inverse which is not necessar-
ily neighbor sparse. In the following subsection we study the
implantation details of the updates in (14) and (15).

Remark 1: The Hessian decomposition Ht = Dt − B with
the matrices Dt and B in (11) and (12), respectively, is not
the only valid decomposition. All decompositions of the form
Ht = Dt ± Bt are valid if Dt is positive definite and the
eigenvalues of the matrix D−1/2

t BtD
−1/2
t are in the interval

(−1, 1). The suggested framework guarantees that the matrix
B is positive semidefinite which is helpful in the analysis of
the proposed ESOM method. A more comprehensive study of
alternative decompositions is studied in [34].

A. Decentralized Implementation of ESOM

The updates in (14) and (15) show that ESOM is a second
order approximation of PMM. Although these updates are nec-
essary for understanding the rationale behind ESOM, they are
not implementable in a decentralized fashion since the matrix
(I − Z)1/2 is not neighbor sparse. To resolve this issue, define
the sequence of variables qt as qt := (I − Z)1/2vt . Consider-
ing the definition of qt , the primal update in (14) can be written
as

xt+1 = xt − H̃−1
t (K)

(
∇f(xt) + qt + α(I − Z)xt

)
. (16)

Multiplying the dual update in (15) by (I − Z)1/2 from the
left hand side and using the definition qt := (I − Z)1/2vt yields

qt+1 = qt + α(I − Z)xt+1 . (17)

Notice that the system of updates in (16) and (17) is equivalent
to the updates in (14) and (15), i.e., the sequences of variables

xt generated by them are identical. Nodes can implement the
primal-dual updates in (16) and (17) in a decentralized manner,
since the squared root matrix (I − Z)1/2 is eliminated from the
updates and nodes can compute the products (I − Z)xt and
(I − Z)xt+1 by exchanging information with their neighbors.

To characterize the local update of each node for implement-
ing the updates in (16) and (17), define

gt := ∇xL(xt ,vt) = ∇f(xt) + qt + α(I − Z)xt , (18)

as the gradient of the augmented Lagrangian in (5). Further,
define the primal descent direction dt(K) with K levels of
approximation as

dt(K) := −H̃−1
t (K)gt , (19)

which implies that the update in (16) can be written as xt+1 =
xt + dt(K). According to the definitions of the Hessian in-
verse approximation in (13), the explicit expression for the
descent direction dt(K) is given by dt(K) = D−1/2

t

∑K
u=0(

D−1/2
t BD−1/2

t

)u

D−1/2
t gt . Considering this definition, we

can simplify the expression for the descent direction dt(k + 1)
as

dt(k + 1) = −D−1/2
t

k+1∑

u=1

(
D−1/2

t BD−1/2
t

)u

D−1/2
t gt

− D−1
t gt , (20)

where we have separated the first term of the sum from the rest.
Factorize D−1

t B from the summands in (20) to obtain

dt(k + 1) = −D−1
t BD−1/2

t

k∑

u=0

(
D−1/2

t BD−1/2
t

)u

D−1/2
t gt

− D−1
t gt . (21)

Based on the definition of the descent direction dt(k), we
obtain that the first term in the right hand side of (21) can
be simplified as D−1

t Bdt(k). Therefore, the descent directions
dt(k) and dt(k + 1) satisfy the condition

dt(k + 1) = D−1
t Bdt(k) − D−1

t gt . (22)

Define di,t(k) as the descent direction of node i at step t
which is the ith element of the global descent direction dt(k) =
[d1,t(k); . . . ;dn,t(k)]. Therefore, the localized version of the
relation in (22) at node i is given by

di,t(k + 1) = D−1
ii,t

∑

j=i,j∈Ni

Bijdj,t(k) − D−1
ii,tgi,t . (23)

The update in (23) shows that node i can compute its (k + 1)th
descent direction di,t(k + 1) if it has access to the kth descent
direction di,t(k) of itself and its neighbors dj,t(k) for j ∈ Ni .
Thus, if nodes initialize with the ESOM-0 descent direction
di,t(0) = −D−1

ii,tgi,t and exchange their descent directions with
their neighbors for K rounds and use the update in (23), they can
compute their local ESOM-K descent direction di,t(K). Notice
that the ith diagonal block Dt is given by Dii,t := ∇2fi(xi,t) +
(2α(1 − wii) + ε)I, where xi,t is the primal variable of node
i at step t. Thus, the block Dii,t is locally available at node i.
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Algorithm 1: ESOM-K Method at Node i.
Require: Initial iterates xi,0 = xj,0 = 0 for j ∈ Ni and
qi,0 = 0.

1: B blocks: Bii = α(1 − wii)I and Bij = αwij I
2: for t = 0, 1, 2, . . . do
3: D block: Dii,t = ∇2fi(xi,t) + (2α(1 − wii) + ε)I
4: Compute gi,t = ∇fi(xi,t) + qi,t + α(1 − wii)xi,t

−α
∑

j∈Ni
wijxj,t

5: Compute ESOM-0 descent direction di,t(0) =
−D−1

ii,tgi,t

6: for k = 0, . . . ,K − 1 do
7: Exchange di,t(k) with neighbors j ∈ Ni

8: Compute di,t(k + 1) = D−1
ii,t

×
[ ∑

j∈Ni ,j=i Bijdj,t(k) − gi,t

]

9: end for
10: Update primal iterate: xi,t+1 = xi,t + di,t(K).
11: Exchange iterates xi,t+1 with neighbors j ∈ Ni .
12: Update dual iterate:

qi,t+1 = qi,t + α(1−wii)xi,t+1− α
∑

j∈Ni
wijxj,t+1 .

13: end for

Moreover, node i can evaluate the blocks Bii = α(1 − wii)I
and Bij = αwij I without extra communication. In addition,
nodes can compute the gradient gt by communicating with their
neighbors. To confirm this claim observe that the ith element of
gt = [g1,t ; . . . ;gn,t ] associated with node i is given by

gi,t := ∇fi(xi,t) + qi,t + α(1 − wii)xi,t − α
∑

j∈Ni

wijxj,t ,

(24)
where qi,t ∈ Rp is the ith element of qt = [q1,t ; . . . ;qn,t ] and
xi,t the primal variable of node i at step t and they are both
available at node i. Hence, the update in (16) can be implemented
in a decentralized manner. Likewise, nodes can implement the
dual update in (17) using the local update

qi,t+1 = qi,t + α(1 − wii)xi,t+1 − α
∑

j∈Ni

wijxj,t+1 , (25)

which requires access to the local primal variable xj,t+1 of the
neighboring nodes j ∈ Ni .

The steps of ESOM-K are summarized in Algorithm 1. The
core steps are Steps 5–9 which correspond to computing the
ESOM-K primal descent direction di,t(K). In Step 5, Each
node computes its initial descent direction di,t(0) using the
block Dii,t and the local gradient gi,t computed in Steps 3 and 4,
respectively. Steps 7 and 8 correspond to the recursion in (23). In
step 7, nodes exchange their kth level descent direction di,t(k)
with their neighboring nodes to compute the (k + 1)th descent
direction di,t(k + 1) in Step 8. The outcome of this recursion
is the Kth level descent direction di,t(K) which is required for
the update of the primal variable xi,t in Step 10. Notice that
the blocks of the neighbor sparse matrix B, which are required
for step 8, are computed and stored in Step 1. After updating
the primal variables in Step 10, nodes exchange their updated
variables xi,t+1 with their neighbors j ∈ Ni in Step 11. By

having access to the decision variable of neighboring nodes,
nodes update their local dual variable qi,t in Step 12.

Remark 2: The proposed ESOM algorithm solves problem
(4) in the dual domain by defining the proximal augmented
Lagrangian. It is also possible to solve problem (4) in the primal
domain by solving a penalty version of (4). In particular, by
using the quadratic penalty function (1/2)‖.‖2 for the constraint
(I − Z)1/2x with penalty coefficient α, we obtain the penalized
version of (4)

x̂∗ := argmin
x∈Rn p

f(x) +
α

2
xT (I − Z)x, (26)

where x̂∗ is the optimal argument of the penalized objective
function. Notice that x̂∗ is not equal to the optimal argument
x∗ and the distance ‖x∗ − x̂∗‖ depends on the choice of α.
The objective function in (26) can be minimized by descending
through the gradient descent direction which leads to the update
of decentralized gradient descent (DGD) [35]. The convergence
of DGD can be improved by using Newton’s method. Notice
that the Hessian of the objective function in (26) is given by

Ĥ := ∇2f(x) + α(I − Z). (27)

The Hessian Ĥ in (27) is identical to the Hessian H in (9)
except for the term εI. Therefore, the same technique for approx-
imating the Hessian inverse Ĥ−1 can be used to approximate
the Newton direction of the penalized objective function in (26)
which leads to the update of the Network Newton (NN) methods
[12], [13]. Thus, ESOM and NN use an approximate decentral-
ized variation of Newton’s method for solving two different
problems. In other words, ESOM uses the approximate New-
ton direction for minimizing the augmented Lagrangian of (4),
while NN solves a penalized version of (4) using this approxi-
mation. This difference justifies the reason that the sequence of
iterates generated by ESOM converges to the optimal argument
x∗ (Section IV), while NN converges to a neighborhood of x∗.

Remark 3: ESOM approximates the augmented Lagrangian
L(x,v) in (6) by its second order approximation. If we substi-
tute the augmented Lagrangian by its first order approximation
we can recover the update of EXTRA proposed in [32]. To be
more precise, we can substitute L(x,vt) in (6) by its first or-
der approximation L(xt ,vt) + ∇L(xt ,vt)T (x − xt) near the
point (xt ,vt) to update the primal variable x. Considering this
substitution, the update of xt+1 is given by

xt+1 = argmin
x∈Rn p

{

L(xt ,vt) + ∇L(xt ,vt)T (x − xt)

+
ε

2
‖x − xt‖2

}

. (28)

Thus, considering the definition of the augmented Lagrangian
in (5) the updated variable xt+1 can be explicitly written as

xt+1 = xt −
1
ε

[
∇f(xt) + (I − Z)1/2vt + α(I − Z)xt

]
.

(29)
By subtracting the update at step t − 1 from the update at

step t and using the dual variables relation that vt+1 = vt +
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α(I − Z)1/2xt+1 we obtain the update

xt+1 =
(

2I − 2α

ε
(I − Z)

)

xt −
(
I − α

ε
(I − Z)

)
xt−1

− 1
ε
(∇f(xt) −∇f(xt−1)). (30)

The update in (30) shows a first-order approximation of the
PMM. It is not hard to show that for specific choices of α and
ε, the update in (30) is equivalent to the update of EXTRA in
[32]. Thus, we expect to observe faster convergence for ESOM
relative to EXTRA as it incorporates second-order information.
This advantage is studied in Section V.

IV. CONVERGENCE ANALYSIS

In this section, we study convergence rates of PMM and
ESOM. First, we show that the sequence of iterates xt gen-
erated by PMM converges linearly to the optimal argument
x∗. Although, PMM cannot be implemented in a decentral-
ized fashion, its convergence rate can be used as a benchmark
for evaluating the performance of ESOM. We then follow the
section by analyzing convergence properties ESOM. We show
that ESOM exhibits a linear convergence rate and compare its
factor of linear convergence with the linear convergence factor
of PMM. In proving these results we consider the following
assumptions.

Assumption 1: The local objective functions fi(x) are twice
differentiable and the eigenvalues of the local objective func-
tions Hessian ∇2f(x) are bounded by positive constants 0 <
m ≤ M < ∞, i.e.

mI 
 ∇2fi(xi) 
 MI, (31)

for all xi ∈ Rp and i = 1, . . . , n.
The lower bound in (31) implies that the local objective func-

tions fi are strongly convex with constant m > 0. The upper
bound for the eigenvalues of the Hessians ∇2fi implies that
the gradients of the local objective functions ∇fi are Lipschitz
continuous with constant M . Notice that the global objective
function ∇2f(x) is a block diagonal matrix where its ith diago-
nal block is ∇2fi(xi). Therefore, the bounds on the eigenvalues
of the local Hessians ∇2fi(xi) in (31) also hold for the global
objective function Hessian ∇2f(x). I.e.,

mI 
 ∇2f(x) 
 MI, (32)

for all x ∈ Rnp . Thus, the global objective function f is also
strongly convex with constant m and its gradients ∇f are Lip-
schitz continuous with constant M .

A. Convergence of Proximal Method of Multipliers (PMM)

Convergence rate of PMM can be considered as a benchmark
for the convergence rate of ESOM. To establish linear con-
vergence of PMM, We first study the relationship between the
primal x and dual v iterates generated by PMM and the optimal
arguments x∗ and v∗ in the following lemma.

Lemma 1: Consider the updates for the proximal method of
multipliers in (6) and (7). The sequences of primal and dual

iterates generated by PMM satisfy

vt+1 − vt − α(I − Z)1/2(xt+1 − x∗) = 0, (33)

and

∇f(xt+1) −∇f(x∗) + (I − Z)1/2(vt+1 − v∗)

+ ε(xt+1 − xt) = 0. (34)

Proof: See Appendix A. �
Considering the preliminary results in (33) and (34), we can

state convergence results of PMM. To do so, we prove linear
convergence of a Lyapunov function of the primal ‖xt − x∗‖2

and dual ‖vt − v∗‖2 errors. To be more precise, we define the
vector u ∈ R2np and matrix G ∈ Rnp×np as

u =
[
v
x

]

, G =
[
I 0
0 αεI

]

. (35)

Notice that the sequence ut is the concatenation of the dual
variable vt and primal variable xt . Likewise, we can define
u∗ as the concatenation of the optimal arguments v∗ and x∗.
We proceed to prove that the sequence ‖ut − u∗‖2

G converges
linearly to null. Observe that ‖ut − u∗‖2

G can be simplified
as ‖vt − v∗‖2 + αε‖xt − x∗‖2 . This observation shows that
‖ut − u∗‖2

G is a Lyapunov function of the primal ‖xt − x∗‖2

and dual ‖vt − v∗‖2 errors. Therefore, linear convergence of
the sequence ‖ut − u∗‖2

G implies linear convergence of the se-
quence ‖xt − x∗‖2 . In the following theorem, we show that the
sequence ‖ut − u∗‖2

G converges to zero at a linear rate.
Theorem 1: Consider the proximal method of multipliers as

introduced in (6) and (7). Consider β > 1 as an arbitrary constant
strictly larger than 1 and define λ̂min(I − Z) as the smallest
non-zero eigenvalue of the matrix I − Z. Further, recall the
definitions of the vector u and matrix G in (35). If Assumption 1
holds, then the sequence of Lyapunov functions ‖ut − u∗‖2

G
generated by PMM satisfies

‖ut+1 − u∗‖2
G ≤ 1

1 + δ
‖ut − u∗‖2

G , (36)

where the constant δ is given by

δ = min

{
2αλ̂min(I−Z)
β(m + M)

,
2mM

ε(m+M)
,
(β−1)αλ̂min(I−Z)

βε

}

.

(37)

Proof: See Appendix B. �
The result in Theorem 1 shows linear convergence of the

sequence ‖ut − u∗‖2
G generated by PMM where the factor of

linear convergence is 1/(1 + δ). Observe that larger δ implies
smaller linear convergence factor 1/(1 + δ) and faster conver-
gence. Notice that all the terms in the minimization in (37) are
positive and therefore the constant δ is strictly larger than 0. In
addition, the result in Theorem 1 holds for any feasible set of
parameters β > 1, ε > 0, and α > 0; however, maximizing the
parameter δ requires properly choosing the set of parameters β,
ε, and α.

Observe that when the first positive eigenvalue λ̂min(I − Z)
of the matrix I − Z , which is the second smallest eigenvalue of
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I − Z, is small the constant δ becomes close to zero and conver-
gence becomes slow. Notice that small λ̂min(I − Z) shows that
the graph is not highly connected. This observation matches the
intuition that when the graph has less edges the speed of con-
vergence is slower. Additionally, the upper bounds in (37) show
that when the condition number M/m of the global objective
function f is large, δ becomes small and the linear convergence
becomes slow.

Although PMM enjoys a fast linear convergence rate, each
iteration of PMM requires infinite rounds of communications
which make it infeasible. In the following section, we study
convergence properties of ESOM as a second order approxima-
tion of PMM that is implementable in decentralized settings.

B. Convergence of ESOM

We proceed to show that the sequence of iterates xt generated
by ESOM converges linearly to the optimal argument x∗ =
[x̃∗; . . . ; x̃∗]. To do so, we first prove linear convergence of the
Lyapunov function ‖ut − u∗‖2

G as defined in (35). Moreover,
we show that by increasing the Hessian inverse approximation
accuracy, ESOM factor of linear convergence can be arbitrary
close to the linear convergence factor of PMM in Theorem 1.

Notice that ESOM is built on a second order approximation
of the proximal augmented Lagrangian used in the update
of PMM. To guarantee that the second order approximation
suggested in ESOM is feasible, the local objective functions
fi are required to be twice differentiable as assumed in
Assumption 1. The twice differentiability of the local objective
functions fi implies that the aggregate function f , which is
the sum of a set of twice differentiable functions, is also twice
differentiable. This observation shows that the global objective
function ∇2f(x) is definable. Considering this observation,
we prove some preliminary results for the iterates generated by
ESOM in the following lemma.

Lemma 2: Consider the updates of ESOM in (14) and (15).
Recall the definitions of the augmented Lagrangian Hessian Ht

in (9) and the approximate Hessian inverse H̃−1
t (K) in (13). If

Assumption 1 holds, then the primal and dual iterates generated
by ESOM satisfy

vt+1 − vt − α(I − Z)1/2(xt+1 − x∗) = 0. (38)

Moreover, we can show that

∇f(xt+1) −∇f(x∗) + (I − Z)1/2(vt+1 − v∗) (39)

+ ε(xt+1 − xt) + et = 0,

where the error vector et is defined as

et := ∇f(xt) + ∇2f(xt)(xt+1 − xt) −∇f(xt+1)

+
(
H̃t(K) − Ht

)
(xt+1 − xt). (40)

Proof: See Appendix C. �
The results in Theorem 2 show the relationships between the

primal x and dual v iterates generated by ESOM and the optimal
arguments x∗ and v∗. The first result in (38) is identical to the
convergence property of PMM in (33), while the second result
in (39) differs from (34) in having the extra summand et . The

vector et can be interpreted as the error of second order approx-
imation for ESOM at step t. To be more precise, the optimality
condition of the primal update of PMM is given by ∇f(xt+1) +
(I − Z)1/2vt + α(I − Z)xt+1 + ε(xt+1 − xt) = 0 as shown
in (34). Notice that the second order approximation of this con-
dition is equivalent to ∇f(xt) + ∇2f(xt)(xt+1 − xt) + (I −
Z)1/2vt + α(I − Z)xt+1 + ε(xt+1 − xt) = 0. However, the
exact Hessian inverse H−1

t = (∇2f(xt) + εI + α(I − Z̃))−1

cannot be computed in a distributed manner to solve the op-
timality condition. Thus, it is approximated by the approxi-
mate Hessian inverse matrix H̃−1

t (K) as introduced in (13).
This shows that the approximate optimality condition in ESOM
is ∇f(xt) + (I − Z)1/2vt + α(I − Z̃)xt + H̃t(xt+1 − xt) =
0. Hence, the difference between the optimality conditions
of PMM and ESOM is et = ∇f(xt) −∇f(xt+1) + α(I −
Z̃)(xt − xt+1) + H̃t(xt+1 − xt) − ε(xt+1 − xt). By adding
and subtracting the term Ht(xt+1 − xt), the definition of the
error vector et in (40) follows.

The observation that the vector et characterizes the error of
second order approximation in ESOM, motivates analyzing an
upper bound for the error vector norm ‖et‖. To prove that the
norm ‖et‖ is bounded above we assume the following condition
is satisfied.

Assumption 2: The global objective function Hessian
∇2f(x) is Lipschitz continuous with constant L, i.e.,

‖∇2f(x) −∇2f(x̃)‖ ≤ L‖x − x̃‖. (41)

The conditions imposed by Assumption 2 are customary in
the analysis of second-order methods; see, e.g., [29]. In the
following lemma, we use the assumption in (41) to prove an
upper bound for the error norm ‖et‖ in terms of ‖xt+1 − xt‖.

Lemma 3: Consider ESOM as introduced in (8) (15) and
recall the definition of the error vector et in (40). Further, define
c > 0 as a lower bound for the local weights wii . If Assumptions
1 2 hold, then the error vector norm ‖et‖ is bounded above by

‖et‖ ≤ Γt‖xt+1 − xt‖, (42)

where Γt is defined as

Γt :=min
{

2M,
L

2
‖xt+1− xt‖

}

+ (M + ε + 2α(1−c)) ρK +1,

(43)
and ρ := 2α(1 − c)/(2α(1 − c) + m + ε).

Proof: See Appendix D. �
First, note that the lower bound c > 0 on the local weights wii

is implied from the fact that all the local weights are positive. In
particular, we can define the lower bound c as c := mini wii . The
result in (42) shows that the error of second order approximation
in ESOM vanishes as the sequence of iterates xt approaches the
optimal argument x∗. We will show in Theorem 2 that ‖xt − x∗‖
converges to zero which implies that the limit of the sequence
‖xt+1 − xt‖ is zero.

To understand the definition of Γt in (43), we have to
decompose the error vector et in (40) into two parts. The
first part is∇f(xt) + ∇2f(xt)(xt+1 − xt) −∇f(xt+1) which
comes from the fact that ESOM minimizes a second order ap-
proximation of the proximal augmented Lagrangian instead
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of the exact proximal augmented Lagrangian. This term can
be bounded by min{2M, (L/2)‖xt+1 − xt‖}‖xt+1 − xt‖ as
shown in Lemma 3. The second part of the error vector et is
(H̃t(K) − Ht)(xt+1 − xt) which shows the error of Hessian
inverse approximation. Notice that computation of the exact
Hessian inverse H−1

t is not possible and ESOM approximates
the exact Hessian by the approximation H̃−1

t (K). According
to the results in [12], the difference ‖H̃t(K) − Ht‖ can up-
per bounded by (M + ε + 2(1 − c)/α)ρK +1 which justifies the
second term of the expression for Γt in (43). In the following
theorem, we use the result in Lemma 3 to show that the se-
quence of Lyapunov functions ‖ut − u∗‖2

G generated by ESOM
converges to zero linearly.

Theorem 2: Consider ESOM as introduced in (8) (15). Con-
sider β > 1 and φ > 1 as arbitrary constants that are strictly
larger than 1, and ζ as a positive constant that is chosen from the
interval ζ ∈ ((m + M)/2mM, ε/Γ2

t ). Further, recall the def-
initions of the vector u and matrix G in (35) and consider
λ̂min(I − Z) as the smallest non-zero eigenvalue of the ma-
trix I − Z. If Assumptions 1 and 2 hold, then the sequence of
Lyapunov functions ‖ut − u∗‖2

G generated by ESOM satisfies

‖ut+1 − u∗‖2
G ≤ 1

1 + δ′t
‖ut − u∗‖2

G . (44)

where the sequence δ′t is given by

δ′t = min

{
2αλ̂min(I − Z)
φβ(m + M)

,

[
2mM

ε(m + M)
− 1

ζε

]

, (45)

(β − 1)αλ̂min(I − Z)
βε

[

1 − ζΓ2
t

ε

][

1 +
φΓ2

t (β − 1)
(φ − 1)ε2

]−1
}

.

Proof: See Appendix E. �
The result in Theorem 2 shows linear convergence of the

sequence ‖ut − u∗‖2
G generated by ESOM where the factor

of linear convergence is 1/(1 + δ′). Notice that the positive
constant ζ is chosen from the interval ((m + M)/2mM, ε/Γ2

t ).
This interval is non-empty if and only if the proximal parameter
ε satisfies the condition ε > Γ2

t (m + M)/2mM . However, Γt

also depends on ε which makes it unclear if there always exists a
choice of ε that satisfies the inequality ε > Γ2

t (m + M)/2mM .
In Appendix F, we provide the condition on ε that guarantees
ε > Γ2

t (m + M)/2mM holds.
It follows from the result in Theorem 2 that the sequence

of primal variables xt converges to the optimal argument x∗

defined in (4).
Corollary 1: Under the assumptions in Theorem 2, the

sequence of squared errors ‖xt − x∗‖2 generated by ESOM
converges to zero at a linear rate, i.e.,

‖xt − x∗‖2 ≤
(

1
1 + mint{δ′t}

)t ‖u0 − u∗‖2
G

αε
. (46)

Proof: According to the definition of the sequence ut and
matrix G, we can write ‖ut − u∗‖2

G = αε‖xt − x∗‖2 + ‖vt −
v∗‖2 which implies that ‖xt − x∗‖2 ≤ (1/αε)‖ut − u∗‖2

G .
Considering this result and linear convergence of the sequence
‖ut − u∗‖2

G in (44), the claim in (46) follows. �

C. Convergence Rates Comparison

The expression for δ′t in (45) verifies the intuition that the con-
vergence rate of ESOM is slower than PMM. This is true, since
the upper bounds for δ in PMM are larger than their equivalent
upper bounds for δ′t in ESOM. We obtain that δ′t is smaller than
δ which implies that the linear convergence factor 1/(1 + δ) of
PMM is smaller than 1/(1 + δ′t) for ESOM. Therefore, for all
steps t, the linear convergence of PMM is faster than ESOM. Al-
though, linear convergence factor of ESOM 1/(1 + δ′t) is larger
than 1/(1 + δ) for PMM, as time passes the gap between these
two constants becomes smaller. In particular, after a number of
iterations (L/2)‖xt+1 − xt‖ becomes smaller than 2M , and Γt

can be simplified as

Γt ≤
L

2
‖xt+1 − xt‖ + (2α(1 − c) + M + ε) ρK +1 . (47)

The term (L/2)‖xt+1 − xt‖ eventually approaches zero,
while the second term (2(1 − c)/α + M + ε)ρK +1 is constant.
Although, the second term is not approaching zero, by proper
choice of ρ and K, this term can become arbitrary close to zero.
Notice that when Γt approaches zero, if we set ζ = 1/Γt the
upper bounds in (45) for δ′t approach the upper bounds for δ of
PMM in (37).

Therefore, as time passes Γt becomes smaller, and the factor
of linear convergence for ESOM 1/(1 + δ′t) becomes closer to
the linear convergence factor of PMM 1/(1 + δ).

V. NUMERICAL EXPERIMENTS

In this section, we compare the performances of ESOM,
EXTRA, Decentralized Quadratically approximated ADMM
(DQM), and Network Newton (NN). First, we consider a linear
least squares problem and then we use the mentioned methods
to solve a logistic regression problem.

A. Decentralized Linear Least Squares

Consider a decentralized linear least squares problem where
each agent i ∈ {1, . . . , n} holds its private measurement equa-
tion, yi = Mi x̃ + νi , where yi ∈ Rmi and Mi ∈ Rmi ×p are
measured data, x̃ ∈ Rp is the unknown variable, and νi ∈ Rmi

is some unknown noise. The decentralized linear least squares
estimates x̃ by solving the optimization problem

x̃∗ = argmin
x̃

n∑

i=1

‖Mi x̃ − yi‖2
2 . (48)

The network in this experiment is randomly generated with
connectivity ratio r = 3/n, where r is defined as the number of
edges divided by the number of all possible ones, n(n − 1)/2.
We set n = 20, p = 5, and mi = 5 for all i = 1, . . . , n. The
vectors yi and matrices Mi as well as the noise vectors ν(i) ,
for all i are generated following the standard normal distribu-
tion. We precondition the aggregated data matrices Mi so that
the condition number of the problem is 10. The decision vari-
ables xi are initialized as xi,0 = 0 for all nodes i = 1, . . . , n
and the initial distance to the optimal is ‖xi,0 − x̃∗‖ = 100.
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Fig. 1. Relative error ‖xt − x∗‖/‖x0 − x∗‖ of EXTRA, ESOM-K , NN-K ,
and PMM versus number of iterations for the least squares problem. Using a
larger K for ESOM-K leads to faster convergence and makes the convergence
path closer to the one for PMM.

We use Metropolis constant edge weight matrix as the mix-
ing matrix W in all experiments. We run PMM, EXTRA,
and ESOM-K with fixed hand-optimized stepsizes α. The best
choices of α for ESOM-0, ESOM-1, and ESOM-2 are α = 0.03,
α = 0.04, and α = 0.05, respectively. The stepsize α = 0.1
leads to the best performance for EXTRA which is considered in
the numerical experiments. Notice that for variations of NN-K,
there is no optimal choice of stepsize – smaller stepsize leads to
more accurate but slow convergence, while large stepsize accel-
erates the convergence but to a less accurate neighborhood of the
optimal solution. Therefore, for NN-0, NN-1, and NN-2 we set
α = 0.001, α = 0.008, and α = 0.02, respectively. Although
the PMM algorithm is not implementable in a decentralized
fashion, we use its convergence path–which is generated in a
centralized manner–as our benchmark. The choice of stepsize
for PMM is α = 2.

Fig. 1 illustrates the relative error ‖xt − x∗‖/‖x0 − x∗‖ ver-
sus the number of iterations. Notice that the vector xt is the
concatenation of the local vectors xi,t and the optimal vector
x∗ is defined as x∗ = [x̃∗; . . . ; x̃∗] ∈ Rnp . Observe that all the
variations of NN-K fail to converge to the optimal argument
and they converge linearly to a neighborhood of the optimal
solution x∗. Among the decentralized algorithms with exact lin-
ear convergence rate, EXTRA has the worst performance and
all the variations of ESOM-K outperform EXTRA. Recall that
the problem condition number is 10 in our experiment and the
difference between EXTRA and ESOM-K is more significant
for problems with larger condition numbers. Further, choosing a
larger value of K for ESOM-K leads to faster convergence and
as we increase K the convergence path of ESOM-K approaches
the convergence path of PMM.

EXTRA requires one round of communications per itera-
tion, while NN-K and ESOM-K require K + 1 rounds of local
communications per iteration. Thus, convergence paths of these
methods in terms of rounds of communications might be dif-
ferent from the ones in Fig. 1. The convergence paths of NN,
ESOM, EXTRA in terms of rounds of local communications
are shown in Fig. 2. In this plot we ignore PMM, since it re-
quires infinite rounds of communications per iteration. The main

Fig. 2. Relative error ‖xt − x∗‖/‖x0 − x∗‖ of EXTRA, ESOM-K , NN-K ,
and PMM versus rounds of communications with neighboring nodes for the
least squares problem. ESOM-0 is the most efficient algorithm in terms of
communication cost among all the methods.

difference between Figs. 1 and 2 is in the performances of
ESOM-0, ESOM-1, and ESOM-2. All of the variations of
ESOM outperform EXTRA in terms of rounds of communi-
cations, while the best performance belongs to ESOM-0. This
observation shows that increasing the approximation level K
does not necessary improve the performance of ESOM-K in
terms of communication cost.

B. Decentralized Logistic Regression

We consider the application of ESOM for solving a logistic
regression problem in a form

x̃∗ := argmin
x̃∈Rp

λ

2
‖x̃‖2 +

n∑

i=1

mi∑

j=1

ln
(
1 + exp

(
−

(
sT
ij x̃

)
yij

))
,

(49)
where every agent i has access to mi training samples
(sij , yij ) ∈ Rp × {−1,+1}, j = 1, . . . ,mi , including ex-
planatory/feature variables sij and binary outputs/outcomes yij .
The regularization term (λ/2)‖x̃‖2 is added to avoid overfitting
where λ > 0. Hence, in the decentralized setting the local ob-
jective function fi of node i is given by

fi(x̃) =
λ

2n
‖x̃‖2 +

mi∑

j=1

ln
(
1 + exp

(
−

(
sT
ij x̃

)
yij

))
. (50)

The settings are as follows. The connected network is ran-
domly generated with n = 20 agents and connectivity ratio
r = 3/n. Each agent holds 3 samples, i.e., mi = 3, for all i.
The dimension of sample vectors sij is p = 3. The samples
are randomly generated, and the optimal logistic classifier x̃∗

is pre-computed through centralized adaptive gradient method.
We use Metropolis constant edge weight matrix as the mixing
matrix W in ESOM-K. The stepsize α for ESOM-0, ESOM-1,
ESOM-2, EXTRA, and DQM are hand-optimized and the best
of each is used for the comparison.

Figs. 3 and 4 showcase the convergence paths of ESOM-0,
ESOM-1, ESOM-2, EXTRA, and DQM versus number of
iterations and rounds of communications, respectively. The re-
sults match the observations for the least squares problem in
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Fig. 3. Relative error ‖xt − x∗‖/‖x0 − x∗‖ of EXTRA, ESOM-K , and
DQM versus number of iterations for the logistic regression problem. EX-
TRA is significantly slower than the ESOM methods. The proposed methods
(ESOM-K ) outperform DQM.

Fig. 4. Relative error ‖xt − x∗‖/‖x0 − x∗‖ of EXTRA, ESOM-K , and
DQM versus rounds of communications for the logistic regression problem.
ESOM-0 has the best performance in terms of rounds of communications and
it outperforms DQM.

Figs. 1 and 2. Different versions of ESOM-K converge faster
than EXTRA both in terms of communication cost and number
of iterations. Moreover, ESOM-2 converges faster than ESOM-
1 and ESOM-0 in terms of number of iterations, while ESOM-0
has the best performance in terms of communication cost for
achieving a target accuracy. Comparing the convergence paths
of ESOM-0, ESOM-1, and ESOM-2 with DQM shows that
number of iterations required for the convergence of DQM is
larger than the required iterations for ESOM-0, ESOM-1, and
ESOM-2. In terms of communication cost, DQM has a better
performance relative to ESOM-1 and ESOM-2, while ESOM-0
is the most efficient algorithm.

VI. CONCLUSION

We studied the consensus optimization problem where the
components of a global objective function are available at dif-
ferent nodes of a network. We proposed an Exact Second-Order
Method (ESOM) that converges to the optimal argument of the
global objective function at a linear rate. We developed the up-
date of ESOM by substituting the primal update of Proximal
Method of Multipliers (PMM) with its second order approxi-
mation. Moreover, we approximated the Hessian inverse of the

proximal augmented Lagrangian by truncating its Taylor’s se-
ries. This approximation leads to a class of algorithms ESOM-K
where K + 1 indicates the number of Taylor’s series terms that
are used for Hessian inverse approximation. Convergence anal-
ysis of ESOM-K shows that the sequence of iterates converges
to the optimal argument linearly irrespective to the choice of K.
We showed that the linear convergence factor of ESOM-K is a
function of time and the choice of K. The linear convergence
factor of ESOM approaches the linear convergence factor of
PMM as time passes. Moreover, larger choice of K makes the
factor of linear convergence for ESOM closer to the one for
PMM. Numerical results verify the theoretical linear conver-
gence and the relation between the linear convergence factor of
ESOM-K and PMM. Further, we observed that larger choice of
K for ESOM-K leads to faster convergence in terms of number
of iterations, while the most efficient version of ESOM-K in
terms of communication cost is ESOM-0.

APPENDIX A
PROOF OF LEMMA 1

Consider the updates of PMM in (6) and (7). According to (4),
the optimal argument x∗ satisfies the condition (I − Z)1/2x∗ =
0. This observation in conjunction with the dual variable update
in (7) yields the claim in (33).

To prove the claim in (34), note that the optimality condition
of (6) implies ∇xL(xt+1 ,vt) + ε(xt+1 − xt) = 0. Based on
the definition of the Lagrangian L(x,v) in (5), the optimality
condition for the primal update of PMM can be written as

∇f(xt+1) + (I − Z)1/2vt + α(I − Z)xt+1

+ ε(xt+1 − xt) = 0. (51)

Further, notice that one of the KKT conditions of the opti-
mization problem in (4) is

∇f(x∗) + (I − Z)1/2v∗ = 0. (52)

Moreover, the optimal solution x∗ = [x̃∗; . . . ; x̃∗] of (4) lies
in null{I − Z}. Therefore, we obtain

α(I − Z)x∗ = 0. (53)

Subtracting the equalities in (52) and (53) from (51) yields

∇f(xt+1) −∇f(x∗) + (I − Z)1/2(vt − v∗)

+ α(I − Z)(xt+1 − x∗) + ε(xt+1 − xt) = 0. (54)

Regrouping the terms in (33) implies that vt is equivalent to

vt = vt+1 − α(I − Z)1/2(xt+1 − x∗). (55)

Substituting vt in (54) by the expression in the right hand
side of (55) leads to the claim in (34).

APPENDIX B
PROOF OF THEOREM 1

According to Assumption 1, the global objective func-
tion f is strongly convex with constant m and its gradients
∇f are Lipschitz continuous with constant M . Considering
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these assumptions, we obtain that the inner product (xt+1
− x∗)T (∇f(xt+1) −∇f(x∗)) is lower bounded by

mM

m + M
‖xt+1 − x∗‖2 +

1
m + M

‖∇f(xt+1) −∇f(x∗)‖2

≤ (xt+1 − x∗)T (∇f(xt+1) −∇f(x∗)). (56)

The result in (34) shows that the difference ∇f(xt+1) −
∇f(x∗) is equal to −(I − Z)1/2(vt+1 − v∗) − ε(xt+1 − xt).
Apply this substitution into (56) and multiply both sides of the
resulted inequality by 2 to obtain

2mM

m + M
‖xt+1 − x∗‖2 +

2
m + M

‖∇f(xt+1) −∇f(x∗)‖2

≤ −2(xt+1 − x∗)T (I − Z)1/2(vt+1 − v∗)

− 2ε(xt+1 − x∗)T (xt+1 − xt). (57)

Based on the result in (33), we can substitute (xt+1 − x∗)T

(I − Z)1/2 by (1/α)(vt+1 − vt)T . Thus, we can rewrite (57)
as

2αmM

m + M
‖xt+1 − x∗‖2 +

2α

m + M
‖∇f(xt+1) −∇f(x∗)‖2

≤−2(vt+1 − vt)T(vt+1 − v∗)

− 2αε(xt+1 − x∗)T(xt+1 − xt). (58)

Notice that for any vectors a, b, and c we can write 2(a − b)T

(a − c) = ‖a − b‖2 + ‖a − c‖2 − ‖b − c‖2 . By setting a =
vt+1 , b = vt , and c = v∗ we obtain that the inner product
2(vt+1 − vt)T (vt+1 − v∗) in (58) can be written as ‖vt+1 −
vt‖2 + ‖vt+1 − v∗‖2 − ‖vt − v∗‖2 . Likewise, setting a =
xt+1 , b = xt , and c = x∗ implies that the inner product
2(xt+1 − xt)T (xt+1 − x∗) in (58) is equal to ‖xt+1 − xt‖2 +
‖xt+1 − x∗‖2 − ‖xt − x∗‖2 . Hence, (58) can be simplified as

2αmM

m + M
‖xt+1 − x∗‖2 +

2α

m + M
‖∇f(xt+1) −∇f(x∗)‖2

≤ αε‖xt − x∗‖2 − αε‖xt+1 − xt‖2 − αε‖xt+1 − x∗‖2

+ ‖vt − v∗‖2 − ‖vt+1 − vt‖2 − ‖vt+1 − v∗‖2 . (59)

Now using the definitions of the variable u and matrix
G in (35) we can substitute ‖vt − v∗‖2 − ‖vt+1 − v∗‖2 +
αε‖xt − x∗‖2 − αε‖xt+1 − x∗‖2 by ‖ut − u∗‖2

G − ‖ut+1 −
u∗‖2

G . Moreover, the squared norm ‖vt+1 − vt‖2 is equivalent
to ‖xt+1 − x∗‖2

α2 (I−Z) based on the result in (33). By applying
these substitutions we can rewrite (59) as

2αmM

m + M
‖xt+1 − x∗‖2 +

2α

m + M
‖∇f(xt+1) −∇f(x∗)‖2

≤ ‖ut − u∗‖2
G − ‖ut+1 − u∗‖2

G − αε‖xt+1 − xt‖2

− ‖xt+1 − x∗‖2
α2 (I−Z) . (60)

Regrouping the terms in (60) leads to the following lower
bound for the difference ‖ut − u∗‖2

G − ‖ut+1 − u∗‖2
G ,

‖ut − u∗‖2
G − ‖ut+1 − u∗‖2

G

≥ 2α

m + M
‖∇f(xt+1) −∇f(x∗)‖2 + αε‖xt+1 − xt‖2

+ ‖xt+1 − x∗‖2
2 α m M
m + M I+α2 (I−Z) . (61)

Observe that the result in (61) provides a lower bound for the
decrement ‖ut − u∗‖2

G − ‖ut+1 − u∗‖2
G . To prove the claim in

(36), we need to show that for a positive constant δ we have
‖ut − u∗‖2

G − ‖ut+1 − u∗‖2
G ≥ δ‖ut+1 − u∗‖2

G . Therefore,
the inequality in (36) is satisfied if we can show that the lower
bound in (61) is greater than δ‖ut+1 − u∗‖2

G or equivalently

δ‖vt+1 − v∗‖2 + δαε‖xt+1 − x∗‖2

≤ 2α

m + M
‖∇f(xt+1) −∇f(x∗)‖2 + αε‖xt+1 − xt‖2

+ ‖xt+1 − x∗‖2
2 α m M
m + M I+α2 (I−Z) . (62)

To prove that the inequality in (62) holds for some δ > 0, we
first find an upper bound for the squared norm ‖vt+1 − v∗‖2

in terms of the summands in the right hand side of (62). To
do so, consider the relation (34) along with the fact that vt+1
and v∗ both lie in the column space of (I − Z)1/2 . Note that
there always exists a unique v∗ that lies in the column space of
(I − Z)1/2–check Lemma 1 in [28]. Since we know that both
vt+1 and v∗ lie in the column space of (I − Z)1/2 , there ex-
ists a vector r ∈ Rnp such that v∗ − vt+1 = (I − Z)1/2r. This
relation implies that ‖(I − Z)1/2(vt+1 − v∗)‖2 can be written
as ‖(I − Z)r‖2 = rT (I − Z)2r. The eigenvalues of the matrix
(I − Z)2 are the squared of eigenvalues of the matrix (I − Z).
Thus, we can write rT (I − Z)2r ≥ λ̂min(I − Z)rT (I − Z)r,
where λ̂min(I − Z) is the smallest non-zero eigenvalue of
the matrix I − Z. Observing this inequality and the definition
v∗ − vt+1 = (I − Z)1/2r we can write

∥
∥
∥(I − Z)1/2(vt+1 − v∗)

∥
∥
∥

2
≥ λ̂min(I − Z)‖vt+1 − v∗‖2 .

(63)
Moreover, from the inequality in (34) we obtain that

∥
∥(I − Z)1/2(vt+1 − v∗)

∥
∥2

is bounded above by

‖(I − Z)1/2vt+1 − v∗‖2

≤ βε2

(β − 1)
‖xt+1 − xt‖2 + β‖∇f(xt+1) −∇f(x∗)‖2 , (64)

where β > 1 is a tunable free parameter. Replacing the norm
‖(I − Z)1/2vt+1 − v∗‖2 in (64) by its lower bound in (63)
follows that ‖vt+1 − v∗‖2 is bounded above by

‖vt+1 − v∗‖2 ≤ βε2

(β − 1)λ̂min(I − Z)
‖xt+1 − xt‖2 (65)

+
β

λ̂min(I − Z)
‖∇f(xt+1) −∇f(x∗)‖2 .

Considering the result in (65) to satisfy the inequality in (62),
which is a sufficient condition for the claim in (36), it remains
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to show that

2α

m + M
‖∇f(xt+1) −∇f(x∗)‖2 + αε‖xt+1 − xt‖2

+ ‖xt+1 − x∗‖2
2 α m M
m + M I+α2 (I−Z)

≥ δβε2

(β − 1)λ̂min(I − Z)
‖xt+1 − xt‖2 + δεα‖xt+1 − x∗‖2

+
δβ

λ̂min(I − Z)
‖∇f(xt+1) −∇f(x∗)‖2 . (66)

To enable (66) and consequently enabling (62), we only need
to verify that there exists δ > 0 such that

2αmM

m + M
I + α2(I − Z) � δαεI,

2α

m + M
≥ δβ

λ̂min(I − Z)
,

αε ≥ δβε2

(β − 1)λ̂min(I − Z)
. (67)

The conditions in (67) are satisfied if the constant δ is chosen
as in (37). Therefore, for δ in (37) the claim in (62) holds, which
implies the claim in (36).

APPENDIX C
PROOF OF LEMMA 2

Consider the primal update of ESOM in (14). By regrouping
the terms we obtain that

∇f(xt) + (I − Z)1/2vt + α(I − Z)xt + H̃t(xt+1− xt) = 0,
(68)

where H̃t is the inverse of the Hessian inverse approximation
H̃−1

t (K). Recall the definition of the exact Hessian Ht in (9).
Adding and subtracting the term Ht(xt+1 − xt) to the expres-
sion in (68) yields

∇f(xt) + ∇2f(xt)(xt+1 − xt) + (I − Z)1/2vt

+ α(I − Z̃)xt+1 + ε(xt+1 − xt)

+ (H̃t − Ht)(xt+1 − xt) = 0. (69)

Now using the definition of the error vector et in (40) we can
rewrite (69) as

∇f(xt+1) + (I − Z)1/2vt

+ α(I − Z̃)xt+1 + ε(xt+1 − xt) + et = 0. (70)

Notice that the result in (70) is identical to the expression for
PMM in (51) except for the error term et . To prove the claim in
(39) from (70), it remains to follow the steps in (52)–(55).

APPENDIX D
PROOF OF LEMMA 3

To prove the result in (42), we first use the result in Proposition
2 of [29]. It shows that when the eigenvalues of the Hessian
∇2f(x) are bounded above by M and the Hessian is Lipschitz

continuous with constant L we can write

‖∇f(xt) + ∇2f(xt)(xt+1 − xt) −∇f(xt+1)‖

≤ ‖xt+1 − xt‖min
{

2M,
L

2
‖xt+1 − xt‖

}

. (71)

Considering the result in (71), it remains to find an upper
bound for the second term of the error vector et which is
(H̃t(K) − Ht)(xt+1 − xt). To do so, we develop first an upper
bound for the norm ‖H̃t(K) − Ht‖. Notice that by factoring
the term H̃t(K)1/2 from left and right, and using the Cauchy-
Schwarz inequality we obtain that
∥
∥
∥H̃t(K) − Ht

∥
∥
∥ ≤

∥
∥
∥H̃t(K)

1
2

∥
∥
∥

2∥∥
∥I − H̃− 1

2
t (K)HtH̃

− 1
2

t (K)
∥
∥
∥ .

(72)
Note that the eigenvalues of the matrices I − HtH̃−1

t (K)
and I − H̃−1/2

t (K)HtH̃
−1/2
t (K) are the same since these two

matrices are similar. In linear algebra, two matrices A and Ã
are called similar if Ã = P−1AP for an invertible matrix P.
Thus, we proceed to find bounds for the eigenvalues of I −
HtH̃−1

t (K), to bound the norm in (72). According to Lemma 3
in [12], we can simplify I − HtH̃−1

t (K) as

I − HtH̃−1
t (K) = (BD−1

t )K +1 . (73)

Note that the matrices B and Dt in this paper are different
from the ones in [12], but the analyses of them are very similar.
Following the proof of Proposition 2 in [12], we define D̂ :=
2α(I − Zd). Notice that the matrix D̂ is bock diagonal where
its ith diagonal block is 2α(1 − wii)Ip . Thus, D̂ is positive
definite and invertible. Instead of studying an upper bound for
the eigenvalues of BD−1

t , we try to find an upper bound for
the eigenvalues of its similar matrix D−1/2

t BD−1/2
t which is

symmetric. We are allowed to write the product D−1/2
t BD−1/2

t

as

D− 1
2

t BD− 1
2

t =
(
D− 1

2
t D̂

1
2

)(
D̂− 1

2 BD̂−1/2
) (

D̂
1
2 D− 1

2
t

)
.

(74)
The next step is to find an upper bound for the eigenvalues of

BD̂−1 in (74). Based on the definitions of matrices B and D̂,
the product BD̂−1 is given by

BD̂−1 = (I − 2Zd + Z) (2(I − Zd))−1 . (75)

According to the result in Proposition 2 of [12], the eigenval-
ues of the matrix (I − 2Zd + Z)(2(I − Zd))−1 are uniformly
bounded by 0 and 1. Thus, we obtain that the eigenvalues of
D̂−1/2BD̂−1/2 are bounded by 0 and 1 and we can write

‖D̂− 1
2 BD̂− 1

2 ‖ ≤ 1. (76)

According to the definitions of the matrices D̂ and Dt , the
product D̂1/2D−1/2

t is block diagonal and the ith diagonal block
is given by

[
D̂D−1

t

]

ii
=

(
∇2fi(xi,t) + εI

2α(1 − wii)
+ I

)−1

. (77)

Based on Assumption 1, the eigenvalues of the local Hessians
∇2fi(xi) are bounded by m and M . Further, notice that the di-
agonal elements wii of the weight matrix W are bounded below
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by c. Considering these bounds, we can show that the eigenval-
ues of the matrices (1/2α(1 − wii))(∇2fi(xi,t) + εI) + I for
all i = 1, . . . , n are bounded below by

[
m + ε

2α(1 − c)
+ 1

]

I 
 ∇2fi(xi,t) + εI
2α(1 − wii)

+ I. (78)

By considering the bounds in (78), the eigenvalues of each
block of the matrix D̂D−1

t , introduced in (77), are bounded
above as

(
∇2fi(xi,t) + εI

2α(1 − wii)
+ I

)−1



[

m + ε

2α(1 − c)
+ 1

]−1

I. (79)

The upper bound in (79) for the eigenvalues of each diag-
onal block of the matrix D̂D−1

t implies that the matrix norm
‖D̂D−1

t ‖ is bounded above by

‖D̂D−1
t ‖ ≤ ρ :=

2α(1 − c)
2α(1 − c) + m + ε

. (80)

Considering the upper bounds in (76) and (80) and the relation
in (74) we obtain that

‖D− 1
2

t BD− 1
2

t ‖ ≤ ρ. (81)

Thus, the eigenvalues of the positive definite symmetric ma-
trix D−1/2

t BD−1/2
t are bounded by ρ. Hence, the eigenvalues

of its similar matrix BD−1
t are bounded by ρ. This bound

along with the result in (73) shows that the eigenvalues of
the matrix I − HtH̃−1

t (K) are uniformly bounded by 0 and
ρK +1 . Therefore, the eigenvalues of its similar symmetric ma-
trix I − H̃−1/2

t (K)HtH̃
−1/2
t (K) are between 0 and ρK which

implies that ‖I − H̃−1/2
t (K)HtH̃

−1/2
t (K)‖ ≤ ρK +1 . This re-

sult in conjunction with the inequality in (72) yields
∥
∥
∥H̃t(K) − Ht

∥
∥
∥ ≤ ρK +1

∥
∥
∥H̃t(K)

1
2

∥
∥
∥

2
. (82)

To bound the norm ‖H̃t(K)‖, we first find a lower bound for
the eigenvalues of the approximate Hessian inverse H̃−1

t (K).
Notice that according to the definition of the approximate Hes-
sian inverse in (13), we can write

H̃−1
t (K) := D−1

t + D−1
t

K∑

u=1

(D−1/2
t BD−1/2

t )u D−1/2
t .

(83)
Notice that according to the result in Proposition 1 of [12],

the matrix (I − 2Zd + Z) is positive semidefinite which implies
that B = α (I − 2Zd + Z) is also positive semidefinite. Thus,
all the K summands in (83) are positive semidefinite and as a
result we obtain that

D−1
t 
 H̃−1

t (K). (84)

The eigenvalues of I − Zd are bounded above by 1 − c, since
all the local weights wii are larger than c. This observation in
conjunction with the strong convexity of the global objective
function f implies that the eigenvalues of Dt = ∇2f(xt) +
εI + 2α(I − Zd) are bounded above by M + ε + 2α(1 − c).
Therefore, the eigenvalues of D−1

t are bounded below as

1
M + ε + 2α(1 − c)

I 
 D−1
t . (85)

The results in (84) and (85) imply that the eigenvalues of
the approximate Hessian inverse H̃−1

t (K) are greater than
1/(M + ε + 2α(1 − c)). Therefore, the eigenvalues of the posi-
tive definite matrix H̃t(K) are smaller than M + ε + 2α(1 − c)
and we can write

∥
∥
∥H̃t(K)

∥
∥
∥ ≤ M + ε + 2α(1 − c). (86)

Considering the inequalities in (82) and (86) and using
the Cauchy-Schwarz inequality we can show that the norm
‖(H̃t(K) − Ht)(xt+1 − xt)‖ is bounded above by

∥
∥
∥(H̃t(K) − Ht)(xt+1 − xt)

∥
∥
∥

≤ (M + ε + 2α(1 − c)) ρK +1‖xt+1 − xt‖. (87)

Observing the inequalities in (71) and (87) and using the
triangle inequality the claim in (42) follows.

APPENDIX E
PROOF OF THEOREM 2

Notice that in proving the claim in (44) we use some of
the steps in the proof of Theorem 1 to avoid rewriting similar
equations. First, note that according to the result in (39), the
difference ∇f(xt+1) −∇f(x∗) for the ESOM method can be
written as

∇f(xt+1) −∇f(x∗) = −(I − Z)1/2(vt+1 − v∗)

− ε(xt+1 − xt) − et . (88)

Now recall the the inequality in (56) and substitute the gra-
dients difference ∇f(xt+1) −∇f(x∗) in the inner product
(xt+1 − x∗)T (∇f(xt+1) −∇f(x∗)) by the expression in the
right hand side of (88). Applying this substitution and multiply-
ing both sides of the implied inequality by 2α follows

2αmM

m + M
‖xt+1 − x∗‖2 +

2α

m + M
‖∇f(xt+1) −∇f(x∗)‖2

≤ −2αε(xt+1 − x∗)T (xt+1 − xt) − 2α(xt+1 − x∗)T et

− 2α(xt+1 − x∗)T (I − Z)1/2(vt+1 − v∗). (89)

By following the steps in (57)–(61), the result in (89) leads
to a lower bound for ‖ut − u∗‖2

G − ‖ut+1 − u∗‖2
G as

‖ut − u∗‖2
G − ‖ut+1 − u∗‖2

G

≥ 2α

m + M
‖∇f(xt+1) −∇f(x∗)‖2 + αε‖xt+1 − xt‖2

+ ‖xt+1 − x∗‖2
2 α m M
m + M I+α2 (I−Z) + 2α(xt+1 − x∗)T et .

(90)

Note that the inner product 2(xt+1 − x∗)T et is bounded
below by −(1/ζ)‖xt+1 − x∗‖2 − ζ‖et‖2 for any positive
constant ζ > 0. Thus, the lower bound in (90) can be updated
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as

‖ut − u∗‖2
G − ‖ut+1 − u∗‖2

G

≥ ‖xt+1 − x∗‖2
( 2 α m M

m + M − α
ζ )I+α2 (I−Z) + αε‖xt+1 − xt‖2

+
2α

m + M
‖∇f(xt+1) −∇f(x∗)‖2 − αζ‖et‖2 . (91)

To establish (44), we need to show that the difference ‖ut −
u∗‖2

G − ‖ut+1 − u∗‖2
G is bounded below by δ′t‖ut+1 − u∗‖2

G .
To do so, we show that the lower bound for ‖ut − u∗‖2

G −
‖ut+1 − u∗‖2

G in (91) is larger than δ′t‖ut+1 − u∗‖2
G , i.e.,

δ′t‖vt+1 − v∗‖2 + δ′tαε‖xt+1 − x∗‖2

≤ ‖xt+1 − x∗‖2
( 2 α m M

m + M − α
ζ )I+α2 (I−Z) + αε‖xt+1 − xt‖2

+
2α

m + M
‖∇f(xt+1) −∇f(x∗)‖2 − αζ‖et‖2 . (92)

We proceed to find an upper bound for the squared norm
‖vt+1 − v∗‖2 in terms of the summands in the right hand side
of (92). Consider the relation (70) as well as the fact that vt+1
and v∗ both lie in the column space of (I − Z)1/2 . It follows
that ‖vt+1 − v∗‖2 is bounded above by

‖vt+1 − v∗‖2 ≤ βε2

(β − 1)λ̂
‖xt+1 − xt‖2 +

βφ

(φ − 1)λ̂
‖et‖2

+
φβ

λ̂
‖∇f(xt+1) −∇f(x∗)‖2 , (93)

where we have used λ̂ instead of λ̂min(I − Z) to simplify no-
tation. By substituting the upper bound in (93) for the squared
norm ‖vt+1 − v∗‖2 in (92) we obtain a sufficient condition for
the result in (92) which is given by

δ′tαε‖xt+1 − x∗‖2 +
δ′tβε2

(β − 1)λ̂
‖xt+1 − xt‖2

+
δ′tφβ

λ̂
‖∇f(xt+1) −∇f(x∗)‖2 +

δ′tβφα2‖et‖2

(φ − 1)λ̂

≤ ‖xt+1 − x∗‖2
( 2 α m M

m + M − α
ζ )I+α2 (I−Z) + αε‖xt+1 − xt‖2

+
2α

m + M
‖∇f(xt+1) −∇f(x∗)‖2 − αζ‖et‖2 . (94)

Substitute the squared norm ‖et‖2 terms in (94) by the upper
bound in (42). It follows from this substitution and regrouping
the terms that

0 ≤ ‖xt+1 − x∗‖2
( 2 α m M

m + M − α
ζ −δ ′

t αε)I+α2 (I−Z)

+
(

2α

m + M
− δ′tφβ

λ̂

)

‖∇f(xt+1) −∇f(x∗)‖2

+

[

αε − δ′tβε2

(β − 1)λ̂
− δ′tβφΓ2

(φ − 1)λ̂
− αζΓ2

]

‖xt+1 − xt‖2 .

(95)

Notice that if the inequality in (95) is satisfied, then the result
in (94) holds which implies the result in (92) and the linear con-
vergence claim in (44). To satisfy the inequality in (95) we need

to make sure that the coefficients of the terms ‖xt+1 − xt‖2 ,
‖xt+1 − x∗‖2 , and ‖∇f(xt+1) −∇f(x∗)‖2 are non-negative.
Therefore, the inequality in (95) holds if δ′t satisfies

2αmM

m + M
− α

ζ
− δ′tαε ≥ 0,

2α

m + M
≥ δ′tφβ

λ̂
(96)

αε ≥ δ′tβε2

(β − 1)λ̂
+

δ′tβφΓ2

(φ − 1)λ̂
+ αζΓ2 .

The conditions in (96) are satisfied if δ′t is chosen as in (45).
Thus, δ′t in (45) satisfies the conditions in (96) and the claim in
(44) holds.

APPENDIX F

The result in Theorem 2 holds if the interval ((m +
M)/2mM, ε/Γ2

t ) is non-empty or equivalently if the inequal-
ity ε > Γ2

t (m + M)/2mM holds. However, Γt depends on ε
which makes it unclear if there exists a choice of ε that sat-
isfies the inequality ε > Γ2

t (m + M)/2mM . In the following
proposition, we prove that the interval ((m + M)/2mM, ε/Γ2

t )
is non-empty for a proper choice of ε.

Proposition 2: Consider ESOM as introduced in (8) (15).
Recall the definition of Γt in (43). If the constant ε is chosen
such that

ε >
m + M

2mM

(

2M + 2α(1 − c)
M

m

)2

, (97)

then the inequality ε > Γ2
t (m + M)/2mM holds and the set

((m + M)/2mM, ε/Γ2
t ) is non-empty.

Proof: Note that the condition ε > Γ2
t (m + M)/2mM is

equivalent to

Γt <

√
2εmM√
m + M

. (98)

According to the definition of Γt , the expression ρ :=
2α(1 − c)/(2α(1 − c) + m + ε), and the fact that 2M ≥
min

{
2M, L

2 ‖xt+1 − xt‖
}

, we can write

Γt ≤ 2M + (M + ε + 2α(1 − c))
(

2α(1 − c)
2α(1 − c) + m + ε

)K +1

.

(99)

The results in (98) and (99) show that the inequality ε >
Γ2

t (m + M)/2mM holds if the following inequality holds,

2M + (M + ε + 2α(1 − c))
(

2α(1 − c)
2α(1 − c) + m + ε

)K +1

<

√
2εmM√
m + M

. (100)

Thus, if the condition in (100) holds then we have
ε > Γ2

t (m + M)/2mM . Note that (2α(1 − c)/(2α(1 − c) +
m + ε))K +1 ≤ 2α(1 − c)/(2α(1 − c) + m + ε) for any K ≥
0. Thus, if the following inequality is satisfied the inequality in
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(100) is also valid,

2M+(M + ε +2α(1−c))
[

2α(1 − c)
2α(1 − c) + m + ε

]

<

√
2εmM√
m + M

.

(101)
Considering that m < M and 2α(1 − c) + ε > 0, we ob-

tain that that (M + ε + 2α(1 − c))/(m + ε + 2α(1 − c)) ≤
M/m. Replacing (M + ε + 2α(1 − c))/(m + ε + 2α(1 − c))
in (101) by the upper bound M/m implies that

2M + 2α(1 − c)
M

m
<

√
2εmM√
m + M

. (102)

Note that if the condition in (102) holds then the condition in
(101) is satisfied. The result in (102) shows that if ε satisfies

ε >
m + M

2mM

(

2M + 2α(1 − c)
M

m

)2

, (103)

then the inequality in (102) and consequently the inequalities
in (101) and (100) hold true which follows that the condition
ε > Γ2

t (m + M)/2mM is satisfied. �
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