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Abstract—In this paper, we consider monitoring multiple events in a sensing field using a large-scale wireless sensor network (WSN).

The goal is to develop communication-efficient algorithms that are scalable to the network size. Exploiting the sparse nature of the

events, we formulate the event monitoring task as an ‘1 regularized nonnegative least squares problem where the optimization variable

is a sparse vector representing the locations and magnitudes of events. Traditionally the problem can be reformulated by letting each

sensor hold a local copy of the event vector and imposing consensus constraints on the local copies, and solved by decentralized

algorithms such as the alternating direction method of multipliers (ADMM). This technique requires each sensor to exchange their

estimates of the entire sparse vector and hence leads to high communication cost. Motivated by the observation that an event usually

has limited influence range, we develop two communication-efficient decentralized algorithms, one is the partial consensus algorithm

and the other is the Jacobi approach. In the partial consensus algorithm that is based on the ADMM, each sensor is responsible for

recovering those events relevant to itself, and hence only consent with neighboring nodes on a part of the sparse vector. This strategy

greatly reduces the amount of information exchanged among sensors. The Jacobi approach addresses the case that each sensor

cares about the event occurring at its own position. Jacobi-like iterates are shown to be much faster than other algorithms, and incur

minimal communication cost per iteration. Simulation results validate the effectiveness of the proposed algorithms and demonstrate the

importance of proper modelling in designing communication-efficient decentralized algorithms.

Index Terms—Wireless sensor network (WSN), event monitoring, decentralized computation

Ç

1 INTRODUCTION

IN recent years, wireless sensor networks (WSNs) have
been widely applied to event monitoring tasks, which

aim at discovering events of interest in sensing fields. Typi-
cal applications include target tracking [1], structural health
monitoring (SHM) [2], field reconstruction [3], spectrum
sensing [4], etc. Due to the easiness of deployment, WSNs
are especially fit for applications in hazardous environ-
ments, such as detecting nuclear radioactive sources [5] and
monitoring active volcanos [6].

One common problem arising from the event monitoring
tasks is how to fuse the sensory measurements and obtain
accurate information about the events occurring within the
sensing field. An intuitive idea is to compare the sensory
measurements with a predefined threshold; if the measure-
ment of one sensor is larger than the threshold, the sensor
reports a positive detection around its position. Perfor-
mance of this binary detection approach is determined by
the choice of the threshold and can be sensitive to the

measurement noise [7]. Since one event may influence the
measurements of multiple sensors, it is also necessary to
address the spatial correlation in binary detection [8].
Another class of event monitoring algorithms take the statis-
tical signal processing perspective by introducing prior
knowledge. Examples include the expectation maximization
algorithm in [9] and the Bayesian approach in [10], [11].

This paper makes use of the prior knowledge that
events occurring within the sensing field are spatially
sparse compared to their candidate positions (e.g., posi-
tions of the sensors or some grid points), which suggests
to solve the event monitoring problem from the sparse
optimization perspective. Specifically, we formulate the
event monitoring task into the following ‘1 regularized
nonnegative least squares problem:

min
c

�

2
jjHc� bjj22 þ jjcjj1;

s:t: c � 0:
(1)

Herein, positions and amplitudes of the events are repre-
sented by a nonnegative decision variable c whose size is
equal to the number of candidate positions. The vector b
contains the noise-polluted measurements collected by sen-
sors through the measurement matrix H. In the objective

function of (1), the least squares term kHc� bk22 corre-
sponds to data fidelity and the ‘1 norm term kck1 induces
sparsity; the two terms are balanced through a nonnegative
weight �. Detailed description of the sparse optimization
model (1) is given in Section 2. In this paper we will focus
on developing communication-efficient decentralized algo-
rithms to recover c.
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Centralized techniques for solving (1), in which a
fusion center collects all sensory measurements and esti-
mates positions and magnitudes of the events, have been
studied extensively. However, the centralized approach
incurs a high communication cost due to extensive data
transmission from the distributed sensors to the fusion
center. Besides, breakdown of the fusion center or some
critical relaying sensors (e.g., those close to the fusion
center) may result in loss of data and even failure of the
event monitoring task. The disadvantages of the central-
ized approach have motivated recent research interest in
decentralized data processing [12], [13], [14], [15], [16],
[17], [18]. The decentralized approach requires the sen-
sors to solve the optimization problem in an autonomous
way based on their local measurements, allowing them
to collaborate only with their neighbors at a low commu-
nication cost. The sensors no longer need to transmit
data to the fusion center as in the centralized approaches;
hence the communication cost is scalable to the network
size and the algorithm is robust to the dynamic network
topology.

When the original centralized optimization problem is
separable, it is possible to guarantee optimality of decen-
tralized data processing by properly allocating the opti-
mization task to individual sensors. One powerful tool to
help formulate such a separable optimization problem is
known as consensus optimization, where each sensor holds
a local copy of the decision variable and the local copies
of neighboring sensors are enforced to consent to the
same value (see e.g., [15], [16], [17]). Thus, the consensus
optimization problem is equivalent to the original one
given that the WSN is connected. Many decentralized
iterative algorithms have been proposed to solve the con-
sensus optimization problem, such as the alternating
direction method of multipliers (ADMM) [19], the distrib-
uted subgradient method [20], and the distributed dual
averaging algorithm [21]. In each iteration of these algo-
rithms the sensors need to exchange their current local
copies of the decision variable. Therefore, the communi-
cation cost is proportional to the size of the decision vari-
able. We call this scheme as full consensus. For the event
monitoring problem (1), the size of the decision variable
c is equal to the number of candidate positions that can
be very large. Hence the full consensus scheme, which
requires the sensors to exchange their current local copies
of c, is not communication-efficient.

To reduce the communication cost of decentralized
event monitoring algorithms, one of the key issues is to
reduce the amount of information exchanged per itera-
tion. Note that the full consensus scheme implies that the
entire decision variable c (i.e., positions and magnitudes
of all the events) is relevant to all the sensors. However,
in many event monitoring tasks, an individual sensor is
only influenced by a portion of the events. Motivated by
this fact, this paper first proposes a partial consensus
scheme in which neighboring sensors only consent on
their relevant events; this way, the dimensionality of
information exchanged is largely reduced compared with
the full consensus scheme. Obviously we can see that the
full consensus scheme is a special case of partial consen-
sus scheme.

In some event monitoring applications, each sensor is
only responsible of recovering one of its relevant events. For
example, if we choose positions of the sensors as candidate
positions of the events, one sensor may only care about the
event occurring at its own position. In this case the consensus
schemes are no longer needed because nomore than one sen-
sor is required to recover the same event. We develop a
decentralized Jacobi algorithm in which each sensor only
needs to transmit one scalar, which represents its estimate
on the magnitude of the event at its own position, to its
neighbors. Apart from the low communication cost per itera-
tion, the decentralized Jacobi approach can be further accel-
erated by the Nesterov acceleration technique and converges
much faster than those using the consensus schemes. There-
fore, overall communication cost is significantly reduced.

The rest of this paper is organized as follows. In Section 2,
the event monitoring task is formulated as a sparse signal
recovery problem with the form of ‘1 regularized nonnega-
tive least squares. Section 3 introduces a full consensus
algorithm and proposes a partial consensus algorithm. Con-
sidering the case that each sensor recovers its own corre-
sponding event, Section 4 develops a decentralized Jacobi
algorithm and analyzes its convergence properties. Perfor-
mance of the proposed algorithms is shown in Section 5.
Section 6 summarizes the paper.

2 PROBLEM FORMULATION

Let us consider a wireless sensor network that is deployed
in a two-dimensional area. The network has a set of L sen-

sors, denoted as L ¼ fvigLi¼1. Sensors have a common com-
munication range rC , which means any two sensors whose
distance is within rC can communicate directly. Suppose
that dij is the distance from sensor vi to sensor vj. We define

N C
i ¼ fvj: dij � rC; j 6¼ ig that is the one-hop neighbor set

of sensor vi.
At each sampling time, multiple events may occur in the

sensing field. To establish a tractable mathematical model
for event monitoring we confine the sources of events to
sensor points; that is, one event occurs only at a sensor
point. For example, in the structural health monitoring
problem [22], a WSN detects damages of a steel-frame struc-
ture. The sensors are deployed at the joints of the frame, and
it is reasonable to assume that the damages also occur at the
joints. If the source of one event coincides with the position
of sensor vi, we denote the magnitude of the event by a
positive scalar ci. If no event occurs at vi, then ci ¼ 0. There-
fore, we can formulate the problem as recovering the signal

c ¼ ½c1; . . . ; cL�T where �T is the transposition operator.
Although events could occur anywhere in the sensing field,
it is a viable practice to confine event sources to sensor
points, which is adequate to guarantee satisfactory detec-
tion accuracy when the sensors are densely or appropriately
deployed.

Suppose that the influence of a unit-magnitude event at
sensor point vj on the sensor point vi is hij. We consider
such monitoring tasks where the measurement of one sen-
sor can be represented as the superposition of the influen-
ces of all events plus random noise. For example, the
measurement of sensor vi is bi ¼

P
vj2L hijcj þ ei, in which ei

is random noise.
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Nowwe are ready to adopt a least squares formulation to
recover c:

min
fcig

XL
i¼1

bi �
XL
j¼1

hijcj

 !2

;

s:t: ci � 0; i ¼ 1; 2; . . . ; L;

or equivalently in a matrix form:

min
c

jjHc� bjj22;
s:t: c � 0:

Here the measurement vector b ¼ ½b1; . . . ; bL�T and the ith

row of the measurement matrixH is hT
i ¼ ½hi1; . . . ; hiL�.

The least squares formulation ignores the sparsity of the
vector c. Note that in a large-scale network, the number of
events is generally much smaller than the number of sen-
sors; hence the vector c has a large amount of zero elements.
Without considering this prior knowledge, the least squares
formulation will lead to a non-sparse solution, which means
a non-negligible number of false alarms. Motivated by this
fact, we formulate the ‘1 regularized nonnegative least
squares problem in (1):

min
c

�

2
jjHc� bjj22 þ jjcjj1;

s:t: c � 0:

Note that (1) shares similarity with the basis pursuit de-
noising (BPDN) model [23] and the least absolute shrink-
age and selection operator (LASSO) model [24], but the
measurement matrix H and the decision variable c are
confined to be nonnegative. Such a formulation arises in
WSN applications, e.g., detecting footsteps and vehicles
using seismic sensors [25] and localizing shooters using
acoustic sensors [26].

Our goal is to develop communication-efficient decen-
tralized algorithms to solve the event monitoring model
(1). With the consensus technique, the decentralized algo-
rithms introduced in Section 1 (such as the ADMM, the
distributed subgradient method, the distributed dual
averaging algorithm) can be applied to this problem at
the cost of considerable communication cost. Neverthe-
less, the following observation from many real-world
applications enables us to reduce the communication cost
and improve the energy efficiency.

Observation. An event has partial influence.

Recall that the influence of an event at sensor point vj
on the sensor point vi is hij. In many applications we
observe that there exists a constant rE , which denotes the
influence range of an event, such that hij ¼ 0 if dij > rE .
Therefore, for an event occurring at sensor point vi we

define its influence set N E
i ¼ fvj : dij � rEg that contains

all sensors whose measurements are influenced by the
event occurring at sensor point vi. Note that the one-hop

neighbor set N C
i is different from the influence set N E

i . If
we adjust the communication range rC such that rC ¼ rE ,

then N E
i ¼ N C

i [ vi.

The phenomenon of partial influence can be observed in
many applications, e.g., footstep and vehicle detection and
acoustic source monitoring. More examples include fire
source monitoring, target tracking, and nuclear radioactive
detection, in which the influence of a source often decreases
polynomially as the distance increases. Take the fire source
monitoring application as an example. Suppose that 100
temperature sensors are randomly deployed in the sensing
field as illustrated in Fig. 1. Two fire sources occur at vi and
vj and they have the same influence ranges rE . Therefore,
only the sensors within the ranges can measure the high
temperatures caused by the fire sources, while the sensors
outside of the ranges are not influenced.

3 THE PARTIAL CONSENSUS ALGORITHM BASED

ON THE ADMM

In this section, we present a partial consensus algorithm to
solve the event monitoring problem (1) based the ADMM.
We first introduce the full consensus algorithm that requires
the sensors to exchange the entire decision variables. Moti-
vated by the partial influence phenomenon introduced in Sec-
tion 2 and detailed in Section 3.2 below, we improve the full
consensus model and propose a partial consensus model
for event monitoring. We develop a partial consensus algo-
rithm based on the ADMM and analyze its convergence.
Through reducing the amount of information exchanged
per iteration, the partial consensus algorithm outperforms
the full consensus algorithm in terms of communication
efficiency.

Notations. Curlicue letters denote index sets. Given a col-
umn vector a, aI denotes its projection onto the index set I ,
i.e., stacking its elements fai: i 2 Ig to form aI . Given a
matrix A, AðJ ;KÞ denotes its projection onto the index set of

rows J and the index set of columns K, i.e., stacking its ele-
ments fajk: j 2 J ; k 2 Kg to form AðJ ;KÞ.

Fig. 1. The points indicate 100 temperature sensors randomly deployed
in a two-dimensional area; the squares indicate two fire sources occur-
ring at sensor positions vi and vj; the circles indicate the influence
ranges rE of the fire sources.
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3.1 Full Consensus Algorithm Based on ADMM

We first rewrite (1) in its unconstrained form

min
c

�

2
jjHc� bjj22 þ jjcjj1 þ LIþðcÞ; (2)

where L is the number of sensors and IþðcÞ is an indica-
tor function that equals to 0 when c � 0 and þ1 other-
wise. Further separating the least squares term, (2) is
equivalent to

min
c

XL
i¼1

�

2

�
hT
i c� bi

�2
2
þ ci þ IþðcÞ

� �
; (3)

where hT
i is the ith row ofH.

Letting fiðcÞ ¼ �
2 ðhT

i c� biÞ22 þ ci þ IþðcÞ, we have the
optimization problem

min
c

XL
i¼1

fiðcÞ; (4)

whose objective function is separable with regard to the
individual sensors and the decision variable is common.
The full consensus technique introduces local copies of c at
the sensors, by imposing consensus constraints on neigh-
boring local copies (c.f., [15], [16], [17]), and reformulate (4)
as follows:

min
fcðiÞg

XL
i¼1

fiðcðiÞÞ;

s:t: cðiÞ ¼ cðjÞ; 8vi 2 L; 8vj 2 N C
i :

(5)

Here cðiÞ denotes the local copy of c at sensor vi. The consen-

sus constraint cðiÞ ¼ cðjÞ forces vi and vj, if they are one-hop
neighbors, to consent on the value of their local copies.
Apparently, (5) is equivalent to (4) if the WSN is connected.

We omit derivation of the full consensus algorithm based
on the ADMM. Readers are referred to [17], or Section 3.2
that derives the ADMM for a more general case of partial
consensus. For fiðcÞ ¼ �

2 ðhT
i c� biÞ22 þ ci þ IþðcÞ, we have the

following recursion at sensor vi:

cðiÞðtþ 1Þ ¼ arg min
cðiÞ�0

(
1

2
cðiÞT

�
�
�
hih

T
i

�þ 2p j N C
i j I�cðiÞ

þ
�
ei � �bihi þ aaiðtÞ � p j N C

i j cðiÞðtÞ

� p
X
j2NC

i

cðjÞðtÞ
�T

cðiÞ
)
;

(6)

aaiðtþ 1Þ ¼ aaiðtÞ þ p jN C
i jcðiÞðtþ 1Þ � p

X
j2NC

i

cðjÞðtþ 1Þ: (7)

Here aai is an L� 1 vector held by sensor vi, ei is the ith col-
umn of an L� L identity matrix, p is a positive constant,
and j � j denotes the cardinality.

The full consensus algorithm based on the ADMM for
event monitoring is shown in Algorithm 1. The algorithm
guarantees convergence to the optimal solution of (5)
according to the convergence analysis of the ADMM [19].
As shown in Algorithm 1, at each iteration sensor vi trans-

mits cðiÞ to its neighbors and hence the communication cost

per iteration is L. Therefore, the communication cost per

iteration per sensor of the WSN is L
PL

i¼1 jN C
i j.

Algorithm 1. The Full Consensus Algorithm Based on
the ADMM at Sensor vi

Require: One-hop neighbor set N C
i , local data hi and bi.

1: Initialize cðiÞ and aai as 0;
2: for t ¼ 0; 1; 2; . . . do
3: Compute cðiÞðtþ 1Þ according to (6);
4: Transmit cðiÞðtþ 1Þ to and receive cðjÞðtþ 1Þ from N C

i ;
5: Compute aaiðtþ 1Þ according to (7);
6: end for
7: Return cðiÞðtþ 1Þ.

Remark 1. The full consensus formulation (5) implies that
the entire vector c is needed by all sensors to fulfill the
monitoring task and/or the entire c is necessary in the
optimization process; we call this phenomenon as full
influence. To further illustrate this phenomenon, we can
see that (5) is equivalent to

min
fcðiÞg

XL
i¼1

fiðcðiÞÞ;

s:t: c
ðiÞ
k ¼ c

ðjÞ
k ; 8vi 2 L; 8vj 2 N C

i ; 8k;
(8)

which indicates that to estimate ck, the kth element of c,
any two neighboring sensors vi and vj need to consent on

the value of its local copies c
ðiÞ
k and c

ðjÞ
k . If in practice the

events only have partial influence, i.e., an event only influ-
ences a portion of sensors, the full consensus algorithm is
not communication-efficient. This fact motivates us to
develop the partial consensus model and algorithm.

3.2 The Partial Consensus Model

The partial influence phenomenon indicates that for an
event occurring at sensor point vi, only a subset of sensors,

denoted by N E
i , are influenced. All the sensors in N E

i con-
tribute relevant information to event estimation, but the sen-

sors not in N E
i are not necessary to participate. Therefore,

we can let neighboring sensors, which are influenced by a
common event, to consent on its value. This way, we are
able to avoid the communication cost brought by consenting
on the entire decision vector.

Define J i ¼ fk: vi 2 N E
k ; 8k ¼ 1; . . . ; Lg as the set of

events that, if occur, will influence sensor vi. For any possi-
ble event k (an event that might occur at the sensor point
vk), if k 2 J i then sensor vi generates a local copy of ck,

denoted by c
ðiÞ
k . Further, for any sensor vj that is a one-hop

neighbor of sensor vi and influenced by the event k as well
(i.e., k 2 J j), sensors vi and vj must consent on the value of
ck. Therefore, the full consensus model (5) can be modified
to the following partial consensus model:

min
fcðiÞJ i

g

XL
i¼1

~fi
�
c
ðiÞ
J i

�
;

s:t: c
ðiÞ
k ¼ c

ðjÞ
k ; 8vi 2 N E

k ; 8vj 2 N E
k \N C

i ; 8k:
(9)
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Here c
ðiÞ
J i

stacks the local copy of ck at sensor vi for all k 2 J i

and ~fiðcJ i
Þ ¼ �

2

�ðhiÞTJ i
cJ i

� bi
�2 þ ci þ IþðcJ i

Þ; with a slight

abuse of notation, IþðcJ i
Þ is an indicator function that

equals to 0 when cJ i
� 0 and þ1 otherwise. The following

proposition shows that under certain conditions the partial
consensus model (9) is equivalent to the centralized one (4).

Proposition 1. Suppose that the partial influence phenomenon
holds, i.e., hik ¼ 0 if vi =2 N E

k . Then the partial consensus
model (9) is equivalent to the centralized one (4) in the sense

that c
ðiÞ
k ¼ ck when i 2 N E

k , if the subnetwork consisting of all

sensors inN E
k is connected for any k.

Proof. Since for any k the subnetwork consisting of all sen-

sors in N E
k is connected, the consensus constraints in (9)

force all c
ðiÞ
k to be equal if vi 2 N E

k . On the other hand, the

function fiðcðiÞÞ defined in (4) is irrelevant with c
ðiÞ
k if

vi =2 N E
k because hik ¼ 0 in this case; therefore, ~fiðcðiÞJ i

Þ
defined in (9) is equal to fiðcðiÞÞ. These two facts guaran-
tee equivalence of (4) and (9). tu
It is obvious that the full influence model (5) is a special

case of the partial influence model (9). When it holds

N E
k ¼ L for any k, (9) degenerates to (5).

3.3 Decentralized Partial Consensus Algorithm

Through applying the ADMM to solve (9), the recursion at
sensor vi is

c
ðiÞ
J i
ðtþ 1Þ ¼ argmin

c
ðiÞ
J i

(
~fi
�
c
ðiÞ
J i

�þ X
k2J i

 
p j N E

k \ N C
i j �cðiÞk �2

þ
 
aikðtÞ � p

X
vj2NE

k \NC
i

�
c
ðiÞ
k ðtÞ þ c

ðjÞ
k ðtÞ��cðiÞk

!)
;

(10)

aikðtþ 1Þ ¼ aikðtÞ

þ p

 		N E
k \ N i

		cðiÞk ðtþ 1Þ �
X

vj2NE
k \NC

i

c
ðjÞ
k ðtþ 1Þ

!
; 8k 2 J i:

(11)

Derivation of (10) and (11) can be found in the supplemen-
tary material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2014.2350474.

Recall that ~fiðcJ i
Þ ¼ �

2

�ðhiÞTJ i
cJ i

� bi
�2 þ ci þ IþðcJ i

Þ in
the event monitoring application. Define Di as a diagonal

matrix whose kth diagonal element is jN E
k \ N C

i j and giðtÞ
as a column vector whose kth element is

P
j2NE

k \NC
i
c
ðjÞ
k ðtÞ.

Substituting ~fiðcÞ,Di and gi into (10), we get

c
ðiÞ
J i
ðtþ 1Þ ¼ arg min

c
ðiÞ
J i

�0

(
1

2
c
ðiÞT
J i

�
�
�
Hih

T
i

�
ðJ i;J iÞ þ 2pðDiÞðJ i;J iÞ

�
c
ðiÞ
J i

þ �ðeiÞJ i
� �biðHiÞJ i

þ aaJ i
ðtÞ � pðDiÞðJ i;J iÞc

ðiÞ
J i
ðtÞ

� pðgiðtÞÞJ i

�T
c
ðiÞ
J i

)
;

(12)

where ei is the ith column of an L� L identity matrix. And
aaJ i

is updated through:

aaJ i
ðtþ 1Þ ¼ aaJ i

ðtÞ þ pðDiÞðJ i;J iÞc
ðiÞ
J i
ðtþ 1Þ

� pðgiðtþ 1ÞÞJ i
;

(13)

where aaJ i
is the vector catenating all aik; 8k 2 J i.

The Hessian matrix of the objective function in (12)
equals to �ðHih

T
i ÞðJ i;J iÞ þ 2pðDiÞðJ i;J iÞ, which is positive

definite because Di’s diagonal elements are positive. The
Hessian matrix is of size jJ ij � jJ ij, which is far less than
that in the full consensus case (i.e., L� L). This property
largely reduces the computation cost on each sensor. The
full consensus algorithms (6) and (7) is a special case of the

partial consensus algorithms (12) and (13) whenN E
i ¼ L.

The partial consensus algorithm based on the ADMM is
outlined in Algorithm 2. Now we consider its implementa-
tion. In the beginning, each sensor vi broadcasts HELLO to
all the sensors. Say sensor vj is a one-hop neighbor of vi.
When vj receives HELLO, it feedbacks ECHO. After sensor
vi receives ECHO from vj, it recognizes vj as a one-hop

neighbor and puts vj into the one-hop neighbor set N C
i . To

know N E
i usually we need to estimate the influence range

rE through experiments. Sensor vj with dij � rE belongs to

the influence set N E
i . The distance between two sensors can

be measured via various methods, such as time of arrival
(TOA), time difference of arrival (TDOA), or received signal
strength indicator (RSSI) [27].

Algorithm 2. The Partial Consensus Algorithm Based on
the ADMM at Sensor vi

Require: One-hop neighbor set N C
i , influence set N E

i

and index set J i, local data hi and bi.
1: Initialize cðiÞ; gi, and aaJ i

as 0;
2: for t ¼ 0; 1; 2; . . ., sensor vi do
3: Compute c

ðiÞ
J i
ðtþ 1Þ according to (12);

4: Transmit c
ðiÞ
k ðtþ 1Þ to, and receive c

ðjÞ
k ðtþ 1Þ

from vj 2 N E
k \ N C

i ; 8k 2 J i;
5: Construct giðtþ 1Þ and compute aaiðtþ 1Þ according

to (13);
6: end for
7: Return c

ðiÞ
J i
ðtþ 1Þ.

In the partial consensus algorithm, sensor vi needs to col-

lect
P

k2J i
jN E

k \ N C
i j scalar values to update c

ðiÞ
J i
ðtþ 1Þ, and

hence the total communication cost per iteration isP
vi2L

P
k2J i

jN E
k \ N C

i j. In contrast, in the full consensus

algorithm the overall communication cost per iteration is

L
PL

i¼1 jN C
i j. Obviously, the size of estimated variables

needed to be exchanged among neighbors per iteration par-
tial consensus is much less than that using full consensus.
The advantage of using partial consensus to reduce commu-
nication cost is also discussed in [28], which focuses on the
application of model predictive control. Note that [28]
requires the network to be bipartite and this paper considers
an arbitrary connected network.
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4 THE JACOBI APPROACH

The partial consensus algorithm considerably reduces the
communication cost per iteration compared to the full con-
sensus algorithm. When the event influence range rE
becomes smaller, each sensor recovers a smaller number of
events and the resulting communication cost is lighter.
However, there still exists redundant communication since
each sensor is responsible of recovering events occurring at
nearby sensor points and neighboring sensors need to con-
sent on relevant events.

We observe that when the events are localized such that
the influence range is no larger than the communication
range (i.e., rE � rC), each sensor can only recover the event
occurring at its own point, not others. This way, consensus
is no longer necessary. Under this condition, this section
first proposes a decentralized Jacobi approach to solve (1)
and then develops its accelerated version.

4.1 The Projected Jacobi (PJ) Approach

Since c � 0, (1) can be rewritten as

min
c

1

2
cTPcþ rT c;

s:t: c � 0;
(14)

where P ¼ �HTH and r ¼ 1� �Hb with 1 ¼ ½1; � � � ; 1� being
an L� 1 vector.

We solve (14) through an iterative projected Jacobi
approach:

cðtþ 1Þ ¼ ½cðtÞ � gM�1ðPcðtÞ þ rÞ�þ; (15)

where M is a diagonal matrix whose diagonal elements
equal to the corresponding diagonal elements of P and g is
a positive stepsize. Note that PcðtÞ þ r is the gradient of the
objective function of (14) at c ¼ cðtÞ. Therefore, (15) can be
viewed as the projected gradient descent method where the

gradient is scaled by M�1. The following proposition pro-
vides a sufficient condition for the convergence of the pro-
jected Jacobi approach.

Proposition 2. The projected Jacobi approach with the recursion
(15) converges to the optimal solution of (14) if g 2 ð0; 2=LÞ.

Proof. Since P ¼ �HTH, P is positive semidefinite. Under
such a condition, the projected Jacobi approach with the
recursion (15) converges to the optimal solution of (14)
(see page 261 in [19]). tu
Proposition 2 indicates that a small stepsize g assures

convergence. However, g 2 ð0; 2=LÞ might be too conserva-
tive and could lead to slow convergence. Since Proposition
2 only gives a sufficient condition, we often tune g to be a
larger value in practice.

Next we show that when the partial influence phenome-
non holds and the influence range rE is no larger than the
communication range rC , the recursion (15) can be imple-
mented in a decentralized manner. To this end, we define

uðtÞ ¼ HcðtÞ, and vðtÞ ¼ M�1ð�HTuðtÞ þ rÞ. Since hij ¼ 0 if

j =2 N E
i , the recursion (15) is equivalent to

uiðtþ 1Þ ¼ hT
i cðtÞ ¼

X
j2NE

i

hijcjðtÞ; (16a)

viðtþ 1Þ ¼ 1� �hT
i bþ �hT

i uðtþ 1Þ
�hT

i hi

(16b)

¼
ri þ �

P
j2NE

i
hijujðtþ 1Þ

�mi
; (16c)

ciðtþ 1Þ ¼ ½ciðtÞ � gviðtþ 1Þ�þ: (16d)

Here ui, vi, ri are the ith elements of u, v, r, respectively;

mi ¼ hT
i hi is the ith diagonal element of M. Note that by

definition ri ¼ 1� �
P

j2NE
i
hijbj.

Note that cjðtÞ and ujðtÞ can be collected by vi if j 2 N E
i

since rE � rC . This way, the recursion (16) is naturally
decentralized as we outlined in Algorithm 3. For the update

at time tþ 1, sensor vi needs to collect fcjðtÞ; j 2 N E
i g and

fujðtþ 1Þ; j 2 N E
i g. Therefore, its communication cost per

iteration is 2jN E
i j and the total communication cost per iter-

ation of the WSN is 2
P

vi2L jN
E
i j. Recall that for the partial

consensus algorithm (see Section 3), the overall communica-

tion cost per iteration is
P

vi2L
P

k2J i
jN E

k \N C
i j. For dense

networks we have 2jN E
i j �

P
k2J i

jN E
k \ N C

i j. Furthermore,

the projected Jacobi approach often converges faster than
the partial consensus algorithm. Therefore, the projected
Jacobi approach is more communication-efficient in each
iteration.

Algorithm 3. The Projected Jacobi Approach at sensor vi

Require: Influence set N E
i and index set J i, local data hi

and bi.
1: Transmit bi to and receive bj from vj 2 N E

i . Calculate

ri ¼ 1� �
P

j2NE
i
hijbj andmi ¼ hT

i hi;

2: Initialize ci as 0;
3: for t ¼ 0; 1; 2; . . ., sensor vi do
4: Compute uiðtþ 1Þ according to (16a). Transmit

uiðtþ 1Þ to and receive ujðtþ 1Þ from j 2 N E
i ;

5: Compute viðtþ 1Þ according to (16c);
6: Compute ciðtþ 1Þ according to (16d). Transmit

ciðtþ 1Þ to and receive cjðtþ 1Þ from j 2 N E
i ;

7: end for
8: Return ciðtþ 1Þ.

4.2 The Projected Jacobi Approach with
Acceleration (PJA)

As we have discussed in the above section, the projected
Jacobi approach is essentially a projected gradient descent
method, and hence can be accelerated. Here we consider
the Nesterov acceleration technique [29], [30], which greatly
reduces the iteration complexity without incurring extra
communication cost. Instead of directly using gradient
descent in 16, we apply Nesterov acceleration technique to
update the recursion:
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yiðtþ 1Þ ¼ ciðtÞ � gviðtþ 1Þ; (17a)

ciðtþ 1Þ ¼ ½yiðtþ 1Þ þ dðtÞðyiðtþ 1Þ � yiðtÞÞ�þ; (17b)

where the scalar dðtÞ is a time-varying weight parameter.
We propose to update dðtÞ as

uðtþ 1Þ ¼ uðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðtÞ2 þ 4

q
� uðtÞ

2
; (18a)

dðtþ 1Þ ¼ ð1� uðtþ 1ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðtþ 1Þ2 þ 4

q
� uðtþ 1Þ

2
; (18b)

and uð0Þ is initialized as 1.

Algorithm 4. The Projected Jacobi Approach with Accel-
eration at sensor vi

Require: Influence set N E
i and index set J i, local data hi

and bi.
1: Transmit bi to and receive bj from vj 2 N E

i . Calculate

ri ¼ 1� �
P

j2NE
i
hijbj andmi ¼ hT

i hi;

2: Initialize u as 1, yi and ci as 0;
3: for t ¼ 0; 1; 2; . . . ; sensor vi do
4: ifmod ðtþ 1; T Þ ¼ 0 then
5: Set uðtþ 1Þ ¼ 1;
6: else
7: Update uðtþ 1Þ according to (18a);
8: end if
9: Compute uiðtþ 1Þ according to (16a). Transmit

uiðtþ 1Þ to and receive ujðtþ 1Þ from j 2 N E
i ;

10: Compute viðtþ 1Þ, yiðtþ 1Þ, and dðtþ 1Þ according
to (16c), (17a), and (18b) respectively;

11: Compute ciðtþ 1Þ according to (16d). Transmit

ciðtþ 1Þ to and receive cjðtþ 1Þ from j 2 N E
i ;

12: end for
13: Return ciðtþ 1Þ.

The Nesterov acceleration technique is a momentum
method in which the current iteration depends on the pervi-
ous iterations, and the momentum grows from one iteration
to the next [31]. When the momentum accumulates too
much, the current iteration will deviate, and hence ripples
and bumps will be observed if one traces the objective
value. Therefore we can restart the acceleration process in
order to alleviate the accumulation of momentum. For sim-
plicity, here we use fixed restart which reset u to its initial
value 1 after every T iterations. The projected Jacobi
approach with acceleration is outlined in Algorithm 4. Com-
pared to the one without acceleration, the communication
cost remains the same.

5 SIMULATION EXPERIMENTS

In this section, we provide simulation experiments to dem-
onstrate the effectiveness of the proposed decentralized
algorithms and the effect of the parameters � and rE . Specif-
ically, we show convergence of the algorithms to the opti-
mal solution of (1) as well as how the convergence rate

varies with respect to the regularization parameter �. We
also show the effect of the influence range rE on the conver-
gence rate and the estimation accuracy.

Throughout the simulation experiments, L ¼ 200 sen-
sors are uniformly randomly deployed in a 10� 10 square
sensing field. There are five events occurring at random
sensor points and their magnitudes are uniformly ran-
domly chosen from ½0; 1�. We assume that the measure-

ment coefficients hij ¼ expð�d2ij=s
2Þ where s2 is a known

parameter. Since this exponentially decaying function of
dij is always positive, we define a nominal influence

range rE0 such as expð�r2E0=s
2Þ ¼ 0:01. Therefore, an

event has negligible influence on a sensor beyond the
nominal influence range rE0.

Note that this setting comes from the application of
structural health monitoring. A WSN is applied to detect-
ing damages of a steel-frame structure and the sensors
are deployed at the joints of the frame. Each sensor has a
baseline model about its response to ambient vibrations
given that the structure is well-conditioned. If damages
occur at joints, sensors close to these positions observe
abnormal responses that correspond to abnormal statisti-
cal models. Through comparing the identified statistical
models and the baseline models the WSN can estimate
the positions and severities of the damages, which boils
down to an ‘1 regularized nonnegative least squares prob-
lem in the form of (1). The baseline models as well as how
a damage influences the identified statistical models can
be simulated and pre-acquired by finite-element pro-
grams such as OpenSees [22].

We compare performance of the four decentralized
algorithms:

1) Full consensus algorithm based on ADMM (FC);
2) Partial consensus algorithm based on ADMM (PC);
3) Projected Jacobi approach;
4) Projected Jacobi approach with acceleration that is

restarted after every T ¼ 20 iterations.
Two performance metrics are used for comparison. The

first one is relative error, which is defined as the normalized
distance between the current solution to the optimal solu-
tion of (1); the second one is convergence time, which is
defined as the number of iterations when the distance
between the current solution and the optimal solution of (1)
reaches the threshold 0.001.

5.1 Convergence of the Proposed Algorithms

First we compare convergence of the four algorithms in
Fig. 2. The sensory measurements are polluted by zero-
mean Gaussian noise with standard deviation 0.1. The
parameter s2 ¼ 1, which corresponds to a nominal influ-
ence range rE0 ¼ 2:14. The influence range rE and the
communication range rC are both equal to the nominal
influence range rE0. For fair comparison, the parameters
in the four algorithms are tuned to the best. As depicted
in Fig. 2, the partial consensus algorithm converges much
faster than the full consensus algorithm, while the conver-
gence rates of the partial consensus algorithm and the
projected Jacobi approach are similar. The Nesterov accel-
eration technique further improves the projected Jacobi
approach at the cost of little extra computation burden.
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This observation indicates that reaching full consensus on
the entire optimization variable not only results in high
communication cost per iteration, but also incurs slow
convergence. Reaching partial consensus helps reduce
convergence time, while imposing no consensus con-
straint is the most advantageous. Hence properly model-
ling the problem is critical to designing communication-
efficient decentralized algorithms.

The parameter s2, which shows how the influence of an
event decays with distance, affects both the convergence
time and the communication cost per iteration of the

decentralized algorithms. Fig. 3 varies s2 such that the
nominal influence range rE0 also varies. The influence
range rE and the communication range rC are both equal
to the nominal influence range rE0. The sensory measure-
ments are polluted by zero-mean Gaussian noise with

standard deviation 0.1. When s2 becomes smaller, the
nominal influence range rE0 also becomes smaller and
both the partial consensus algorithm and the Jacobi
approach converge faster. Furthermore, the communica-
tion cost per iteration is lower because the influence range
and the communication range are also smaller. Recall that

a small s2 means that the influence of the events is local,
which appears in engineering applications such as

structural health monitoring [22]. Particularly, we observe

that if s2 is small enough such as the measurement matrix
H is diagonal dominant, the projected Jacobi approach and
the projected Jacobi approach with acceleration converges
to the optimal solution within a dozen of iterations.

5.2 The Effect of ��

The regularization parameter � affects the optimal solution
of the event detection model (1); this issue has been exten-
sively discussed in the compressive sensing literature, e.g.,
[32]. Here we numerically check the effect of � on the conver-
gence rates of the proposed algorithms. Fig. 4 shows that the
convergence rates of the partial consensus algorithm, the
projected Jacobi approach, and the projected Jacobi approach
with acceleration all become slower as � increases. Consider-
ing both estimation accuracy and convergence rate, � should
be chosen as a medium value. For this concrete example
� 2 ½20; 100� is proper for the partial consensus algorithm
and � 2 ½20; 1000� is proper for the Jacobi approach.

5.3 The Effect of rErE
The influence range rE is important to both the estimation
accuracy and the communication cost of the decentralized
algorithms. If rE is smaller than the nominal influence
range rE0, the solutions of the decentralized algorithms
are biased since the model is no longer accurate. Denote
the optimal solution of (1) as c	. Given an influence range
rE and setting the measurement coefficients hij to be 0 if
dij � rE , the optimal solution of (1) becomes cE . Fig. 5
demonstrates how the normalized distance between cE
and c	 varies with the choice of rE . Here the sensory
measurements are polluted by zero-mean Gaussian noise

with standard deviation 0.1; the parameter s2 ¼ 1 and
hence the nominal influence range rE0 ¼ 2:14, and the
communication range rC is equal to the influence range
rE that varies. When rE is close to rE0, the model mis-
match is neglectable. When rE0=rE > 1:5, the estimation
accuracy significantly decreases.

The influence range rE also affects the communication
cost of the decentralized algorithms with respect to both
convergence time and communication cost per iteration. In
Figs. 6, 7, and 8, we show convergence of the the partial

Fig. 2. Convergence of the algorithms.

Fig. 3. Convergence of the algorithms with different s2.

Fig. 4. Convergence time of the algorithms versus varying �.
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consensus algorithm, the projected Jacobi approach, and the
projected Jacobi approach with acceleration for different rE .
The sensory measurements are polluted by zero-mean
Gaussian noise with standard deviation 0.1 and the parame-

ter s2 ¼ 0:4. Convergence rate of the partial consensus algo-
rithm is highly dependent on the choice of rE since rE
determines the number of consensus constraints. The pro-
jected Jacobi approach and the projected Jacobi approach
with acceleration are insensitive to the choice of rE because
they do not impose any consensus constraints. However,
since we choose rC ¼ rE , their communication cost per iter-
ation also varies with rE .

6 CONCLUSION

This paper considers monitoring multiple events in a sens-
ing field using a large-scale WSN. Exploiting the sparse
nature of the events, the problem is formulated as ‘1 regular-
ized nonnegative least squares where the optimization vari-
able is a sparse event vector representing the locations and
magnitudes of events. Several communication-efficient algo-
rithms have been developed that are scalable to large net-
works. Motivated by the observation that an event occurring

in the sensing field usually has limited influence range, we
suggest to avoid the traditional full consensus technique
that requires each sensor to recover the entire event vector
and hence leads to high communication cost. Alternatively,
we develop two decentralized algorithms, one is the partial
consensus algorithm and another is the Jacobi approach. In
the partial consensus algorithm based on the ADMM, each
sensor is responsible of recovering those events relevant to
itself. This strategy greatly reduces the amount of informa-
tion exchanged among the sensors. The Jacobi approach
addresses the case that each sensor only cares about the
event occurring at its own position. The communication cost
per iteration is hence minimal and the convergence rate is
much faster than those based on the ADMM. Simulation
results validate the effectiveness of the proposed algorithms
and demonstrate the importance of proper modelling in
designing communication-efficient decentralized algorithms
for the event monitoring application.
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Fig. 7. Convergence of the projected Jacobi approach for different rE .

Fig. 8. Convergence of the projected Jacobi approach with acceleration
for different rE .

2206 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 8, AUGUST 2015



REFERENCES

[1] V. Cevher, M. Duarte, and R. Baraniuk, “Distributed target locali-
zation via spartial sparsity,” in Proc. Eur. Signal Process. Conf.,
2008, pp. 25–29.

[2] J. Lynch, “An overview of wireless structural health monitoring
for civil strucutres,” Philosophical Trans. Royal Soc. A, vol. 365,
pp. 345–372, 2007.

[3] A. Schmidt and J. Moura, “Distributed field reconstruction with
model-robust basis pursuit,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2012, pp. 2673–2676.

[4] J. Meng, W. Yin, H. Li, E. Hossain, and Z. Han, “Collaborative
spectrum sensing from sparse observations in cognitive radio
networks,” IEEE J. Sel. Topics Commun., vol. 29, no. 2, pp. 327–337,
Feb. 2011.

[5] A. Sundaresan, P. Varshney, and N. Rao, “Distributed detection of
a nuclear radioactive source using fusion of correlated decisions,”
in Proc. Int. Conf. Inf. Fusion, 2007, pp. 1–7.

[6] R. Huang, W. Song, M. Xu, N. Peterson, B. Shirazi, and R.
LaHusen, “Real-world sensor network for long-term volcano
monitoring: design and findings,” IEEE Trans. Parallel Distrib.
Syst., vol. 23, no. 2, pp. 321–329, Feb. 2012.

[7] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala, Q. Cao, T. He,
J. Stankovic, T. Abdelzaher, and B. Krogh, “Lightweight detection
and classification for wireless sensor networks in realistic environ-
ments,” in Proc. ACM 3rd Int. Conf. Embedded Netw. Sens. Syst.,
2005, pp. 205–217.

[8] G. Xing, J. Wang, Z. Yuan, R. Tan, L. Sun, Q. Huang, X. Jia, and H.
So, “Mobile scheduling for spatiotemporal detection in wireless
sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 12,
pp. 1851–1866, Dec. 2010.

[9] S. Pereira, R. Lopez-Valcarce, and A. Pages-Zamora, “A diffusion-
based EM algorithm for distributed estimation in unreliable sen-
sor networks,” IEEE Signal Process. Lett., vol. 20, no. 6, pp. 595–
598, Jun. 2013.

[10] J. Meng, H. Li, and Z. Han, “Sparse event detection in wireless
sensor networks using compressive sensing,” in Proc. 43rd Annu.
Conf. Inf. Sci. Syst., 2009, pp. 181–185.

[11] W. Najy, H. Zeineldin, A. Alaboudy, and W. Woon, “A Bayesian
passive islanding detection method for inverter-based distributed
generation using ESPRIT,” IEEE Trans. Power Delivery, vol. 26,
no. 4, pp. 2687–2696, Oct. 2011.

[12] M. Rabbat and R. Nowak, “Distributed optimization in sensor
networks,” in Proc. ACM/IEEE Int. Conf. Inf. Process. Sen. Netw.,
2004, pp. 20–27.

[13] M. Cetin, L. Chen, J. Fisher III, A. Ihler, R. Moss, M. Wainwright,
and A. Willsky, “Distributed fusion in sensor networks,” IEEE
Signal Process. Mag., vol. 23, no. 4, pp. 42–55, Jul. 2006.

[14] J. Predd, S. Kulkarni, and H. Poor, “A collaborative training algo-
rithm for distributed learning,” IEEE Trans. Inf. Theory, vol. 55,
no. 4, pp. 1856–1871, Apr. 2009.

[15] Q. Ling, and Z. Tian, “Decentralized sparse signal recovery for
compressive sleeping wireless sensor networks,” IEEE Trans.
Signal Process., vol. 58, no. 7, pp. 3816–3827, Jul. 2010.

[16] J. Bazerque, and G. Giannakis, “Distributed spectrum sensing for
cognitive radio networks by exploiting sparsity,” IEEE Trans.
Signal Proces., vol. 58, no. 3, pp. 1847–1862, Mar. 2010.

[17] G. Mateos, J. Bazerque, and G. Giannakis, “Distributed sparse lin-
ear regression,” IEEE Trans. Signal Process., vol. 58, no. 10,
pp. 5262–5276, Oct. 2010.

[18] Q. Ling, Z. Wen, andW. Yin, “Decentralized jointly sparse optimi-
zation by reweighted ‘q minimization,” IEEE Trans. Signal Proces.,
vol. 61, no. 5, pp. 1165–1170, Mar. 2013.

[19] D. Bertsekas, and J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods, 2nd ed. Belmont, MA, USA: Athena Scientific,
1997.

[20] A. Nedic, and A. Ozdaglar, “Distributed subgradient methods for
multi-agent optimization,” IEEE Trans. Autom. Control, vol. 54,
no. 1, pp. 48–61, Jan. 2009.

[21] J. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network
scaling,” IEEE Trans. Autom. Control, vol. 57, no. 3, pp. 592–606,
Mar. 2012.

[22] Q. Ling, Z. Tian, Y. Yin, and Y. Li, “Localized structural health
monitoring using energy-efficient wireless sensor networks,”
IEEE Sen. J., vol. 9, no. 11, pp. 1596–1604, Nov. 2009.

[23] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by
basis pursuit,” SIAM J. Sci. Comput., vol. 20, pp. 33–61, 1998.

[24] R. Tibshirani, “Regression shrinkage and selection via the Lasso,”
J. Royal Statist. Soc. B, vol. 58, pp. 267–288, 1996.

[25] G. Koc, and K. Yegin, “Footstep and vehicle detection using seis-
mic sensors in wireless sensor network: Field tests,” Int. J. Distrib.
Sen. Netw., vol. 2013, pp. 1–8, 2013.

[26] D. Lindgren, O. Wilsson, F. Gustafsson, and H. Habberstad,
“Shooter localization in wireless sensor networks,” in Proc. Int.
Conf. Inf. Fusion, 2009, pp. 404–411.

[27] A. Oka and L. Lampe, “Distributed target tracking using signal
strength measurements by a wireless sensor network,“ IEEE J. Sel.
Areas Commun., vol. 28, no. 7, pp. 1006–1015, Sep. 2010.

[28] J. Mota, J. Xavier, P. Aguiar, and M. Puschel, “Distributed ADMM
for model predictive control and congestion control,” in Proc. 51st
IEEE Annu. Conf. Decision Control, 2012, pp. 5110–5115.

[29] Y. Nesterov, “Gradient methods for minimizing composite
functions,”Math. Programming, vol. 140, no. 1, pp. 125–161, 2013.

[30] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. Norwell, MA, USA: Kluwer, 2004.

[31] B. O’Donoghue, and E. Candes, “Adaptive restart for accelerated
gradient schemes,” Found. Comput. Math., pp. 1–18, 2012.

[32] M. Kolar, L. Song, A. Ahmed, and E. Xing, “Estimating time-vary-
ing networks,” The Ann. Appl. Statist., vol. 4, pp. 94–123, 2010.

Kun Yuan received the BE degree in telecommu-
nication engineering from Xidian University in
2011. He is currently working toward the MS
degree in control theory and control engineering
at the Department of Automation, University of
Science and Technology of China. His current
research focuses on decentralized optimization
of networked multi-agent systems.

Qing Ling received the BE degree in automation
and the PhD degree in control theory and control
engineering from the University of Science and
Technology of China in 2001 and 2006, respec-
tively. From 2006 to 2009, he was a postdoctoral
research fellow with the Department of Electrical
and Computer Engineering, Michigan Technolog-
ical University. Since September 2009, he has
been an associate professor with the Department
of Automation, University of Science and Tech-
nology of China. His current research focuses on

decentralized optimization of networked multi-agent systems.

Zhi Tian received the BE degree in automation
from the University of Science and Technology of
China in 1994, the MS and PhD degrees in elec-
trical engineering from George Mason University
in 1998 and 2000, respectively. Since August
2000, she has been with the Department of Elec-
trical and Computer Engineering, Michigan Tech-
nological University, where she is currently a
professor. Her research interests are in the areas
of signal processing for wireless communica-
tions, estimation and detection theory. She

served as an associate editors for IEEE Transactions on Wireless Com-
munications and IEEE Transactions on Signal Processing. She received
a CAREER award in 2003 from the US National Science Foundation.
She is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YUAN ET AL.: COMMUNICATION-EFFICIENT DECENTRALIZED EVENT MONITORING IN WIRELESS SENSOR NETWORKS 2207



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


