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In emerging tracking systems using large-scale wireless sensor

networks, sensor management is an essential task in order to

balance the tracking performance and costs subject to limited

network resources in terms of energy, communication bandwidth,

and sensing range. This paper considers the sensor allocation

problem for multi-target tracking (MTT), in which a group of

sensors are dynamically selected and allocated to track each

of the multiple targets and collaborate within the group via

track data fusion. The sensor assignments evolve over time as

targets move, and are accomplished by solving a constrained

optimization problem that is formulated to maximize the overall

tracking performance for all targets, while conserving network

energy and providing tracking coverage guarantee. The original

integer-valued optimization problem is relaxed to a convex

program for computational tractability, and then implemented

in a distributed manner for network scalability and reduced

communication costs. Through local one-hop communication

with neighboring nodes, each sensor autonomously decides on

whether to participate in data collection and how to contribute

to track fusion. The proposed distributed sensor allocation

algorithm, implemented via iterative subgradient search, is

shown to converge to the global optimum of the centralized

relaxed problem, and is near optimal for the original integer

programming problem.
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I. INTRODUCTION

Wireless sensor networks have become

increasingly important in a number of civilian

and military applications. Sensor nodes can be

densely deployed in a large sensing field to acquire

information about the physical phenomena of interest.

Densely scattered nodes provide overlapping coverage,

which enhances robustness and improves sensing

quality and accuracy. This paper concerns the problem

of target tracking over a large field using distributed

wireless sensor networks, which is of interest to

a number of applications including security and

surveillance, battlefield information monitoring, traffic

management, wild animal tracking, and environmental

monitoring [1—5].

The goal of tracking is to obtain trajectories of

targets moving over the sensing field. Traditional

tracking systems are radar based, for which the issues

of data association and track fusion have been widely

studied [1, 4, 6—8]. Emerging tracking systems feature

in networks of a large number of small sensors that

can be densely deployed over the monitoring field.

The new paradigm results in new challenges due to

bandwidth and energy limitations of the network.

Meanwhile, the limited sensing coverage of each

sensor suggests that it is infeasible for a target to be

tracked by a fixed subset of static sensors over the

entire moving range. Further, given a large sensing

field and the localized nature of targets, it is highly

ineffective to invoke all sensors in the entire tracking

period, since sensors far away from the targets do

not contribute much to the tracking quality, but

consume power and bandwidth in collecting data

and communicating within the large network. These

issues give rise to the sensor management problem,

which aims to assign a sequence of sensors to track

a moving target. When there are multiple moving

targets, different sets of sensors need to be scheduled

to cooperatively track individual targets at different

instants of the time horizon, due to the limited sensing

range, transmission power and tracking capability

of a single sensor. As a result, cooperation among

sensor nodes becomes necessary yet challenging. Each

sensor needs to trade off the options of whether to

track, which target to track, and how to respond to the

dynamic behavior of different targets. Cooperating

sensors also need to perform proper track fusion

in real time, at the expense of data communication

that consumes network resources. These sensor

management issues are not considered in traditional

tracking systems. Overall, the goal is to balance the

tracking quality against system resource constraints

based on certain performance criterion, particularly, to

determine the best way to select a node or a group of

nodes to gain information on each of the targets.

For sensor scheduling, most work so far focuses

on the single target case, see, e.g., [9—13]. An
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information-driven sensor querying and data routing

approach is developed in [12], which activates

only a single sensor (a.k.a. leader) at any given

time. The leader selects the best sensor node in

the network by optimizing either a Mahalanobis

distance or an entropy measure from the current

track estimate and the sensor position, and passes

the measurement to this node which becomes the

new leader. This is a heuristic approach that selects

the sensors whose Euclidean distances to the target

are less than a threshold. It confines to the simple

case of selecting only one sensor node at each time

slot for the tracking task, and is mainly suited for

ranging nodes. A sensor selection scheme based on

the Kullback-Leibler divergence is discussed in [13],

under the assumption that no more than one target can

appear simultaneously within the sensing range of any

single sensor.

For the case of multi-target tracking (MTT), the

management of sensor resources in wireless sensor

networks has attracted increasing attention recently

[8, 14—17]. Sensor management is intimately related

to track fusion, where multiple sensors collaboratively

track the same target in order to improve tracking

performance. Therefore it is important to allocate

proper nodes to track the proper targets at each

time slot, in order to attain the best overall tracking

performance. Such a task is challenging for the MTT

case, with few works in the literature. For centralized

global sensor allocation, a covariance control strategy

is developed in [18], [19], which uses a heuristic

search to select sensor combinations based on the

difference between the desired error covariance

matrix and the predicted covariance of each target.

Information theoretic principles for global sensor

management are discussed in [20]—[22].

This paper focuses on the distributed sensor

allocation problem for the MTT case. Not only do we

have to perform sensor selection for multiple targets,

but also we allow multiple sensors in each time slot

to be active in tracking the same target via track

fusion. This scenario is more practical and can result

in higher tracking performance, compared with the

simple case of scheduling a single sensor for tracking

a single target. Further, we allow multiple targets to

appear simultaneously within the coverage of a sensor

node, so that each sensor needs to decide not only

whether to track, but also which target to track. To the

best of our knowledge, such scenarios have not been

investigated in the literature.

Sensor management for MTT also concerns the

well-known data association issue, which by itself

has been extensively investigated for years. Some

prominent techniques include multiple hypothesis

tracking (MHT), joint probabilistic data association

filter (JPDAF) and the joint multi-target probability

density (JMPD) method [1, 7, 8], to name a few. This

paper focuses on the emerging sensor management

problem for wireless sensor networks, and assumes

that data association has been perfectly accomplished.

This assumption is made to avoid diverting much

into those common design issues in traditional MTT

systems, because the impact of data association errors

eventually needs to be evaluated in terms of the

tracking performance degradation.

Considering the network resource constraints

in large-scale wireless sensor networks, this paper

develops decentralized sensor management algorithms.

Most existing sensor allocation schemes for MTT

are essentially centralized, which require access to

global information in order to reach globally optimal

solutions [18, 19]. Unfortunately, the sensor allocation

problem is an integer program by nature, which

is computationally challenging for a large-scale

network because the search space can be as large

as the number of sensors in the network. A direct

approach to solving the sensor allocation problem

is based on exhaustive search over all sensor-target

assignment options [24], which causes combinatorial

complexity and heavy communication load as well.

Other techniques applied to solving this problem

include branch and bound [10], greedy search [3, 18,

23, 24] and heuristic search [19]. These methods

are either computationally complex or suboptimal

in performance. To reduce the complexity, an

approximate convex optimization formulation is

presented that bypasses integer programming via

linear programming relaxation [25]. Nevertheless,

it does not consider data fusion among multiple

sensors, nor does it treat the multiple-target case;

also, it presents the centralized formulation without

concerning scalable and distributed implementations.

Evidently, for a large-scale wireless sensor

network, it is crucial to develop efficient and robust

sensor allocation algorithms that are scalable in

computing and communication costs. This paper

relaxes the original integer-valued allocation problems

into convex optimization formulations, and then

implements the solutions in a distributed manner using

the primal-dual approach and iterative subgradient

search with guaranteed convergence. Only local

information exchange is needed among one-hop

neighboring nodes. Through iterations, the developed

distributed algorithms attain global optimality of the

relaxed centralized formulations. Because of the small

performance gap caused by the convex relaxation

to the centralized optimization formulations, our

distributed sensor allocation framework offers scalable

and near-optimal solutions to the original integer

programming problems.

The remainder of this paper is organized as

follows. Section II provides a system framework for

multi-sensor MTT. The sensor allocation problem in

an MTT system is formulated as an integer-valued

optimization problem in Section III. The solution

to this problem is discussed in Section IV, where
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novel distributed sensor allocation algorithms are

developed for MTT. Simulation results are presented

in Section V, followed by summarizing remarks in

Section VI.

II. SYSTEM ARCHITECTURE

Consider the problem of tracking multiple moving

targets over a large area monitored by a network of

wireless sensors. Sensors are deployed densely enough

such that the entire area is under the coverage of

the network, whereas each sensor only has a limited

sensing range. Each sensor knows its own position

via network calibration during the deployment stage,

but to save memory costs, does not necessarily

know the positions of other sensors. During the

tracking stage, it is possible that a target is within the

sensing range of multiple sensors at a time. When this

situation arises, we allow multiple sensors to track

the same target and collaborate via track data fusion.

Meanwhile, we assume that each sensor has the

capability to sense and track multiple targets within

the same time window, when these targets move

within the sensing range of this sensor. Nevertheless,

a sensor may decide not to track a target within its

own sensing area, under the tradeoff consideration of

tracking performance versus sensing costs. Further,

when a target moves, it cannot be tracked by the

same group of sensors all the time, and hence sensors

have to dynamically decide whether and when to

join or leave the tracking task. These issues give

rise to the sensor management problem of interest

in this paper, where our objective is to dynamically

allocate a group of sensor nodes to track each of

the multiple targets, in order to optimize the overall

tracking performance under certain network resource

constraints. In particular, we focus on the case of

distributed tracking and sensor management, in the

absence of a fusion center.

For MTT we adopt a multi-layer architecture for

the distributed tracking system, in which multiple

modules are intertwined in a hierarchical manner, with

each module focusing on one designated task [3, 6].

These modules are: sensing, sensor management,

target measurement collection, multi-target

tracking, and information relay. Specifically, at the

physical-layer sensing module, sensors detect targets

within its sensing range by measuring the received

signal-to-noise ratio (SNR) of targets and report these

SNR values to the upper-level module for action

decision. The sensor allocation module dynamically

allocates a group of sensors to track each target within

each time window. As soon as a node is assigned

to track a target, the target measurement collection

module of each selected node is triggered to collect

position-related measurements, typically in the form

of time-of-arrival (TOA) and/or direction-of-arrival

(DOA) data. Afterward, the tracking and fusion

module takes place, in which a tracking algorithm,

say sequential Kalman filtering, is carried out by a

group of nodes to update the states of target positions

and velocities. Finally, when a target moves from

the sensing range of one group of sensors to that

of the next group, necessary information needs to

be passed on through the information relay module,

in order to ensure uninterrupted sensing and track

update. Overall, the sensing module is active for all

sensors, while the other modules are activated only

for selected sensors on an as-needed basis, in order

to conserve network energy. Detailed implementation

of this multi-layer architecture for the proposed MTT

system is elaborated in Table I in Section IV-B.

This paper focuses on the sensor management

module, which has received limited treatment for

the MTT problem, especially in the distributed

scenarios. For other modules, there has been a large

body of literature given the traditional results and

recent development [1, 6, 8, 12, 13, 26, 27]. Hence,

whenever functionalities from other modules are

called for, we refer to the literature. Several remarks

are in order regarding these MTT modules and the

basic assumptions made.

A1) A distinct design choice in our tracking

architecture is the separation of the sensing module

based on SNR measurements and the target

measurement collection module based on TOA/DOA

data. Wireless sensor networks face stringent energy

constraints and have to judiciously reduce energy

consumption in order to extend the network lifetime.

Therefore, forcing all sensor nodes to do active

sensing is energy-consuming. An energy-saving

strategy is to put some sensors to sleep, but this

cannot be applied straightforwardly in tracking

applications, because of the unacceptable impact

of loss of tracks. We adopt a two-step approach,

such that most sensor nodes only need to operate

in the simple sensing module by measuring SNRs

whereas only a small group of properly selected

sensors need to perform active sensing by activating

their TOA/DOA measurement module at a given

time; this approach significantly reduces the energy

consumption of active sensing.

A2) It is assumed that data association for sensor

management has been performed to link sensed

measurements with corresponding targets. This can

be done using techniques in the literature, possibly

using joint target identification and tracking [3, 4].

Details of data association and impact of association

errors are out of the scope of this paper. Note that

sensor management concerns making sensor-target

allocation decisions to save network resources, which

have not touched upon tracking decisions yet. In the

ensuing tracking module, the association errors might

be corrected or might propagate, depending on the

joint data association and tracking algorithm used and
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the specific scenario under investigation. Therefore,

even when the allocation decisions are affected by

imperfect data association, the impact is mainly on

the network energy efficiency.

A3) For each sensor, the communication range

rC is set to be at least twice of the sensing range rS ,
which is a necessary condition for the operations in

the information relay module. Nevertheless, rC may
still be quite small compared with the large sensing

area, such that all the communications are localized.

Next, we provide the signal models for those

modules relevant to sensor management.

A. Data Model

Suppose that there are a total of Ns sensors and Na
targets, with Na ¸ 1. The two-dimensional position
of the ith sensor is assumed to be known to itself,
denoted by ps,i = (xs,i,ys,i), i= 1, : : : ,Ns, while that of
the jth target is unknown, denoted by pa,j = (xa,j ,ya,j),
8j = 1, : : : ,Na. In the sensing module sensors measure
the received signal strength (RSS) and collect the

SNR data which depend on the square-distances

d2ij = kps,i¡pa,jkj22, 8i,j. It is assumed that a sensor
i can detect a target j within its sensing range, when
the corresponding distance dij is smaller than the
sensing range rS . Because the RSS can be measured
at relatively low costs, sensors can afford to keep their

sensing module on, which is essential to avoid loss of

track and loss of optimality in sensor management.

In the track measurement collection module,

selected sensors collect proper measurements to

calibrate the positions of their allocated targets. This

can be done by collecting range-only measurements

such as TOA and time-difference-of-arrival (TDOA),

or bearing-only measurements such as DOA. When a

single measurement type is collected, multiple sensor

nodes need to be involved to extract full position

information of a single target in the tracking process,

using for example, multi-node triangularization

techniques. Several sensor allocation schemes based

on bearing-only parameters have been developed [24].

This practice reduces the costs of individual sensors,

at the expense of an increased number of nodes

needed for triangularization, higher communication

bandwidth consumption for extensive information

exchange, and/or network-wide time synchronization.

These network-level costs can be alleviated and

traded off with increased sensor costs using a joint

TOA/DOA approach [27, 28], which we adopt in this

paper. In our work we suppose that each sensor node

can calibrate both the range and bearing of a target

to make individual position estimation. Owing to the

two-step sensing approach, a sensor performs the joint

TOA/DOA-based positioning only when it is allocated

to join the tracking task for a target. In the case of

noncooperative target tracking, a selected sensor

switches to the active sensing mode, and computes

the TOA based on the round trip delay from its

transmitter to the target and back. When not selected,

a sensor turns off its track measurement collection

module to conserve energy.

Let ¿̂ij and μ̂ij denote the TOA and DOA data
of the jth target measured by the ith sensor. The
true values of ¿ij and μij are given by ¿ij = dij=c

and μij = tan
¡1((ya,j ¡ ys,i)=(xa,i¡ xs,i)), respectively,

where c is the propagation speed, which could be the
speed of light or the speed of sound depending on the

modality of sensor. Hence, the data model is given by

¿̂ij = ¿ij +¢¿ij

μ̂ij = μij +¢μij

(1)

where ¢¿ij and ¢μij are additive data noises induced
by estimation errors, subject to interference from

other targets. It is assumed that the noises are white

Guassian with distributions ¢¿ij »N (0,¾ij) and
¢μij »N (0,´ij), where the variances ¾ij and ´ij
depend on the unbiased TOA and DOA estimators

adopted [29].

Using the TOA and DOA data, the target position

pa,j can be estimated by sensor i as follows:

x̂ij = xs,i+ c¿̂ij cos(μ̂ij)

ŷij = ys,i+ c¿̂ij sin(μ̂ij):
(2)

With (1) and (2), the position estimates (x̂ij , ŷij)
can be described as

x̂ij = xi,j +¢xij

ŷij = yi,j +¢yij
(3)

where the position errors ¢xij and ¢yij are Gaussian
random variables with zero mean and variance of

±2¢xij and ±
2
¢yij
, respectively. The Cramer-Rao bounds

(CRBs) of ±2¢xij and ±
2
¢yij

are derived in [29].

B. Multi-target Tracking Model

The track state vector of target j is defined
as uj = [xa,j ,ya,j , _xa,j , _ya,j]

T, where _xa,j and _ya,j
are the target velocity projected onto the x and y
coordinates, respectively. At each time slot t, the target
motion obeys a linear discrete-time Markov process,

modeled as

uj(t) =Aj(t)uj(t¡ 1)+Cj(t)vj(t) (4)

where Aj(t) is the state transition matrix and Cj(t)vj(t)
is process noise with vj(t) following Gaussian
distribution, i.e., vj(t)»N(0,Qj(t)).
At each sensor i, its measurement vector zij for the

target j can be modeled as

zij(t) =Hij(t)uj(t) +wij(t) (5)

where Hij(t) is the measurement matrix, and wij(t)
is the measurement noise of Gaussian distribution

wij(t)»N(0,Rij(t)). If the data model (3) is adopted,
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then zij(t) = [x̂ij , ŷij]
T and Hij(t) is simplified to

Hij(t) =

μ
1 0 0 0

0 1 0 0

¶
, 8i,j, t:

The sensor allocation algorithm developed in this

paper focuses on this commonly used case, but is

directly applicable to the general case of any Hij .

In the model set (4) and (5), the process noise

covariance matrix Qj(t) depends on the target motion
and is typically assumed to be time invariant and

known a priori. The measurement noise covariance

matrix Rij(t), on the other hand, depends on the
received SNR as well as the relative positions of

the target and sensors, and hence varies over time

as the target move. In the tracking model discussed

in this section, we assume that variance of the

measurement noise changes as the observation

environment varies, which fits the practical scenario

but is rarely considered in existing literature. Indeed,

in a practical tracking process, the acquisition

accuracy of position-dependent parameters such

as TOA, DOA, or RSS depends closely on factors

in the wireless channel environment, including the

instantaneous SNR values and target-sensor distances

that change dynamically for mobile targets. Because

it is difficult to acquire information of the variance of

measurement noise in a real-time environment, we

use instead the analyzed CRB of the measurement

noise as the prediction of the noise covariance in our

sensor allocation algorithm, which is elaborated later.

Particularly, the CRB of Rij , denoted as Mij , has been

derived in [29], which is used in lieu of Rij in guiding

the decision making in our sensor management

module. Through sensor management, the network

autonomously allocates a group of sensors Sj(t)
to track the target j at time t, 8j, and dynamically
updates the members of Sj(t) as the target moves over
time.

C. Sequential Kalman Filter for Track Fusion

After target-sensor allocation decisions fSj(t)gNaj=1
have been made in the sensor management module,

track fusion for each target j is performed via
cooperation among all sensors in Sj(t), 8j. To do so,
Kalman filtering (KF) can be applied based on the

linear dynamic model and the measurement model in

(4) and (5).

Following the notational convention of KF, we

let ûj(t j t¡ 1) denote the predicted a priori state
vector of target j at time t given all the available
measurements up to t¡ 1, and ûj(t j t) denote the
updated a posteriori state estimate after incorporating

the measurements fzij(t)gi from the allocated sensors

i 2 Sj(t). Correspondingly, the prior and posterior
estimation errors for target j are ej(t j t¡ 1) = uj(t)¡
ûj(t j t¡ 1) and ej(t j t) = uj(t)¡ ûj(t j t), respectively,
whose error covariance matrices are defined as

Pj(t j t¡ 1) = E[ej(t j t¡ 1)eTj (t j t¡ 1)] and Pj(t j t) =
E[ej(t j t)eTj (t j t)], where (¢)T denotes transpose and
E[¢] denotes expectation.
To facilitate sensor management, we adopt

an information form of KF for track fusion, in

which the state vector estimate ûj and the estimate
error covariance matrix Pj are transformed into

the information state vector ŷj = P
¡1
j ûj and the

information matrix Yj = P
¡1
j , respectively [6, 30].

Evidently, the updates (ûj ,Pj) in the traditional KF

can be equivalently obtained from (ŷj ,Yj), which are
given by the transformed KF updating rule, as follows

[6, 30]:

Prediction:

ŷj(t j t¡1)
=Yj(t j t¡ 1)Aj(t)Y¡1j (t¡ 1 j t¡1)ŷj(t¡ 1 j t¡ 1)

(6a)

Y¡1j (t j t¡ 1)
=A(t)Y¡1j (t¡ 1 j t¡ 1)AT(t) +C(t)Q(t)CT(t)

(6b)
Estimation:

ŷj(t j t) = ŷj(t j t¡1)+
X
i2Sj (t)

HTij(t)R
¡1
ij (t)zij(t) (6c)

Yj(t j t) =Yj(t j t¡ 1)+
X
i2Sj (t)

HTij(t)R
¡1
ij (t)Hij(t):

(6d)

The above information form of KF is equivalent to

the traditional KF in terms of tracking performance,

and provides computational advantages for

multi-sensor data fusion [6, 30]. Since the sensor

measurements contribute in an additive manner in

(6c) and (6d), it is simple to compute and amenable

to distributed implementation, e.g., using sequential

KF [6]. Furthermore, the information matrix Yj is
associated with the Fisher information defining the

CRB of the target state estimate, which is utilized in

the sensor allocation optimization problem presented

in the next section.

III. PROBLEM FORMULATION FOR SENSOR
MANAGEMENT

This section provides the optimization formulation

for the sensor management problem in MTT systems.

The goal is to optimize the expected overall tracking

performance from the information theoretic view of

the KF.

A. Characterization of Tracking Performance

The tracking performance is dictated by

the uncertainty of the target state, which can

be quantitatively measured by entropy-based

information-theoretic metrics [20, 21]. The following

Proposition 1 reveals a useful relationship between
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the entropy of a target state uj(t) in (4) and the
corresponding information matrix Yj(t j t) in (6d) that
can be acquired from practical KF operations.

PROPOSITION 1 Given the linear Markov Gaussian

dynamic model (4) and the measurement model (5), the

conditional entropy H[¢ j ¢] of the state of the target j
given all the observations up to t is given by

H[uj(t) j Zj(t)] = °¡ 1
2
log(jYj(t j t)j) (7)

where ° is a constant, j ¢ j denotes the matrix
determinant, and Zj(t) is the set of available
observations up to time t for target j, i.e., Zj(t) =
fz̄j(0), z̄j(1), : : : , z̄j(t)g with z̄j(t0) = fzij(t0)gi2Sj (t0),
t0 2 [0, t].
PROOF Consider the target j that is tracked from
measurements Zj(t) over time. Because the state
vector uj(t) is described by a linear Markov Gaussian
dynamic model, the KF can be derived based on the

Bayesian framework, which leads to the Gaussian

distribution p(uj(t) j Zj(t))»N (ûj(t j t),Pj(t j t)).
Following the entropy definition H[uj(t) j Zj(t)] =
¡E[logp(uj(t) j Zj(t))], and noting that the KF is
unbiased with E[ûj(t j t)] = uj(t), it can be shown that
(7) holds.

Since the KF estimate of uj(t) is unbiased, efficient
and consistent, the corresponding Fisher information

matrix Tj(t) is equal to the inverse of the posterior
error covariance matrix Pj(t j t) that reaches the CRB
[32], that is,

Tj(t) =Yj(t j t)
=Yj(t j t¡ 1)+

X
i2Sj (t)

HTij(t)R
¡1
ij (t)Hij(t): (8)

Hence, the entropy of the target j is inversely
proportional to the determinant of its CRB that

quantifies the volume of the confidence ellipsoid for

the target state estimation errors [6]. The results in

(7) and (8) connect the mutual information from the

information theoretic view to the CRB metric from

the estimation theoretic view. With the equivalence,

our goal of maximizing the tracking performance

boils down to minimizing the uncertainty of the target

state via proper management of the intertwined sensor

allocation and data collection problems.

B. Optimization Formulation

The sensor allocation problem amounts to

deciding the sensor set Sj(t) for each target j at
time t under system constraints, such that the

collected measurements fzij(t)gi2Sj (t), along with
past data Zj(t¡ 1), maximally reduce the target state
uncertainty quantified by (7). Since all the Na targets
are independent, the network-wide sum uncertainty is

given by
PNa

j=1H[uj(t) j Zj(t)] at time t, which is to be
minimized.

Noting that Zj(t) = fZj(t¡ 1), z̄j(t)g, we can write
H[uj(t) j Zj(t)] =H[uj(t) j Zj(t¡ 1)]¡ I[uj(t) j z̄j(t)]

where I[uj(t) j z̄j(t)] is the mutual information gain
contributed from z̄j(t) = fzij(t),8i 2 Sj(t)g, and
similar to (7), the prediction uncertainty is given

by H[uj(t) j Zj(t¡ 1)] = °¡ 1
2
log(jYj(t j t¡1)j),

8j, which is not dependent on Sj(t). Let us assume
that the network obtains the maximal information

gain for all targets at time (t¡ 1). Hence, as far as
Sj(t) is concerned, minimizing

P
j H[uj(t) j Zj(t)] is

equivalent to maximizing the sum information gainP
j I[uj(t) j z̄j(t)], where I[uj(t) j z̄j(t)] =¡H[uj(t) j

Zj(t)]+H[uj(t) j Zj(t¡1)] can be derived from (7) as

I[uj(t) j z̄j(t)]

=
1

2
log

0@¯̄̄̄¯̄I+Pj(t j t¡ 1)X
i2Sj (t)

HTij(t)R
¡1
ij (t)Hij(t)

¯̄̄̄
¯̄
1A :
(9)

Thus, the network objective of minimizing the

network sum uncertainty
P
j H[uj(t) j Zj(t)] becomes

min
fSj (t)gNaj=1

¡
NaX
j=1

log

0@¯̄̄̄¯̄I+Pj(t j t¡ 1)X
i2Sj (t)

HTij(t)M
¡1
ij (t)Hij(t)

¯̄̄̄
¯̄
1A :
(10)

In (10) we have used the CRB Mij of the position

measurement errors to replace the corresponding

error covariance matrix Rij , 8i,j, because our position
measurements can be obtained from raw TOA and

DOA data using efficient estimators that reach

the CRB. Note that the CRB expressions for Mij

as functions of the actual target-node geometry

f(¿ij ,μij)gi,j are known [29]. In practice Mij(t) is

replaced by its predicted value M̂ij(t j t¡ 1) as a
function of the predicted target-node geometry from

the position estimates ûj(t¡ 1 j t¡ 1) =Y¡1j (t¡1 j
t¡ 1)ŷj(t¡1 j t¡ 1) obtained from (6) at time (t¡ 1).
The set selection problem in (10) can be

transformed into a member assignment problem by

introducing the binary allocation variables aij(t) 2
f0,1g, 8i,j, which takes the value 1 if i 2 Sj(t) and
0 otherwise. As such, the optimization over the sets

fSj(t)g can be equivalently performed by optimizing
over faij(t)gi,j .
The design of faij(t)gi,j is subject to several

constraints arising from sensor capability limitations

and network energy consumption considerations. First,

a sensor i can track a target j only when the target
falls within the sensing range, that is, dij · rS . Let
¦i(t) denote the set of targets within the sensing range
of the sensor i at time t, and −j(t) the set of sensors
that are close enough to detect the target j at time t.
Accordingly, the total number of elements in these

sets are j¦i(t)j and j−j(t)j, respectively. To avoid the
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loss of track, it is required that each target be tracked

by at least one sensor, with j−j(t)j ¸ 1. Given the
global constraint of covering all targets in the sensing

area, we postulate the following requirement:X
i2−j (t)

aij(t)¸ 1, 8j = 1, : : : ,Na: (11)

Next, the tracking capability of a sensor is limited

by its processing ability, memory size, and energy

supply. For example, although we allow a sensor to

collect measurements from multiple targets, a sensor

can only process targets one by one. Meanwhile, to

ensure successful tracking of a dynamic trajectory, the

time interval between two adjacent sampling instants

(t¡ 1) and t has to be short enough. Given a limited
processing time and memory constraints, the sensor

i may only process up to Ni targets at each sampling
time with Ni ¸ 1. The limited tracking capability of
each sensor can be expressed asX

j2¦i(t)
aij(t)·Ni, 8i= 1, : : : ,Ns: (12)

Putting together (10), (11), and (12), we have

formulated an optimization problem for sensor

selection:

max
faij (t)gi,j

NaX
j=1

Jj(t) (13a)

s.t.
X
i2−j (t)

aij(t)¸ 1, 8j = 1, : : : ,Na (13b)

X
j2¦i(t)

aij(t)·Ni, 8i= 1, : : : ,Ns (13c)

aij 2 f0,1g, 8i= 1, : : : ,Ns, j = 1, : : : ,Na

(13d)

where Jj(t) = log(jI+Pj(t j t¡ 1)
PNs

i=1 aijH
T
ij(t)

¢M¡1
ij (t)Hij(t)j), 8j, as in (10). Since the objective

function seeks to maximize a performance metric

without cost penalty, (13c) degenerates to an equality

constraint as long as j¦i(t)j ¸Ni. We use this
inequality constraint for generality, because Ni is set
prior to acquiring j¦i(t)j.
The objective function in (13a) is a concave

function of faijg. To see this, we can rewrite Jj(t)
as log(jI+P1=2j (t j t¡ 1)PNs

i=1 aijH
T
ij(t)M

¡1
ij (t)Hij(t)

¢P1=2j (t j t¡ 1)j). This log-determinant function is
concave since P

1=2
j (t j t¡ 1)PNs

i=1H
T
ij(t)M

¡1
ij (t)Hij(t)

¢P1=2j (t j t¡ 1) is a positive semi-definite matrix [34].
Meanwhile, (13b) and (13c) are linear inequality

constraints. Due to the binary constraint in (13d), (13)

can be classified as a Boolean convex optimization

problem.

The constraint (13b) implies that data fusion is

applied when a target is tracked by more than one

sensor node. A special case arises when each target

is tracked by only one sensor and each sensor can

only track one target at each time t with Ni = 1, 8i.
When there is only one target, namely Na = 1, it
further reduces to the single sensor selection problem

considered in [12]. In the case of Ni = 1, (13) can
be transformed into an integer linear programming

problem, as follows:

max
faij (t)gi,j

NaX
j=1

NsX
i=1

aij(t) log(jI+Pj(t j t¡1)

£HTij(t)M¡1
ij (t)Hij(t)j) (14a)

s.t.
X
i2−j (t)

aij(t) = 1, 8j = 1, : : : ,Na (14b)

X
j2¦i(t)

aij(t)· 1, 8i= 1, : : : ,Ns (14c)

aij 2 f0,1g, 8i= 1, : : : ,Ns, j = 1, : : : ,Na:

(14d)

IV. DISTRIBUTED SENSOR MANAGEMENT
ALGORITHMS

Due to the binary nature of the decision variables

faij(t)g, the sensor allocation formulation in (13) is
a multidimensional sum assignment problem that

is generally NP-hard [33]. This section provides a

relaxed reformulation and its solution implemented

in a distributed manner.

A. Convex Relaxation and KKT Conditions

To efficiently solve the problem in (13), we apply

convex relaxation to the integer constraint (13d),

replacing it by the linear inequality constraints 0·
aij(t)· 1, 8i,j. By doing so, (13) is relaxed to be a
convex optimization problem as follows:

max
faij (t)gi,j

NaX
j=1

Jj(t) (15a)

s.t.
X
i2−j (t)

aij(t)¸ 1, 8j = 1, : : : ,Na (15b)

X
j2¦i(t)

aij(t)·Ni, 8i= 1, : : : ,Ns (15c)

0· aij(t)· 1, 8i= 1, : : : ,Ns, j = 1, : : : ,Na:

(15d)

Note that the relaxed problem is not equivalent

to the original problem (13) because the optimal

value a¤ij in (15) can be fractional. In fact, the optimal
objective value of the relaxed problem is an upper

bound of the optimal objective value of the original

problem (13), because (15d) yields an enlarged

feasible set encompassing that in (13d).
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Next we develop a distributed algorithm to
implement the optimal solution to the relaxed
reformulation in (15). To this end we apply the
primal-dual method along with the projection
subgradient technique [34]. We first describe the
Karush-Kuhn-Tucker (KKT) conditions for the
primal and dual problem of (15). Let ¾j and li be the
Lagrange multipliers corresponding to the constraints
(15b) and (15c), respectively. The Lagrangian function

associated with (13) can be written as

L(faij(t); li,¾jgi,j) =
NaX
j=1

Jj(t) +

NsX
i=1

li

0@ X
j2¦i(t)

aij(t)¡Ni

1A
+

NaX
j=1

¾j

0@1¡ X
i2−j (t)

aij(t)

1A : (16)

Correspondingly, the Lagrange dual function is

given by

g(fli,¾jgi,j) = max
0·aij (t)·1

L(faij(t); li,¾jgi,j) (17)

for li ¸ 0, ¾j ¸ 0, i= 1 : : :Ns, j = 1 : : :Na, and the
optimal solutions to faij(t)g are

a¤ij(t) = arg maxfaij (t)gij
L(faij(t), l¤i ,¾¤j gi,j),

8i 2 [1,Ns], j 2 [1,Na]: (18)

Because the primal problem is a convex problem

with differentiable objective and constraint functions,

the Slater’s condition is satisfied [34]. Hence, at the

optimal values of the primal and dual variables, the

convexity of our problem formulation guarantees zero

duality gap.

From (16), by taking the first-order partial

derivatives @L=@aij = 0, 8i,j, we have

tr(F¡1j Pj(t j t¡ 1)HTij(t)M¡1
ij (t)Hij(t)) + li¡¾j = 0

(19)
where Fj = I+Pj(t j t¡ 1)

P
i2Sj (t) aij(t)H

T
ij(t)

¢M¡1
ij (t)Hij(t), and tr(¢) denotes the trace of a matrix.

Overall, the KKT conditions are shown below:

tr(F¡1j Pj(t j t¡ 1)HTij(t)M¡1
ij (t)Hij(t))ja¤

ij
(t) + li¡¾j = 0, i= 1 : : :Ns, j = 1 : : :NaX
j2¦i(t)

a¤ij(t)·Ni, i= 1 : : :Ns

l¤i ¸ 0, i= 1 : : :Ns

l¤i

0@ X
j2¦i(t)

a¤ij(t)¡Ni

1A= 0, i= 1 : : :Ns

X
i2−j (t)

a¤ij(t)¸ 1, j = 1 : : :Na

¾¤j ¸ 0, j = 1 : : :Na

¾¤j

0@1¡ X
i2−j (t)

a¤ij(t)

1A= 0, j = 1 : : :Na:

(20)

The KKT conditions provide necessary and

sufficient conditions for the optimality of the primal

and dual values. On the other hand, the optimal values

fa¤ij(t)g cannot be obtained in a closed form from

the KKT conditions. Next, we apply an iterative

subgradient search algorithm to obtain the optimal

solutions.

B. Distributed Algorithm Design

Let [x]+ =max(x,0) denote the projection
onto a nonnegative real value, and [x]10 denote the
projection of x onto [0,1], that is, [x]10 = f0,x,1g
for x· 0, 0< x < 1 and x¸ 1, respectively. At
each time t the decision variables and Lagrange
multipliers are initialized from k = 0, and updated
from the kth step to the (k+1)th one by iteratively
performing projection subgradient search with

a small stepsize ®, as follows (the time index
t is omitted during iterations without causing
ambiguity):

a(k+1)ij =

(
aij = 0, j =2¦i(t)

[a(k)ij +®(gij(fa(k)ij gi)¡ l(k)i +¾(k)j )]10, j 2¦i(t)

(21a)

FU, ET AL: DISTRIBUTED SENSOR ALLOCATION FOR MTT IN WIRELESS SENSOR NETWORKS 3545



l(k+1)i =

"
l(k)i +®

Ãj¦i(t)jX
j=1

a(k)ij ¡Ni

!#
+

, i 2 −j(t)

(21b)

¾(k+1)j =

24¾(k)j +®

0@1¡ j−j (t)jX
i=1

a(k)ij

1A35
+

, j 2¦i(t)

(21c)

where gij(fa(k)ij gi) = tr(F¡1j (fa(k)ij gi)Y¡1j (t j t¡ 1)HTij(t)
¢M̂¡1

ij (t j t¡1)Hij(t)), and Fj(fa(k)ij gi) = I+Y¡1j (t j t¡ 1)
¢Pi2−j (t) a

(k)
ij Hij(t)M

¡1
ij (t j t¡ 1)Hij(t). After defining

©ij(t) =Y
¡1
j (t j t¡1)Hij(t)M̂¡1(t j t¡ 1)Hij(t), 8i,j,

gij(¢) and Fj(¢) can be rewritten as gij(fa(k)ij gi) =
tr(F¡1j (fa(k)ij gi)©ij(t)), and Fj(fa(k)ij gi) = I+P
i2−j (t) a

(k)
ij ©ij(t). Here, ©ij(t) only needs to be

computed once for each t, and remains unchanged
during the iteration steps indexed by k.
Because the objective function in (13a) is

differentiable, the above subgradient search algorithm

is theoretically guaranteed to converge to the optimal

values, i.e., limk!1 a
(k)
ij = a

¤
ij(t), 8i,j, given that the

step size is small enough [34]. However, we may have

limited processing time in real-time applications, and

not all aij may synchronously reach their optimal
values within a limited period. Thus in practical

implementation, we terminate the iterations using the

commonly used stopping rules: the iteration terminates

at the Kth step for sensor i when the differenceP
j2¦i(t) ja(K)ij ¡ a(K¡1)ij j falls below a small threshold

²th for termination, or when a maximum number of

iterations K =Kmax has been reached. At the end,
any fractional final value is rounded to 0 or 1, which

is taken as the allocation decision at time t, that is,
aij(t) = roundfa(K)ij g, 8i,j.
In terms of implementation, all the sensors that

have detected a target at time t in the preceding
sensing module would participate in the sensor

management module, that is, i 2−(t) =
SNa
j=1−j(t)

(
S
denotes union). As indicated by the distributed

nature of (21), each sensor i does not need to know
the total number of targets Na = j

SNs
i=1¦i(t)j, as long

as it knows its own sensed target subset ¦i(t). All
sensors start with an initiation phase, within which

each sensor i computes the local quantity ©ij for
each j 2¦i(t), and passes on ©ij(t) to its one-hop
neighbors i0 2 −j(t), i

0 6= i, 8j. During the ensuing
iterative decision updating phase, at the end of the kth
iteration, each sensor i 2 −(t) would have collected
all the needed allocation decisions fa(k)ij gj2¦i(t) via
local broadcasting, and have computed f¾jgj2¦i(t)
and stored them locally. At the beginning of the

(k+1)th iteration, in a round-robin manner, each
sensor i 2−(t) carries out the three steps in (21) to
update all the decision variables and multipliers. The

updated decisions fa(k+1)ij gj will then be broadcast
so as to be heard by all neighboring nodes within

its communication range rC. Local broadcasting is
adequate, because we have assumed that the one-hop

communication range rC is twice the sensing range
rS. As a result, any two sensors i, i

0 2−j(t) sensing
the same target j will be less than rC away from
the target, and hence their distance is less than the

one-hop range rC . Overall, the iterative steps in (21)
can be implemented in a distributed manner via

one-hop local broadcasting only. Sensors do not need

to know other sensors’ positions and relative topology

with targets. Implementation steps of the proposed

distributed algorithm are summarized in Table I.

It is worth mentioning that the distributed

sensor allocation algorithm can also be adopted

for centralized decision making for computational

convenience. In that case, a sensor i in the group Sj(t)
can be elected as a central controller to implement

the sensor management module. All sensors pass on

their messages ©ij(t) to this sensor, which carries
out the steps in (21) until convergence. During the

iterations, there is no need for local broadcasting.

Upon convergence, the central controller passes on the

allocation decisions aij(t) to those allocated sensors.
The distributed algorithm (21) is adopted as a scalable

solution to implement the centralized formulation (15),

which is a multivariate optimization problem and not

straightforward to solve.

C. Evaluation of Computational Complexity and
Communication Costs

It is of interest to evaluate the computational

complexity of the proposed distributed algorithm.

In the search steps in (21), all the updating steps

are scalar-based additions and projections, except

for the computation of gij which requires matrix
operations. The matrices f©(t)gij are computed once
for each t, at a flop count of O(PNt

j=1(j−j j). After
acquiring f©ij(t)g, gij is computed for each step k,
at a flop count on the order of O(NsNa) per iteration.
Meanwhile, given fgijg, the computations of ak+1ij , lk+1i

and ¾k+1j in (21) cost
PNs
i=1(4j¦ij),

PNs
i=1(j¦ij+3), andPNt

j=1(j−j j+3) operations, respectively. Generally,
dozens of iterations are enough based on extensive

simulation cases we have tested. Thus the overall

cost of the algorithm is O(NsNa) for all Ns sensors,
which is scalable for a large-size network with a large

value of Ns. Table II compares the computational
complexity order of the proposed algorithm against

existing techniques including heuristic search [18, 19],

Newton’s method [25], and global search [18, 24].

Communication and broadcasting consume

bandwidth and energy in a wireless sensor network.

Thus, the communication load is an important concern

for the distributed algorithm design. In the sensor
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TABLE I

Distributed Implementation of the Proposed MTT System with Optimized Sensor Management

At time t: fûj(t¡ 1 j t¡ 1),Yj(t¡ 1 j t¡ 1)gNaj=1 have been obtained by the network for the groups Sj(t), 8j;

Sensing Module

Each sensor i detects j 2¦i(t) within its sensing range rS based on the received SNR, 8i. All the sensors that can
detect at least one target form the sensor set −(t);

Sensor Allocation Module

Initialization: At k = 0, for each sensor i 2 −(t)

² computes the target location estimate pa,j indicated by ûj(t j t¡ 1) =Aj(t)û(t¡ 1 j t¡ 1), and the CRB matrix

M̂ij(t j t¡ 1) as a function of the sensor location ps,i [29], 8j 2¦i(t);
² predicts Yj(t j t¡ 1) from (6b), computes ©ij (t) =Y

¡1
j
(t j t¡ 1)HTijM̂(t j t¡ 1)Hij(t), and broadcasts ©ij(t) to its

one-hop neighbors i0 2 −j(t), 8j 2¦i(t);
² initializes with a(0)

ij
= 0, 8j; l(0)

i
= 0, and ¾(0)

j
= 0,8j 2¦i(t).

Iteration: Do k ¡! k+1

For sensor i 2 −(t),

² computes gij(fa(k)ij gj2¦i(t)) from f©ij(t)gj ;
² computes fa(k+1)ij gj2¦i(t), l

(k+1)
i and f¾jgj2¦i(t) from (21);

² broadcasts a(k+1)ij to its one-hop neighbors i0 2 −j (t), 8j 2¦i(t);
End For i

End k at k = K when
P

j2¦i(t) ja
(K)
ij ¡ a(K¡1)ij j · ²th or K = Kmax

Decision: Allocation decisions are a¤ij(t) = roundfa(K)ij
g, 8i,j, which form the groups Sj(t) = f8i : a¤ij(t) = 1g, 8j 2 [1,Na].

Measurement Collection Module

For each selected sensor i 2 Sj(t) for some j, it collects TOA and DOA measurements (¿̂ij , μ̂ij) from the allocated

target j with aij(t) = 1, and computes the position measurements zij(t) = (x̂ij , ŷij ) from (2);

Track Fusion Module

One elected sensor node, which acts as a local fusion center, updates the state vectors and covariance matrices

ûj(t j t) and Yj (t j t), 8j, using the sequential KF implementation of (6).

Information Relay Module

For each j 2 [1,Na], a sensor node belonging to Sj(t) is elected as the relaying node whose position is closest to the
target position indicated by û(t j t). The relaying node broadcasts ûj(t j t) and Yj(t j t). When the target does not move
abruptly, the broadcast ensures relaying of necessary information to all sensors in −j (t+1) of the next time, without

needing to know −j(t+1).

TABLE II

Complexity Comparison

Global Greedy Search/ Proposed

Search Heuristics Newton’s Algorithm

O(2NsNa) O(N2s Na) O(N3s Na) O(NsNa)

allocation module, the initialization process requires

each node to broadcast ©ij(t) to its one-hop neighbors,
which leads to the number of Ns initialization
messages. The search process requires that each

selected sensor i 2 −(t) broadcast the temporary
allocation variables a(k)ij one-hop at each iteration.
Assuming Kij(t) is the number of iterations before
termination, there is a total number of Ns+ j−(t)jKij(t)
messages transmitted in the network during the

allocation process at t. Apparently, the communication
cost of our decentralized algorithm is linear in the

network size Ns. As we show later via simulations, our
decentralized algorithm typically converges in dozens

of iterations, which guarantees the energy efficiency

for large networks. The communication costs may

be further reduced in practical tracking systems. For

example, if each sensor node has knowledge about

its neighbors, then sensors can compute ©ij(t) for
their neighbors, without having to communicate these

quantities. Further, for the single target case where

Na = 1, the allocation variables can be computed
without any communication between sensor nodes.

In comparison, a centralized implementation

requires that all selected sensors send their

measurements to a fusion center via multi-hop

communications. The average number of hops needed

per sensor is proportional to the network size Ns,
which means that the total energy consumption is

on the order of O(N2s ) or O(j−(t)jNs). Considering
that the main source of energy usage resides in radio

transmissions, the choice between centralized and

decentralized algorithms depends on which one

consumes more transmission energy, as far as the

network lifetime is concerned. The energy comparison

is system dependent, especially for small-scale

networks. In a centralized implementation, the average

energy consumption is dominated by the network

size. For a decentralized implementation, the energy
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Fig. 1. Comparison of original and simulated trajectories of

targets. Total number of Ns = 100 sensors are randomly deployed,

indicated by rectangles. The 5 targets are marked as t1, t2, t3, t4,

and t5, respectively. Dashed lines with ¤ are simulated trajectories
of proposed technique, and solid lines are true target trajectories

that nearly overlap with dashed lines.

consumption depends heavily on the number of

iterations of searching. Therefore, we cannot claim

that one is superior to the other in all scenarios. In a

small network, the centralized algorithm can be more

advantageous in energy saving. However, in a large

network with hundreds of sensor nodes or/and a very

large coverage area, the decentralized algorithm is

more energy efficient because the communication and

computation costs are scalable to the network size.

V. SIMULATION RESULTS

This section provides simulations to demonstrate

the effectiveness of our proposed MTT system with

distributed sensor management. There are Ns sensors
tracking Na = 5 moving targets, where Ns is chosen in
the range of [100,500] in our simulations. Each sensor

node can monitor a circle with a radius of 25 m. The

target trajectories obey the linear dynamic model in

(4), with parameters given by

Aj(t) =

0BBB@
1 0 ¢t 0

0 1 0 ¢t

0 0 1 0

0 0 0 1

1CCCA

Cj(t) =

0BBB@
0 0

0 0

¢t 0

0 ¢t

1CCCA
(22)

where the sampling interval is ¢t= 1 s. The process
noise is Gaussian distributed with vj(t)»N(0,±2v I),
with ±2v = 0:05.
The Ns sensors are randomly deployed in a

[¡20,160]£ [¡20,100] (m2) rectangular sensing

area. Each sensor node is assumed to follow the

same model settings for sensing, measurement,

and KF. During sensing the SNRs are collected by

assuming that the received power at a sensor obeys

the typical path loss model with power attenuation

proportional to r¡n, where r = c¿ is the distance
between of the source and the sensor and n is the
path loss exponent set to n= 2. During measurement
collection, each sensor independently measures both

the TOA and DOA parameters using a uniform linear

array with N = 4 antenna elements and an effective
signal bandwidth of W = 10 MHz, which are used

to calculate the CRBs Mij(t) using the formula in
[29]. All sensor nodes have the maximal capacity of

tracking Ni = 2 targets, while each target is allowed
to be tracked by more than one sensors. For the

subgradient search used, the step size ® is 0.1, and
the stopping criteria use ²th = 0:0001 and Kmax = 500.
For each test case, a total of 1000 Monte Carlo trials

are performed to assess the average performance of

interest.

A. Tracking Performance

Figure 1 depicts the estimated trajectories of all

targets using our MTT system, with reference to the

true trajectories. The distributed sensor management

and target tracking algorithm in Table I is tested. In

the subgradient search algorithm, the Lagrangian

multiplier ¾j , li and the allocation variables aij are
initialized to be zeros for any i and j. The searching
step ® is set as 0.1.
To quantify the tracking performance, we

investigate the cumulative distribution function

(cdf) of the position errors for all targets based

on Monte Carlo trials. This metric illustrates how

likely an estimation error level would occur. We

compare the two cases of without and with track

fusion, corresponding to adopting
P
j2¦i(t) aij(t) = 1

in (14b) and
P
j2¦i(t) aij(t)¸ 1 in (13b), respectively.

The cdf curves for all the targets are depicted in

Fig. 2. In this figure the solid line indicates the cdf

results of the centralized optimal allocation of the

original integer programming problem (13). The

dashed line represents the cdf from the distributed

subgradient search algorithm for the convex relaxation

problem (15) where track fusion is applied, while

the dashed-dotted line with circles represents the

simulated cdf without track fusion. It shows that

the moving targets can be tracked accurately, and

confirms that tracking with fusion achieves smaller

position estimation errors with higher probability than

tracking without fusion.

Another performance metric of interest is the mean

square errors (MSEs) of the estimated target positions.

Note that the MSE of position estimates depends on

the target trajectories and sensor topology. In Fig. 3

the average MSE for the estimated target trajectories
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Fig. 2. Overall cdfs of position estimation errors for all targets.

Fig. 3. Position estimation MSE averaged over for all five

targets.

of all targets shown in Fig. 1 is plotted versus the

tracking time. Here, each target is allowed to be

tracked by multiple sensors. It illustrates the arithmetic

average MSE for all targets in the system using MTT

with data fusion. It is observed that the outcomes of

the distributed algorithm match well with the optimal

solution to the centralized original problem (13).

To illustrate the sensor allocation results, we use a

small sensor network where 4 sensors are deployed

at [0,¡30], [100,¡30], [0,70], and [100,70]. In
Fig. 4 the allocation results for the second target are

depicted as an example, which describes the allocated

sensor numbers over time. Meanwhile, the allocation

results for sensor 2 are illustrated in Fig. 5, which

describes the target numbers allocated to this sensor

over time. In both cases the decentralized solutions

via iterative subgradient search match well to the

optimal allocation results of the original integer-valued

optimization problem. It testifies that the subgradient

Fig. 4. Sensors assigned for target 2 in tracking. Proposed

distributed subgradient method (marked by “*”) nearly overlaps

with optimal allocation for centralized integer-valued optimization

problem (marked by “o”).

Fig. 5. Comparison of target allocation results for sensor 2 using

distributed subgradient method and centralized optimal solution.

Curves of two schemes are nearly identical.

search algorithm is near optimal in reaching the

centralized global optimal allocation.

B. Convergence of the Distributed Algorithm

Figure 6 illustrates the convergence behavior of the

subgradient search algorithm, using the same network

setup as in the previous example. Interestingly,

the allocation variables for the relaxed real-valued

problem in (15) eventually converge to integer values

0 or 1 in most cases, given a small enough step

size and adequate number of iterations. This means

that there is little or no performance loss due to

the convex relaxation. It is also observed that the

decisions of each sensor on different targets may

converge at a different pace as the targets move
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Fig. 6. Convergence behavior of all allocation variables (®= 0:1, t=2). (a) Sensor 1. (b) Sensor 2. (c) Sensor 3. (d) Sensor 4.

over the network. Nevertheless, even well before

the allocation variables converge to the binary 0 or

1, their fractional values have already converged to

one side of the decision line at 0.5. Binary decisions

made by the nearest neighbor rule would use 0.5

as the threshold, which apparently converges much

faster to the nearest neighborhood of steady-state

values, well before they converge in the MSE sense.

In fact, after dozens of iterations (typically in the

range of [50,100] iterations), it is usually enough

for a sensor node to decide on which target to track

by rounding the fractional allocation variables to

binary 0 or 1. These observations assert two nice

properties of the adopted convex relaxation strategy:

it causes little loss of optimality compared with the

original integer programming problem, and it can be

coupled with the rounding operation to considerably

expedite the convergence rate to the original problem.

Fast convergence is essential for the overall energy

efficiency of distributed implementation.

VI. SUMMARY

This paper has developed a distributed

multi-sensor, MTT framework with focus on

sensor-target allocation. The framework applies to a

range of operating scenarios where different system

configurations can be incorporated into the formulated

constrained optimization problem. Distinct from

previous work on sensor scheduling, the developed

framework not only allows each sensor to contribute

to the tracking of multiple targets, but also allows

multiple sensors to track the same target and use

the track fusion outcomes to dynamically guide

the sensor allocation. Through convex relaxation,

a linear convex problem is developed for sensor

allocation, which is shown to have zero duality gap.

The KKT conditions for this problem are presented,

and a primal-dual solution using subgradient search

is developed for distributed implementation. The

proposed distributed scheme only requires local

one-hop communications to save transmission power.
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It is guaranteed to converge to the global optimum of

the relaxed centralized allocation problem owing to its

sensor cooperation, and it even approaches the global

optimum of the original integer programming problem

as indicated by simulations. The computational

complexity and communication costs are shown to

be tractable and linear in the network size, which is

appealing for energy-constrained large-scale wireless

networks.

There are several worthy topics for future work.

Firstly, this framework can be extended to tracking

systems in which sensors can only collect TOA-only

and DOA-only measurements. Secondly, network

energy conservation can be explicitly reflected in

the sensor allocation formulations by incorporating

a proper form of energy penalty on communications

and computation. For example, when a penalty term is

enforced on the tracking and communication costs,

a sensor may choose to track less than Ni targets
given the tracking constraint (13c), and the number

of active sensors may be reduced. The more active

sensor nodes, the better average MSE performance

at the expense of higher energy consumption. While

our work focuses on near-optimal sensor allocation, it

also can be of interest to consider various suboptimal

sensor selection methods with reduced communication

costs, depending on different scenarios and energy

budgets of sensing and communicating in practical

tracking systems. In general, it is of practical interest

to investigate the tradeoff between the average MSE

in tracking and the energy requirements of various

sensor management options. Thirdly, the impact

of data association errors on sensor management

will be assessed. In general, sensor management is

relatively robust to some small or moderate level

of data association errors, because the allocation

decisions are integer-valued with inherent robustness

to small fractional errors. Further, the impact of

imperfect sensor allocation can be compensated in

the ensuing tracking module in which joint data

association and track fusion are performed. Hence,

the impact of imperfect allocation mainly affects the

energy efficiency of the network, and the impact of

data association eventually has to be assessed on the

tracking performance.
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