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Abstract—Network resource allocation shows revived
popularity in the era of data deluge and information explo-
sion. Existing stochastic optimization approaches fall short
in attaining a desirable cost-delay tradeoff. Recognizing the
central role of Lagrange multipliers in a network resource
allocation, a novel learn-and-adapt stochastic dual gradi-
ent (LA-SDG) method is developed in this paper to learn
the sample-optimal Lagrange multiplier from historical data,
and accordingly adapt the upcoming resource allocation
strategy. Remarkably, an LA-SDG method only requires just
an extra sample (gradient) evaluation relative to the cel-
ebrated stochastic dual gradient method. LA-SDG can be
interpreted as a foresighted learning scheme with an eye
on the future, or, a modified heavy-ball iteration from an
optimization viewpoint. It has been established—both the-
oretically and empirically—that LA-SDG markedly improves
the cost-delay tradeoff over state-of-the-art allocation
schemes.

Index Terms—First-order method, network resource allo-
cation, statistical learning, stochastic approximation.

I. INTRODUCTION

IN THE era of big data analytics, cloud computing and Inter-
net of Things, the growing demand for massive data process-

ing challenges existing resource allocation approaches. Huge
volumes of data acquired by distributed sensors in the presence
of operational uncertainties caused by, for example, renewable
energy, call for scalable and adaptive network control schemes.
Scalability of a desired approach refers to low complexity and
amenability to distributed implementation, while adaptivity im-
plies the capability of online adjustment to dynamic environ-
ments.

Allocation of network resources can be traced back to the
seminal work of [1]. Since then, popular allocation algorithms
operating in the dual domain are first-order methods based on
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dual gradient ascent, either deterministic [2] or stochastic [3],
[4]. Thanks to their simple computation and implementation,
these approaches have attracted a great deal of recent inter-
est, and have been successfully applied to cloud, transportation,
and power grid networks, for example, [5]–[8]. However, their
major limitation is slow convergence, which results in high net-
work delay. Depending on the application domain, the delay
can be viewed as workload queuing time in a cloud network,
traffic congestion in a transportation network, or energy level
of batteries in a power network. To address this delay issue,
recent attempts aim at accelerating first- and second-order op-
timization algorithms [9]–[12]. Specifically, momentum-based
accelerations over first-order methods were investigated using
Nesterov [9] or heavy-ball iterations [10]. Though these ap-
proaches work well in static settings, their performance degrades
with online scheduling, as evidenced by the increase in accumu-
lated steady-state error [13]. On the other hand, second-order
methods such as the decentralized quasi-Newton approach and
its dynamic variant developed in [11] and [12], incur high over-
head to compute and communicate the decentralized Hessian
approximations.

Capturing prices of resources, Lagrange multipliers play a
central role in stochastic resource allocation algorithms [14].
Given abundant historical data in an online optimization set-
ting, a natural question arises: Is it possible to learn the optimal
prices from past data, so as to improve the performance of on-
line resource allocation strategies? The rationale here is that
past data contain statistics of network states, and learning from
them can aid coping with the stochasticity of future resource
allocation. A recent work in this direction is [15], which consid-
ers resource allocation with a finite number of possible network
states and allocation actions. The learning procedure, however,
involves constructing a histogram to estimate the underlying
distribution of the network states, and explicitly solves an em-
pirical dual problem. While constructing a histogram is feasible
for a probability distribution with finite support, quantization
errors and prohibitively high complexity are inevitable for a
continuous distribution with infinite support.

In this context, this paper aims to design a novel online re-
source allocation algorithm that leverages online learning from
historical data for stochastic optimization of the ensuing allo-
cation stage. The resulting approach, which we call “learn-and-
adapt” stochastic dual gradient (LA-SDG) method, only doubles
computational complexity of the classic stochastic dual gradi-
ent (SDG) method. With this minimal cost, LA-SDG mitigates
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steady-state oscillation, which is common in stochastic first-
order acceleration methods [10], [13], while avoiding computa-
tion of the Hessian approximations present in the second-order
methods [11], [12]. Specifically, LA-SDG only requires one
more past sample to compute an extra SDG, in contrast to con-
structing costly histograms and solving the resulting large-scale
problem [15].

The main contributions of this paper are summarized as
follows.

1) Targeting a low-complexity online solution, LA-SDG
only takes an additional dual gradient step relative to
the classic SDG iteration. This step enables adapting the
resource allocation strategy through learning from histor-
ical data. Meanwhile, LA-SDG is linked with the stochas-
tic heavy-ball method, nicely inheriting its fast conver-
gence in the initial stage, while reducing its steady-state
oscillation.

2) The novel LA-SDG approach, parameterized by a posi-
tive constant μ, provably yields an attractive cost-delay
tradeoff [μ, log2(μ)/

√
μ], which improves upon the stan-

dard tradeoff [μ, 1/μ] of the SDG method [4]. Numerical
tests further corroborate the performance gain of LA-
SDG over existing resource allocation schemes.

Notation: E denotes the expectation operator, P stands for
probability, (·)� stands for vector and matrix transposition, and
‖x‖ denotes the �2-norm of a vector x. Inequalities for vectors,
for example, x > 0, are defined entry-wise. The positive projec-
tion operator is defined as [a]+ := max{a, 0}, also entry-wise.

II. NETWORK RESOURCE ALLOCATION

In this section, we start with a generic network model and
its resource allocation task in Section II-A, and then introduce
a specific example of resource allocation in cloud networks in
Section II-B. The proposed approach is applicable to more gen-
eral network resource allocation tasks such as geographical load
balancing in cloud networks [5], traffic control in transportation
networks [7], and energy management in power networks [8].

A. Unified Resource Allocation Model

Consider discrete time t ∈ N, and a network represented as
a directed graph G = (I, E) with nodes I := {1, . . . , I} and
edges E := {1, . . . , E}. Collect the workloads across edges e =
(i, j) ∈ E in a resource allocation vector xt ∈ RE . The I × E
node-incidence matrix is formed with the (i, e)th entry

A(i,e) =

⎧
⎨

⎩

1, if link e enters node i
−1, if link e leaves node i

0, else.
(1)

We assume that each row of A has at least one −1 entry, and
each column of A has, at most, one −1 entry, meaning that
each node has at least one outgoing link, and each link has, at
most, one source node. With ct ∈ RI

+ collecting the randomly
arriving workloads of all nodes per slot t, the aggregate (endoge-
nous plus exogenous) workloads of all nodes are Axt + ct . If
the ith entry of Axt + ct is positive, there is service resid-
ual queued at node i; otherwise, node i overserves the current

arrival. With a workload queue per node, the queue length vector
qt := [q1

t , . . . , qI
t ]� ∈ RI

+ obeys the recursion

qt+1 = [qt + Axt + ct ]
+ ∀t (2)

where qt can represent the amount of user requests buffered
in data queues, or energy stored in batteries, and ct is the cor-
responding exogenously arriving workloads or harvested re-
newable energy of all nodes per slot t. Defining Ψt(xt) :=
Ψ(xt ;φt) as the aggregate network cost parameterized by the
random vector φt , the local cost per node i is Ψi

t(xt) :=
Ψi(xt ;φi

t), and Ψt(xt) =
∑

i∈I Ψi
t(xt). The model here is

quite general. The duration of time slots can vary from (micro-)
seconds in cloud networks, minutes in road networks, to even
hours in power networks; the nodes can present the distributed
front-end mapping nodes and back-end data centers in cloud
networks, intersections in traffic networks, or buses and substa-
tions in power networks; the links can model wireless/wireline
channels, traffic lanes, and power transmission lines, while the
resource vector xt can include the size of data workloads, the
number of vehicles, or the amount of energy.

Concatenating the random parameters into a random state
vector st := [φ�

t , c�t ]�, the resource allocation task is to deter-
mine the allocation xt in response to the observed (realization)
st “on the fly,” so as to minimize the long-term average net-
work cost subject to queue stability at each node, and operation
feasibility at each link. Concretely, we have

Ψ∗ := min
{xt ,∀t}

lim
T →∞

1
T

T∑

t=1

E [Ψt(xt)] (3a)

s.t. qt+1 = [qt + Axt + ct ]
+ ∀t (3b)

lim
T →∞

1
T

T∑

t=1

E [qt ] < ∞ (3c)

xt ∈ X := {x |0 ≤ x ≤ x̄} ∀t (3d)

where Ψ∗ is the optimal objective of problem (3), which includes
also future information; E is taken over as st := [φ�

t , c�t ]� as
well as possible randomness of optimization variable xt ; con-
straints (3c) ensure queue stability;1 and (3d) confines the in-
stantaneous allocation variables to stay within a time-invariant
box constraint set X , which is specified by, for example, link
capacities or server/generator capacities.

The queue dynamics in (3b) couple the optimization variables
over an infinite time horizon, which implies that the decision
variable at the current slot will have an effect on all future
decisions. Therefore, finding an optimal solution of (3) calls for
dynamic programming [16], which is known to suffer from the
“curse of dimensionality” and intractability in an online setting.
In Section III-A, we will circumvent this obstacle by relaxing
(3b)–(3c) to limiting average constraints, and employing dual
decomposition techniques.

1Here, we focus on the strong stability given by [4, Def. 2.7], which requires
the time-average expected queue length to be finite.
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Fig. 1. Diagram of online geographical load balancing. Per time t, map-
ping node j has an exogenous workload cj

t plus that stored in the queue

qj
t , and schedules workload xjk

t to data center k. Data center k serves

an amount of workload xk 0
t out of all the assigned xjk

t as well as that
stored in the queue qk

t . The thickness of each edge is proportional to its
capacity.

B. Motivating Setup

The geographic load balancing task in a cloud network [5],
[17], [18] takes the form of (3) with J mapping nodes (e.g.,
DNS servers) indexed by J := {1, . . . , J}, K data centers
indexed by K := {J + 1, . . . , J + K}. To match the defini-
tion in Section II-A, consider a virtual outgoing node (in-
dexed by 0) from each data center, and let (k, 0) represent
this outgoing link. Define further the node set I := J ⋃K
that includes all nodes except the virtual one, and the edge set
E := {(j, k),∀j ∈ J , k ∈ K}⋃{(k, 0),∀k ∈ K} that contains
links connecting mapping nodes with data centers, and outgoing
links from data centers.

Per slot t, each mapping node j collects the amount of user
data requests cj

t , and forwards the amount xjk
t on its link to data

center k constrained by the bandwidth availability. Each data
center k schedules workload processing xk0

t according to its
resource availability. The amount xk0

t can be also viewed as the
resource on its virtual outgoing link (k, 0). The bandwidth limit
of link (j, k) is x̄jk , while the resource limit of data center k
(or link (k, 0)) is x̄k0

t . Similar to those in Section II-A, we have
the optimization vector xt := {xij

t , ∀(i, j) ∈ E} ∈ R|E|, ct :=
[c1

t , . . . , c
J
t , 0 . . . , 0]� ∈ RJ +K , and x̄ := {x̄ij

t , ∀(i, j) ∈ E} ∈
R|E|. With these notational conventions, we have an |I| × |E|
node-incidence matrix A as in (1). At each mapping node and
data center, undistributed or unprocessed workloads are buffered
in queues obeying (3b) with queue length qt ∈ RJ +K

+ ; see also
the system diagram in Fig. 1.

Performance is characterized by the aggregate cost of power
consumed at the data centers plus the bandwidth costs at the
mapping nodes, namely

Ψt(xt) :=
∑

k∈K
Ψk

t (xk0
t )

︸ ︷︷ ︸
power cost

+
∑

j∈J

∑

k∈K
Ψjk

t (xjk
t )

︸ ︷︷ ︸
bandwidth cost

. (4)

The power cost Ψk
t (xk0

t ) := Ψk (xk0
t ;φk

t ), parameterized by the
random vector φk

t , captures the local marginal price, and
the renewable generation at data center k during time pe-
riod t. The bandwidth cost Ψjk

t (xjk
t ) := Ψjk (xjk

t ;φjk
t ), pa-

rameterized by the random vector φjk
t , characterizes the

heterogeneous cost of data transmission due to spatiotempo-
ral differences. To match the unified model in Section II-A, the
local cost at data center k ∈ K is its power cost Ψk

t (xk0
t ), and

the local cost at mapping node j ∈ J becomes Ψj
t ({xjk

t }) :=
∑

k∈K Ψjk
t (xjk

t ). Hence, the cost in (4) can be also written as
Ψt(xt) :=

∑
i∈I Ψi

t(xt). Aiming to minimize the time-average
of (4), geographical load balancing fits the formulation in (3).

III. ONLINE NETWORK MANAGEMENT VIA SDG

In this section, the dynamic problem (3) is reformulated to
a tractable form, and the classical SDG approach is revisited,
along with a brief discussion of its online performance.

A. Problem Reformulation

Recall in Section II-A that the main challenge of solving (3)
resides in time-coupling constraints and unknown distribution
of the underlying random processes. Regarding the first hurdle,
combining (3b) with (3c), it can be shown that in the long term,
workload arrival and departure rates must satisfy the following
necessary condition [4, Theor. 2.8]:

lim
T →∞

1
T

T∑

t=1

E [Axt + ct ] ≤ 0 (5)

given that the initial queue length is finite, that is, ‖q1‖ ≤ ∞. In
other words, on average, all buffered delay-tolerant workloads
should be served. Using (5), a relaxed version of (3) is

Ψ̃∗ := min
{xt ,∀t}

lim
T →∞

1
T

T∑

t=1

E [Ψt(xt)] s.t. (3d) and (5) (6)

where Ψ̃∗ is the optimal objective for the relaxed problem (6).
Compared to (3), problem (6) eliminates the time coupling

across variables {qt ,∀t} by replacing (3b) and (3c) with (5).
Since (6) is a relaxed version of (3) with the optimal objective
Ψ̃∗ ≤ Ψ∗, if one solves (6) instead of (3), it will be prudent to
derive an optimality bound on Ψ∗, provided that the sequence
of solutions {xt ,∀t} obtained by solving (6) is feasible for the
relaxed constraints (3b) and (3c). Regarding the relaxed problem
(6), using arguments similar to those in [4, Th. 4.5], it can be
shown that if the random state st is independent and identically
distributed (i.i.d.) over time t, there exists a stationary control
policy χ∗(·), which is a pure (possibly randomized) function of
the realization of random state st (or the observed state st), that
is, it satisfies (3d) and guarantees that E[Ψt(χ∗(st))] = Ψ̃∗ and
E[Aχ∗(st) + ct ] ≤ 0. Since the optimal policy χ∗(·) is time
invariant, it implies that the dynamic problem (6) is equivalent
to the following time-invariant ensemble program:

Ψ̃∗ := min
χ(·)

E
[
Ψ

(
χ(st); st

)]
(7a)

s.t. E[Aχ(st) + c(st)] ≤ 0 (7b)

χ(st) ∈ X ∀st ∈ S (7c)

where χ(st) := xt , c(st) = ct , and Ψ
(
χ(st); st

)
:= Ψt(xt);

set S is the sample space of st , and the constraint (7c) holds
almost surely. Observe that the index t in (7) can be dropped,
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since the expectation is taken over the distribution of random
variable st , which is time-invariant. Leveraging the equivalent
form (7), the remaining task boils down to finding the optimal
policy that achieves the minimal objective in (7a) and obeys
the constraints (7b) and (7c).2 Note that the optimization in (7)
is with respect to a stationary policy χ(·), which is an infinite
dimensional problem in the primal domain. However, there is a
finite number of expected constraints [cf., (7b)]. Thus, the dual
problem contains a finite number of variables, hinting at the
effect that solving (7) is tractable in the dual domain [19], [20].

B. Lagrange Dual and Optimal Policy

With λ ∈ RI
+ denoting the Lagrange multipliers associated

with (7b), the Lagrangian of (7) is

L(χ,λ) := E
[Lt(xt ,λ)

]
(8)

with λ ≥ 0, and the instantaneous Lagrangian is

Lt(xt ,λ) := Ψt(xt) + λ�(Axt + ct) (9)

where constraint (7c) remains implicit. Notice that the in-
stantaneous objective Ψt(xt) and the instantaneous constraint
Axt + ct are both parameterized by the observed state st :=
[φ�

t , c�t ]� at time t, that is, Lt(xt ,λ) = L(χ(st),λ; st).
Correspondingly, the Lagrange dual function is defined as the

minimum of the Lagrangian over all feasible primal variables
[21], given by

D(λ) := min
{χ(st )∈X , ∀st ∈S}

L(χ,λ)

= min
{χ(st )∈X , ∀st ∈S}

E
[L(χ(st),λ; st)

]
. (10a)

Note that the optimization in (10a) is still in regards to a function.
To facilitate the optimization, we rewrite (10a), relying on the
so-termed interchangeability principle [22, Theor. 7.80].

Lemma 1: Let ξ denote a random variable on Ξ, and H :=
{h( · ) : Ξ → Rn} denote the function space of all functions on
Ξ. For any ξ ∈ Ξ, if f( · , ξ) : Rn → R is a proper and lower
semicontinuous convex function, then it follows that:

min
h(·)∈H

E
[
f(h(ξ), ξ)

]
= E

[

min
h∈Rn

f(h, ξ)
]

. (10b)

Lemma 1 implies that, under mild conditions, we can replace
the optimization over a function space with (infinitely many)
point-wise optimization problems. In the context here, we as-
sume that Ψt(xt) is proper, lower semicontinuous, and strongly
convex (cf., Assumption 2 in Section V). Thus, for given finite
λ and st , L( · ,λ; st) is also strongly convex, proper, and lower
semicontinuous. Therefore, applying Lemma 1 yields

min
{χ(·):S→X}

E
[L(χ(st),λ; st)

]
= E

[

min
χ(st )∈X

L(χ(st),λ; st)
]

(10c)

2Though there may exist other time-dependent policies that generate the
optimal solution to (6), our attention is restricted to the one that purely depends
on the observed state s ∈ S, which can be time-independent [4, Theor. 4.5].

where the minimization and the expectation are interchanged.
Accordingly, we rewrite (10a) in the following form:

D(λ) = E

[

min
χ(st )∈X

L(χ(st),λ; st)
]

= E

[

min
xt ∈X

Lt(xt ,λ)
]

.

(10d)

Likewise, for the instantaneous dual function Dt(λ) =
D(λ; st) := minxt ∈X Lt(xt ,λ), the dual problem of (7) is

max
λ≥0

D(λ) := E [Dt(λ)] . (11)

In accordance with the ensemble primal problem (7), we will
henceforth refer to (11) as the ensemble dual problem.

If the optimal Lagrange multiplier λ∗ associated with (7b)
was known, then optimizing (7) and consequently (6) would be
equivalent to minimizing the Lagrangian L(χ,λ∗) or infinitely
many instantaneous {Lt(xt ,λ

∗)}, over the set X [16]. We re-
state this assertion as follows.

Proposition 1: Consider the optimization problem in (7).
Given a realization st , and the optimal Lagrange multiplier λ∗

associated with the constraints (7b), the optimal instantaneous
resource allocation decision is

x∗
t = χ∗(st) ∈ arg min

χ(st )∈X
L(xt ,λ

∗; st) (12)

where ∈ accounts for possibly multiple minimizers of Lt .
When the realizations {st} are obtained sequentially, one can

generate a sequence of optimal solutions {x∗
t} correspondingly

for the dynamic problem (6). To obtain the optimal allocation in
(12), however, λ∗ must be known. This fact motivates our novel
LA-SDG method in Section IV. To this end, we will first outline
the celebrated SDG iteration (a.k.a. Lyapunov optimization).

C. Revisiting Stochastic Dual (Sub)Gradient

To solve (11), a standard gradient iteration involves sequen-
tially taking expectations over the distribution of st to compute
the gradient. Note that when the Lagrangian minimization (cf.,
(12)) admits possibly multiple minimizers, a subgradient itera-
tion is employed instead of the gradient one [21]. This is chal-
lenging because the distribution of st is typically unknown in
practice. But even if the joint probability distribution functions
were available, finding the expectations is not scalable as the
dimensionality of st grows.

A common remedy to this challenge is stochastic approxima-
tion [4], [23], which corresponds to the following SDG iteration:

λt+1 =
[
λt + μ∇Dt(λt)

]+ ∀t (13a)

where μ is a positive (and typically preselected constant)
stepsize. The stochastic (sub)gradient ∇Dt(λt) = Axt + ct

is an unbiased estimate of the true (sub)gradient; that is,
E[∇Dt(λt)] = ∇D(λt). Hence, the primal xt can be found by
solving the following instantaneous subproblems, one per t

xt ∈ arg min
xt ∈X

Lt(xt ,λt). (13b)

The iterate λt+1 in (13a) depends only on the probability
distribution of st through the stochastic (sub)gradient ∇Dt(λt).
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Consequently, the process {λt} is Markov with invariant tran-
sition probability when st is stationary. An interesting observa-
tion is that since ∇Dt(λt) := Axt + ct , the dual iteration can
be written as [cf., (13a)]

λt+1/μ = [λt/μ + Axt + ct ]
+ ∀t (14)

which coincides with (3b) for λt/μ = qt ; see also [4], [14], and
[17] for a virtual queue interpretation of this parallelism.

Thanks to its low complexity and robustness to nonstationary
scenarios, SDG is widely used in various areas, including adap-
tive signal processing [24]; stochastic network optimization [4],
[14], [15]; and energy management in power grids [8], [17].
For network management, in particular, this iteration entails a
cost-delay tradeoff as summarized next; see for example [4].

Proposition 2: If Ψ∗ is the optimal cost in (3) under any
feasible control policy with the state distribution available, and
if a constant stepsize μ is used in (13a), the SDG recursion (13)
achieves an O(μ)-optimal solution in the sense that

lim
T →∞

1
T

T∑

t=1

E [Ψt (xt(λt))] ≤ Ψ∗ + O(μ) (8a)

where xt(λt) denotes the decisions obtained from (13b), and it
incurs a steady-state queue length O(1/μ), namely

lim
T →∞

1
T

T∑

t=1

E [qt ] = O
(

1
μ

)

. (15b)

Proposition 2 asserts that SDG with stepsize μ will asymptot-
ically yield an O(μ)-optimal solution [21, Prop. 8.2.11], and it
will have a steady-state queue length q∞ inversely proportional
to μ. This optimality gap is standard, because iteration (13a)
with a constant stepsize3 will converge to a neighborhood of the
optimum λ∗ [24]. Under mild conditions, the optimal multiplier
is bounded, that is, λ∗ = O(1), so that the steady-state queue
length q∞ naturally scales with O(1/μ) since it hovers around
λ∗/μ; see (14). As a consequence, to achieve near optimality
(sufficiently small μ), SDG incurs large average queue lengths
and, thus, undesired average delay as per Little’s law [4]. To
overcome this limitation, we develop next an online approach,
which can improve SDG’s cost-delay tradeoff, while still pre-
serving its affordable complexity and adaptability.

IV. LEARN-AND-ADAPT SDG

Our main approach is derived in this section, by nicely lever-
aging both learning and optimization tools. Its decentralized
implementation is also developed.

A. LA-SDG as a Foresighted Learning Scheme

The intuition behind our LA-SDG approach is to incremen-
tally learn network state statistics from the observed data while
adapting resource allocation driven by the learning process. A
key element of LA-SDG could be called “foresighted” learn-
ing because instead of myopically learning the exact optimal

3A vanishing stepsize in the stochastic approximation iterations can ensure
convergence, but necessarily implies an unbounded queue length as μ → 0 [4].

Algorithm 1: LA-SDG for Stochastic Network Optimiza-
tion.

1: Initialize: dual iterate λ1 , empirical dual iterate λ̂1 ,
queue length q1 , control variable θ =

√
μ log2(μ) · 1,

and proper stepsizes μ and {ηt , ∀t}.
2: for t = 1, 2 . . . do
3: Resource allocation (1st gradient):
4: Construct the effective dual variable via (17b),

observe the current state st , and obtain resource
allocation xt(γt) by minimizing online Lagrangian
(17a).

5: Update the instantaneous queue length qt+1 via

qt+1 =
[
qt +

(
Axt(γt) + ct

)]+
, ∀t. (16)

6: Sample recourse (2nd gradient):
7: Obtain variable xt(λ̂t) by solving online Lagrangian

minimization with sample st via (18b).
8: Update the empirical dual variable λ̂t+1 via (18a).
9: end for

argument from empirical data, LA-SDG maintains the capabil-
ity to hedge against the risk of “future non-stationarities.”

The proposed LA-SDG is summarized in Algorithm 1. It in-
volves the queue length qt and an empirical dual variable λ̂t ,
along with a bias-control variable θ to ensure that LA-SDG
will attain near optimality in the steady state [cf., Theorems 2
and 3]. At each time slot t, LA-SDG obtains two stochastic
gradients using the current st : one for online resource alloca-
tion, and another one for sample learning/recourse. For the first
gradient (lines 3–5), contrary to SDG that relies on the stochas-
tic multiplier estimate λt [cf., (13b)], LA-SDG minimizes the
instantaneous Lagrangian

xt(γt) ∈ arg min
xt ∈X

Lt(xt ,γt) (17a)

which depends on what we term effective multiplier, given by

γt
︸ ︷︷ ︸

effective multiplier

= λ̂t︸ ︷︷ ︸
statistical learning

+ μqt − θ
︸ ︷︷ ︸

online adaptation

∀t.

(17b)
Variable γt also captures the effective price, which is a linear

combination of the empirical λ̂t and the queue length qt , where
the control variable μ tunes the weights of these two factors,
and θ controls the bias of γt in the steady state [15]. As a
single pass of SDG “wastes” valuable online samples, LA-SDG
resolves this limitation in a learning step by evaluating a second
gradient (lines 6–8); that is, LA-SDG simply finds the stochastic
gradient of (11) at the previous empirical dual variable λ̂t , and
implements a gradient ascent update as

λ̂t+1 =
[
λ̂t + ηt

(
Axt(λ̂t) + ct

)]+ ∀t (18a)

where ηt is a proper diminishing stepsize, and the “virtual”
allocation xt(λ̂t) can be found by solving

xt(λ̂t) ∈ arg min
xt ∈X

Lt(xt , λ̂t). (18b)
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Note that different from xt(γt) in (17a), the “virtual” alloca-
tion xt(λ̂t) will not be physically implemented. The multiplica-
tive constant μ in (17b) controls the degree of adaptability, and
allows for adaptation even in the steady state (t → ∞), but the
vanishing ηt is for learning, as we shall discuss next.

The key idea of LA-SDG is to empower adaptive resource al-
location (via γt) with the learning process (effected through λ̂t).
As a result, the construction of γt relies on λ̂t , but not vice versa.
For a better illustration of the effective price (17b), we call λ̂t the
statistically learnt price to obtain the exact optimal argument of
the expected problem (11). We also call μqt (which is exactly
λt as shown in (13a)) the online adaptation term since it can
track the instantaneous change of system statistics. Intuitively, a
large μ will allow the effective policy to quickly respond to in-
stantaneous variations so that the policy gains improved control
of queue lengths, while a small μ puts more weight on learning
from historical samples so that the allocation strategy will incur
less variance in the steady state. In this sense, LA-SDG can
attain both statistical efficiency and adaptability.

Distinctly different from SDG that combines statistical learn-
ing with resource allocation into a single adaptation step [cf.,
(13a)], LA-SDG performs these two tasks into two intertwined
steps: resource allocation (17), and statistical learning (18). The
additional learning step adopts a diminishing stepsize to find
the “best empirical” dual variable from all observed network
states. This pair of complementary gradient steps endows LA-
SDG with its attractive properties. In its transient stage, the extra
gradient evaluations and empirical dual variables accelerate the
convergence speed of SDG; while in the steady stage, the empir-
ical multiplier approaches the optimal one, which significantly
reduces the steady-state queue lengths.

Remark 1: Readers familiar with algorithms on statistical
learning and stochastic network optimization can recognize their
similarities and differences with LA-SDG.

(P1) SDG in [4] involves only the first part of LA-SDG (1st
gradient), where the allocation policy purely relies on stochas-
tic estimates of Lagrange multipliers or instantaneous queue
lengths, that is, γt = μqt . In contrast, LA-SDG further lever-
ages statistical learning from streaming data.

(P2) Several schemes have been developed recently for sta-
tistical learning at a scale to find λ̂t , namely, SAG in [25] and
SAGA in [26]. However, directly applying γt = λ̂t to allocate
resources causes infeasibility. For a finite time t, λ̂t is δ-optimal4

for (11), and the primal variablext(λ̂t), in turn, is δ-feasible with
respect to (7b) that is necessary for (3c). Since qt essentially
accumulates online constraint violations of (7b), it will grow
linearly with t and eventually become unbounded.

B. LA-SDG as a Modified Heavy-Ball Iteration

The heavy-ball iteration belongs to the family of momentum-
based first-order methods, and has well-documented acceler-
ation merits in the deterministic setting [27]. Motivated by its
convergence speed in solving deterministic problems, stochastic
heavy-ball methods have been also pursued recently [10], [13].

4Iterate λ̂t is δ-optimal if ‖λ̂t − λ∗‖ ≤ O(δ), and likewise for δ-feasibility.

The stochastic version of the heavy-ball iteration is [13]

λt+1 = λt + μ∇Dt(λt) + β(λt − λt−1) ∀t (19)

where μ > 0 is an appropriate constant stepsize, β ∈ [0, 1) de-
notes the momentum factor, and the stochastic gradient∇Dt(λt)
can be found by solving (13b) using heavy-ball iterate λt . This
iteration exhibits an attractive convergence rate during the ini-
tial stage, but its performance degrades in the steady state. Re-
cently, the performance of momentum iterations (heavy-ball or
Nesterov) with constant stepsize μ and momentum factor β, has
been proved equivalent to SDG with constant μ/(1 − β) per
iteration [13]. Since SDG with a large stepsize converges fast
at the price of considerable loss in optimality, the momentum
methods naturally inherit these attributes.

To see the influence of the momentum term, consider expand-
ing the iteration (19) as

λt+1 = λt + μ∇Dt(λt) + β(λt − λt−1)

= λt + μ∇Dt(λt) + β [μ∇Dt−1(λt−1)

+β(λt−1 − λt−2)]

= λt + μ
∑t

τ =1 βt−τ ∇Dτ (λτ )
︸ ︷︷ ︸

accumulated gradient

+βt(λ1 − λ0)
︸ ︷︷ ︸

initial state

. (20)

The stochastic heavy-ball method will accelerate convergence in
the initial stage thanks to the accumulated gradients, and it will
gradually forget the initial state. As t increases, however, the
algorithm also incurs a worst-case oscillation O(μ/(1 − β)),
which degrades performance in terms of objective values when
compared to SDG with stepsize μ. This is in agreement with the
theoretical analysis in [13, Theor. 11].

Different from standard momentum methods, LA-SDG nicely
inherits the fast convergence in the initial stage, while reducing
the oscillation of stochastic momentum methods in the steady
state. To see this, consider two consecutive iterations (17b)

γt+1 = λ̂t+1 + μqt+1 − θ (21a)

γt = λ̂t + μqt − θ (21b)

and subtract them, to arrive at

γt+1 = γt + μ (qt+1 − qt) + (λ̂t+1 − λ̂t)

= γt + μ∇Dt(γt) + (λ̂t+1 − λ̂t) ∀t. (22)

Here, the equalities in (22) follow from∇Dt(γt) = Axt(γt) +
ct in qt recursion (16), and with a sufficiently large θ, the
projection in (16) rarely (with sufficiently low probability) takes
effect since the steady-state qt will hover around θ/μ; see the
details of Theorem 2 and the proof thereof.

Comparing the LA-SDG iteration (22) with the stochastic
heavy-ball iteration (19), both of them correct the iterates using
the stochastic gradient ∇Dt(γt) or ∇Dt(λt). However, LA-
SDG incorporates the variation of a learning sequence (also
known as a reference sequence) {λ̂t} into the recursion of the
main iterate γt , other than the heavy-ball’s momentum term
β(λt − λt−1). Since the variation of learning iterate λ̂t even-
tually diminishes as t increases, keeping the learning sequence
enables LA-SDG to enjoy accelerated convergence in the initial
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(transient) stage compared to SDG, while avoiding large oscil-
lation in the steady state compared to the stochastic heavy-ball
method. We formally remark on this observation next.

Remark 2: LA-SDG offers a fresh approach to designing
stochastic optimization algorithms in a dynamic environment.
While directly applying the momentum-based iteration to a
stochastic setting may lead to unsatisfactory steady-state perfor-
mance, it is promising to carefully design a reference sequence
that exactly converges to the optimal argument. Therefore, al-
gorithms with improved convergence (e.g., the second-order
method in [12]) can also be incorporated as a reference sequence
to further enhance the performance of LA-SDG.

C. Complexity and Distributed Implementation of
LA-SDG

This section introduces a fully distributed implementation
of LA-SDG by exploiting the problem structure of network
resource allocation. For notational brevity, collect the variables
representing outgoing links from node i inxi

t := {xij
t ,∀j ∈ Ni}

with Ni denoting the index set of outgoing neighbors of node i.
Let also si

t := [φi
t ; c

i
t ] denote the random state at node i. It will

be shown that the learning and allocation decision per time slot
t is processed locally per node i based on its local state si

t .
To this end, rewrite the Lagrangian minimization for a general

dual variable λ ∈ RI
+ at time t as [cf., (17a) and (18b)]

min
xt ∈X

∑

i∈I
Ψi(xi

t ;φ
i
t) +

∑

i∈I
λi(A(i,:)xt + ci

t) (23)

where λi is the ith entry of vector λ, and A(i,:) denotes the
ith row of the node-incidence matrix A. Clearly, A(i,:) selects
entries of xt associated with the in- and out-links of node i.
Therefore, the subproblem at node i is

min
x i

t ∈X i
Ψi(xi

t ;φ
i
t) +

∑

j∈Ni

(λj − λi)xji
t (24)

where X i is the feasible set of primal variable xi
t . In the case

of (3d), the feasible set X can be written as a Cartesian product
of sets {X i ,∀i}, so that the projection of xt to X is equivalent
to separate projections of xi

t onto X i . Note that {λj ,∀j ∈ Ni}
will be available at node i by exchanging information with the
neighbors per time t. Hence, given the effective multipliers γj

t

(jth entry of γt) from its outgoing neighbors in j ∈ Ni , node
i is able to form an allocation decision xi

t(γt) by solving the
convex programs (24) with λj = γj

t ; see also (17a). Needless to
mention, qi

t can be locally updated via (16), that is

qi
t+1 =

⎡

⎣qi
t +

⎛

⎝
∑

j :i∈Nj

xji
t (γt) −

∑

j∈Ni

xij
t (γt) + ci

t

⎞

⎠

⎤

⎦

+

(25)
where {xji

t (γt)} are the local measurements of arrival (depar-
ture) workloads from (to) its neighbors.

Likewise, the tentative primal variable xi
t(λ̂t) can be obtained

at each node locally by solving (24) using the current sample si
t

again with λi = λ̂i
t . By sending xi

t(λ̂t) to its outgoing neighbors,

node i can update the empirical multiplier λ̂i
t+1 via

λ̂i
t+1 =

⎡

⎣λ̂i
t + ηt

⎛

⎝
∑

j :i∈Nj

xji
t (λ̂t) −

∑

j∈Ni

xij
t (λ̂t) + ci

t

⎞

⎠

⎤

⎦

+

(26)
which, together with the local queue length qi

t+1 , also implies
that the next γi

t+1 can be obtained locally.
Compared with the classic SDG recursion (13a)–(13b), the

distributed implementation of LA-SDG incurs only a factor of
2 increase in computational complexity. Next, we will further
analytically establish that it can improve the delay of SDG by an
order of magnitude with the same order of the optimality gap.

V. OPTIMALITY AND STABILITY OF LA-SDG

This section presents the performance analysis of LA-SDG,
which will rely on the following four assumptions.

Assumption 1: The state st is bounded and i.i.d. over
time t.

Assumption 2: Ψt(xt) is proper, σ-strongly convex, lower
semicontinuous, and has Lp -Lipschitz continuous gradient.
Also, Ψt(xt) is nondecreasing w.r.t. all entries of xt over X .

Assumption 3: There exists a stationary policy χ(·) satis-
fying χ(st) ∈ X for all st , and E[Aχ(st) + ct ] ≤ −ζ, where
ζ > 0 is a slack vector constant.

Assumption 4: For any time t, the magnitude of the con-
straint is bounded, that is, ‖Axt + ct‖ ≤ M, ∀xt ∈ X .

Assumption 1 is typical in stochastic network resource al-
location [14], [15], [28], and can be relaxed to an ergodic
and stationary setting following [20], [29]. Assumption 2 re-
quires the primal objective to be well behaved, meaning that
it is bounded from below and has a unique optimal solution.
Note that nondecreasing costs with increased resources are eas-
ily guaranteed with, e.g., exponential and quadratic functions in
our simulations. In addition, Assumption 2 ensures that the dual
function has favorable properties, which are important for the
ensuring stability analysis. Assumption 3 is Slater’s condition,
which guarantees the existence of a bounded optimal Lagrange
multiplier [21], and is also necessary for queue stability [4].
Assumption 4 guarantees boundedness of the gradient of the
instantaneous dual function, which is common in performance
analysis of stochastic gradient-type algorithms [30].

Building upon the desirable properties of the primal problem,
we next show that the corresponding dual function satisfies both
smoothness and quadratic growth properties [31], [32], which
will be critical to the subsequent analysis.

Lemma 2: Under Assumption 2, the dual function D(λ)
in (11) is Ld -smooth, where Ld = ρ(A�A)/σ, and ρ(A�A)
denotes the spectral radius of A�A. In addition, if λ lies in a
compact set, there always exists a constant ε such that D(λ)
satisfies the following quadratic growth property:

D(λ∗) −D(λ) ≥ ε

2
‖λ∗ − λ‖2 (27)

where λ∗ is the optimal multiplier for the dual problem (11).
Proof: See Appendix A in the online version [33]. �
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We start with the convergence of the empirical dual variables
λ̂t . Note that the update of λ̂t is a standard learning iteration
from historical data, and it is not affected by future resource
allocation decisions. Therefore, the theoretical result on SDG
with diminishing stepsize is directly applicable [30, Sec. 2.2].

Lemma 3: Let λ̂t denote the empirical dual variable in
Algorithm 1, and λ∗ the optimal argument for the dual problem
(11). If the stepsize is chosen as ηt = αD

M
√

t
, ∀t, with a con-

stant α > 0, a sufficient large constant D > 0, and M as in
Assumption 4, then it holds that

E
[
D(λ∗) −D(λ̂t)

]
≤ max{α, α−1} DM√

t
(28)

where the expectation is over all the random states st up to t.
Lemma 3 asserts that using a diminishing stepsize, the dual

function value converges sublinearly to the optimal value in
expectation. In principle, D is the radius of the feasible set
for the dual variable λ [30, Sec. 2.2]. However, as the optimal
multiplier λ∗ is bounded according to Assumption 3, one can
always estimate a large enough D, and the estimation error
will only affect the constant of the suboptimality bound (28)
through the scalar α. The suboptimality bound in Lemma 3
holds in expectation, which averages over all possible sample
paths {s1 , . . . , st}.

As a complement to Lemma 3, the almost sure convergence
of the empirical dual variables is established next to characterize
the performance of each individual sample path.

Theorem 1: For the sequence of empirical multipliers {λ̂t}
in Algorithm 1, if the stepsizes are chosen as ηt = αD

M
√

t
,∀t,

with constants α,M,D defined in Lemma 3, it holds that

lim
t→∞ λ̂t = λ∗, w.p.1 (29)

where λ∗ is the optimal dual variable for the expected dual
function minimization (11).

Proof: The proof follows the steps in [21, Proposition
8.2.13], which is omitted here.

Building upon the asymptotic convergence of empirical dual
variables for statistical learning, it becomes possible to analyze
the online performance of LA-SDG. Clearly, the online resource
allocation xt is a function of the effective dual variable γt and
the instantaneous network state st [cf. (17a)]. Therefore, the
next step is to show that the effective dual variable γt also
converges to the optimal argument of the expected problem
(11), which would establish that the online resource allocation
xt is asymptotically optimal. However, directly analyzing the
trajectory of γt is nontrivial, because the queue length {qt} is
coupled with the reference sequence {λ̂t} in γt . To address this
issue, rewrite the recursion of γt as

γt+1 = γt + (λ̂t+1 − λ̂t) + μ(qt+1 − qt) ∀t (30)

where the update of γt depends on the variations of λ̂t and qt .
We will first study the asymptotic behavior of queue lengths qt ,
and then derive the analysis of γt using the convergence of λ̂t

in (29), and the recursion (30).
Define the time-varying target θ̃t = λ∗ − λ̂t + θ, which is

the optimality residual of statistical learning λ∗ − λ̂t plus the

bias-control variable θ. Per Theorem 1, it readily follows that
limt→∞ θ̃t = θ, w.p.1. By showing that qt is attracted towards
the time-varying target θ̃t/μ, we will further derive the stability
of queue lengths.

Lemma 4: With qt and μ denoting queue length and step-
size, there exists a constant B = Θ(1/

√
μ), and a finite time

TB < ∞, such that for all t ≥ TB , if ‖qt − θ̃t/μ‖ > B, it holds
in LA-SDG that

E
[∥
∥
∥qt+1 − θ̃t/μ

∥
∥
∥

∣
∣
∣qt

]
≤

∥
∥
∥qt − θ̃t/μ

∥
∥
∥ −√

μ, w.p.1. (31)

Proof: See Appendix B in the online version [33].
Lemma 4 reveals that when qt is large and deviates from the

time-varying target θ̃t/μ, it will be bounced back toward the
target in the next time slot. Upon establishing this drift behavior
of queues, we are on track to establish queue stability.

Theorem 2: With qt ,θ, and μ defined in (17b), there exists
a constant B̃ = Θ(1/

√
μ) such that the queue length under LA-

SDG converges to a neighborhood of θ/μ as

lim inf
t→∞ ‖qt − θ/μ‖ ≤ B̃, w.p.1. (32a)

In addition, if we choose θ = O(
√

μ log2(μ)), the long-term
average expected queue length satisfies

lim
T →∞

1
T

T∑

t=1

E [qt ] = O
(

log2(μ)√
μ

)

, w.p.1. (32b)

Proof: See Appendix C in the online version [33]. �
Theorem 2 in (32a) asserts that the sequence of queue it-

erates converges (in the infimum sense) to a neighborhood of
θ/μ, where the radius of neighborhood region scales as 1/

√
μ.

In addition to the sample path result, (32b) demonstrates that
with a specific choice of θ, the queue length averaged over
all sample paths will be O (

log2(μ)/
√

μ
)
. Together with The-

orem 1, it suffices to have the effective dual variable con-
verge to a neighborhood of the optimal multiplier λ∗; that is,
lim inf t→∞ γt = λ∗ + μqt − θ = λ∗ + O(

√
μ), w.p.1. Notice

that the SDG iterate λt in (13a) will also converge to a neighbor-
hood of λ∗. Therefore, intuitively LA-SDG will behave similar
to SDG in the steady state, and its asymptotic performance fol-
lows from that of SDG. However, the difference is that through
a careful choice of θ, for a sufficiently small μ, LA-SDG can
improve the queue length O (1/μ) under SDG by an order of
magnitude.

In addition to feasibility, we formally establish in the next
theorem that LA-SDG is asymptotically near-optimal.

Theorem 3: Let Ψ∗ be the optimal objective value of (3)
under any feasible policy with distribution information about
the state fully available. If the control variable is chosen as
θ = O(

√
μ log2(μ)), then with a sufficiently small μ, LA-SDG

yields a near-optimal solution for (3) in the sense that

lim
T →∞

1
T

T∑

t=1

E [Ψt (xt(γt))] ≤ Ψ∗ + O(μ), w.p.1 (33)

where xt(γt) denotes the real-time operations obtained from
the Lagrangian minimization (17a).

Proof: See Appendix D in the online version [33]. �
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Combining Theorems 2 and 3, we are ready to state that by
setting θ = O(

√
μ log2(μ)), LA-SDG is asymptotically O(μ)-

optimal with an average queue length O(log2(μ)/
√

μ). This
result implies that LA-SDG is able to achieve a near-optimal
cost-delay tradeoff [μ, log2(μ)/

√
μ]; see [4], [19]. Comparing

with the standard tradeoff [μ, 1/μ] under SDG, the learn-and-
adapt design of LA-SDG markedly improves the online perfor-
mance in terms of delay. Note that a better tradeoff [μ, log2(μ)]
has been derived in [15] under the so-termed local polyhedral
assumption. Observe though, that the considered setting in [15]
is different from the one here. While the network state set S and
the action set X in [15] are discrete and countable, LA-SDG
allows continuous S and X with possibly infinite elements, and
still be amenable to efficient and scalable online operations.

VI. NUMERICAL TESTS

This section presents numerical tests to confirm the analyt-
ical claims and demonstrate the merits of the proposed ap-
proach. We consider the geographical load balancing network of
Section II-B with K = 10 data centers, and J = 10 mapping
nodes. Performance is tested in terms of the time-averaged in-
stantaneous network cost in (4), namely

Ψt(xt) :=
∑

k∈K
pk

t

(
(xk0

t )2 − ek
t

)
+

∑

j∈J

∑

k∈K
bjk
t (xjk

t )2 (34)

where the energy price pk
t is uniformly distributed over [10, 30];

samples of the renewable supply {ek
t } are generated uni-

formly over [10, 100]; and the per-unit bandwidth cost is set
to bjk

t = 40/x̄jk ,∀k, j, with bandwidth limits {x̄jk} generated
from a uniform distribution within [100, 200]. The capacities at
data centers {x̄k0

t } are uniformly generated from [100, 200]. The
delay-tolerant workloads {cj

t } arrive at each mapping node j ac-
cording to a uniform distribution over [10, 100]. Clearly, the cost
(34) and the state st here satisfy Assumptions 1 and 2. Finally,
the stepsize is ηt = 1/

√
t,∀t, the tradeoff variable is μ = 0.2,

and the bias correction vector is chosen as θ = 100
√

μ log2(μ)1
by default, but manually tuned in Figs. 5–6. We introduce two
benchmarks: SDG in (13a) (see, e.g., [4]), and the projected
stochastic heavy-ball in (19) and β = 0.5 by default (see, e.g.,
[10]). Unless otherwise stated, all simulated results were aver-
aged over 50 Monte Carlo realizations.

Performance is first compared in terms of the time-averaged
cost, and the instantaneous queue length in Figs. 2 and 3. For the
network cost, SDG, LA-SDG, and the heavy-ball iteration with
β = 0.5 converge to almost the same value, while the heavy-
ball method with a larger momentum factor β = 0.99 exhibits
a pronounced optimality loss. LA-SDG and heavy-ball exhibit
faster convergence than SDG as their running-average costs
quickly arrive at the optimal operating phase by leveraging the
learning process or the momentum acceleration. In this test, LA-
SDG exhibits a much lower delay as its aggregated queue length
is only 10% of that for the heavy-ball method with β = 0.5 and
4% of that for SDG. By using a larger β, the heavy-ball method
incurs a much lower queue length relative to that of SDG, but
still slightly higher than that of LA-SDG. Clearly, our learn-
and-adapt procedure improves the delay performance.

Fig. 2. Comparison of time-averaged network costs.

Fig. 3. Instantaneous queue lengths summed over all nodes.

Fig. 4. Evolution of stochastic multipliers at mapping node 1 (μ = 0.2).

Recall that the instantaneous resource allocation can be
viewed as a function of the dual variable; see Proposition 1.
Hence, the performance differences in Figs. 2–3 can be also
anticipated by the different behavior of dual variables. In Fig. 4,
the evolution of stochastic dual variables is plotted for a sin-
gle Monte Carlo realization; that is, the dual iterate in (13a) for
SDG, the momentum iteration in (19) for the heavy-ball method,
and the effective multiplier in (17b) for LA-SDG. As illustrated
in (20), the performance of momentum iterations is similar to
SDG with larger stepsize μ/(1 − β). This is corroborated by
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Fig. 5. Comparison of steady-state network costs (after 106 slots).

Fig. 6. Steady-state queue lengths summed over all nodes (after 106

slots).

Fig. 4, where the stochastic momentum iterate with β = 0.5
behaves similar to the dual iterates of SDG and LA-SDG, but
its oscillation becomes prohibitively high with a larger factor
β = 0.99, which nicely explains the higher cost in Fig. 2.

Since the cost-delay performance is sensitive to the choice of
parameters μ and β, extensive experiments are further conducted
among three algorithms using different values of μ and β in
Figs. 5 and 6. The steady-state performance is evaluated by run-
ning algorithms for sufficiently long time, up to 106 slots. The
steady-state costs of all three algorithms increase as μ becomes
larger, and the costs of LA-SDG and the heavy-ball with small
momentum factor β = 0.4 are close to that of SDG, while the
costs of the heavy-ball with larger momentum factors β = 0.8
and β = 0.99 are much larger than that of SDG. Considering
steady-state queue lengths (network delay), LA-SDG exhibits
an order of magnitude lower amount than those of SDG and the
heavy-ball with small β, under all choices of μ. Note that the
heavy-ball with a sufficiently large factor β = 0.99 also has a
very low queue length, but it incurs a higher cost than LA-SDG
in Fig. 5 due to higher steady-state oscillation in Fig. 4.

VII. CONCLUDING REMARKS

Fast convergent resource allocation and low service delay are
highly desirable attributes of stochastic network management
approaches. Leveraging recent advances in online learning and
momentum-based optimization, a novel online approach termed

LA-SDG was developed in this paper. LA-SDG learns the net-
work state statistics through an additional sample recourse pro-
cedure. The associated novel iteration can be nicely interpreted
as a modified heavy-ball recursion with an extra correction step
to mitigate steady-state oscillations. It was analytically estab-
lished that LA-SDG achieves a near-optimal cost-delay tradeoff
[μ, log2(μ)/

√
μ], which is better than [μ, 1/μ] of SDG, at the

cost of only one extra gradient evaluation per new datum. Our fu-
ture research agenda includes novel approaches to further hedge
against nonstationarity, and improved learning schemes to un-
cover other valuable statistical patterns from historical data.
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