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a b s t r a c t 

This paper considers the problem of tracking a network-wide solution that dynamically minimizes the 

summation of time-varying local cost functions of network agents, when some of the agents are malfunc- 

tioning. The malfunctioning agents broadcast faulty values to their neighbors, and lead the optimization 

process to a wrong direction. To mitigate the influence of the malfunctioning agents, we propose a total 

variation (TV) norm regularized formulation that drives the local variables of the regular agents to be 

close, while allows them to be different with the faulty values broadcast by the malfunctioning agents. 

We give a sufficient condition under which consensus of the regular agents is guaranteed, and bound the 

gap between the consensual solution and the optimal solution we pursue as if the malfunctioning agents 

do not exist. A fully decentralized subgradient algorithm is proposed to solve the TV norm regularized 

problem in a dynamic manner. At every time, every regular agent only needs one subgradient evaluation 

of its current local cost function, in addition to combining messages received from neighboring regular 

and malfunctioning agents. The tracking error is proved to be bounded, given that variation of the op- 

timal solution is bounded. Numerical experiments demonstrate the robust tracking performance of the 

proposed algorithm at presence of the malfunctioning agents. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Consider an undirected network consisting of n agents, which

at time k try to cooperatively solve a decentralized dynamic opti-

mization problem 

min 

˜ x k 

n ∑ 

i =1 

f k i ( ̃  x k ) . (1)

Here f k 
i 

: R 

p → R is a convex and differentiable local cost function

only available to agent i at time k and ˜ x k ∈ R 

p is the common opti-

mization variable to all agents. At time k , every agent is allowed to

exchange its current local iterate with network neighbors, followed

by local computation so as to track the dynamic optimal solution.

The purpose of this paper is to develop a robust decentralized dy-

namic optimization algorithm that solves (1) at presence of mal-
� This work is supported by the China National Science Foundation under 

Grant 61573331 and the Anhui Provincial Natural Science Foundation under Grant 

1608085QF130 . Part of this paper has been accepted to the 43th International Con- 

ference on Acoustics, Speech, and Signal Processing, Calgary, Canada, April 15–20, 

2018 [1] . 
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unctioning agents. By malfunctioning agents, we mean those who,

nstead of transmitting local iterates to neighbors, send wrong val-

es (for example, faulty constants or random variables) due to fail-

res of communication or computation units. 

Decentralized dynamic optimization problems in the form of

1) are popular in multi-agent networks with time-varying tasks

2–5] . Examples include adaptive filtering and estimation in a

ireless sensor network [6–8] , target tracking using a group of

obots [9–11] , dynamic resource allocation over a communication

etwork [12–14] , voltage control of a power network [15,16] , to

ame a few. Existing algorithms to solve (1) are (sub)gradient

ethods [8,15] , mirror descent method [5] , alternating direction

ethod of multipliers [2,14] , as well as gradient, Newton, and in-

erior point methods based on the prediction-correction scheme

3,4] . 

Nevertheless, most of the existing works assume that the agents

aithfully follow prescribed optimization protocols: accessing dy-

amic local cost functions, exchanging local iterates, and perform-

ng local computations. This assumption does not always hold true

ince some of the agents might be malfunctioning in practice –

ome may send malicious information to their neighbors so as to

eliberately guide the optimization process to a wrong direction

hat they expect to reach, whilst some may send faulty values to

https://doi.org/10.1016/j.sigpro.2018.06.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
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heir neighbors, not deliberately but due to failures of communica-

ion or computation units. This paper focuses on mitigating the im-

act of malfunctioning agents in decentralized dynamic optimiza-

ion. 

The impact of malfunctioning agents has been analyzed in the

ontext of average consensus over a social network [17–19] . It is

hown that the malfunctioning agents shall bias the network opin-

ons from the consensual state of the regular agents [17] , and the

ocations of the malfunctioning agents are critical to evolution of

he network opinions [18] . Decentralized detection and localiza-

ion methods are proposed in [19] to identify the malfunctioning

gents. To the best of our knowledge, there is no existing work

hat considers the influence of the malfunctioning agents on the

racking performance of decentralized dynamic optimization. 

Our work is tightly related to [20] , whose goal is decentral-

zed static optimization at presence of the malfunctioning agents.

ifferent from the dynamic case studied in this paper, Ben-Ameur

t al. [20] assumes that the local cost functions f k 
i 

are invariant

cross time k . To handle the faulty values broadcast by the mal-

unctioning agents, the total variation (TV) norm of the vector that

tacks all the local variables is penalized. Through minimizing the

ummation of the local cost functions and the TV norm, most lo-

al variables (from the regular agents) are able to reach consen-

us and those outliers (from the malfunctioning agents) are toler-

ted. A subgradient method is proposed to solve this robust decen-

ralized static optimization problem. Our work also adopts the TV

orm penalty to handle the malfunctioning agents and a subgra-

ient algorithm as the optimization tool, but extends their appli-

ations to the dynamic regime. We give a sufficient condition un-

er which consensus of the regular agents is guaranteed, and also

ive an upper bound on the tracking error of the regular agents.

hese results are different to those developed for the static case

n [20] due to the dynamic environment, and provide theoretical

uarantees to the tracking performance of the subgradient method

t presence of the malfunctioning agents. 

Another related work is [21] , which considers decentralized

tochastic optimization. Instead of tracking a dynamic optimal solu-

ion, Koppel et al. [21] minimizes the summation of the local cost

unctions f k 
i 

across all nodes i and all times k . Therefore, the lo-

al iterates are expected to reach a steady-state consensual solu-

ion, given that the stochastic noise of the local cost functions is

ounded. To allow for data heterogeneity across the network, Kop-

el et al. [21] introduces proximity constraints such that neighbor-

ng local variables are close enough, but not necessarily consen-

ual. Though not explicitly claimed in [21] , this approach is also

ble to alleviate the influence of the malfunctioning agents. A sad-

le point method is proposed to solve this constrained stochastic

ptimization problem. Our work is different from [21] in terms of

roblem setting (dynamic versus stochastic), mathematical formu-

ation (TV norm penalty versus proximity constraints), and algo-

ithm design (subgradient versus saddle point). 

The main contributions of this paper are as follows. 

1. We formulate a TV norm regularized problem, which is ro-

bust to presence of the malfunctioning agents ( Section 2 ). We

give a sufficient condition under which consensus of the regu-

lar agents is guaranteed, and bound the gap between the con-

sensual solution and the optimal solution we pursue as if the

malfunctioning agents do not exist ( Section 3.2 ). 

2. We propose a fully decentralized subgradient algorithm to solve

the TV norm regularized problem in a dynamic manner. At ev-

ery time, every regular agent only needs one subgradient evalu-

ation, in addition to combining messages from neighboring reg-

ular and malfunctioning agents ( Section 2 ). We prove that the

tracking error is bounded, given that the variation of the opti-

mal solution is bounded ( Section 3.3 ). 
3. We provide extensive numerical experiments, demonstrating

the robust tracking performance of the proposed algorithm at

presence of the malfunctioning agents ( Section 4 ). 

. Problem formulation and algorithm design 

Let us consider a connected undirected network of n agents V =
 1 , · · · , n } with n = |V| , and a set of edges A . If an edge (i, j) ∈ A ,

hen agents i and j are neighbors, and can communicate with each

ther. We denote the set of agent i ’s neighbors as N i . The agents

im at solving the decentralized dynamic optimization problem in

he form of (1) . We assume that the network is synchronized, and

t time k every agent i strictly conforms to the following protocol:

Step 1. Accessing local cost function f k 
i 

. 

Step 2. Computing local iterate x k 
i 

∈ R 

p . 

Step 3. Broadcasting local iterate x k 
i 

to neighbors j ∈ N i . 

However, some of the agents in the network are malfunction-

ng, meaning that they broadcast faulty values other than local it-

rates. To be specific, denote M as the set of malfunctioning agents

nd R := V\M as the set of regular agents. Define r := |R| and

 := |M| . The subset of edges connecting the regular agents in V
s denoted by E ⊆ A . At time k , malfunctioning agent i ∈ M broad-

asts a variable z k 
i 

∈ R 

p , instead of x k 
i 
, to its neighbors j ∈ N i . The

aulty value may come from deliberate malicious attack, failure of

he computation unit, or breakdown of the communication unit.

ifferent from [17–20] that assume the faulty values are constant

cross time k , we also allow that they are time-varying (for exam-

le, random variables or values generated from certain functions of

ime). Although identifying the malfunctioning agents is possible

n decentralized static optimization [19] , their detection and local-

zation are much more challenging for the dynamic task, especially

hen the faulty values are time-varying. 

Observe that at presence of the malfunctioning agents, it is

eaningless to solve (1) , which minimizes the summation of all

gents’ local cost functions. For example, in multi-robot tracking,

hen several robots are malfunctioning, taking their information

nto consideration shall bias the tracking result. Therefore, at time

 , our goal is no longer solving (1) but finding the dynamic opti-

al solution that minimizes the summation of the regular agents’

ocal cost functions 

˜ 
 

k ∗ := arg min 

˜ x k 

∑ 

i ∈R 

f k i ( ̃  x k ) . (2) 

irectly solving (2) is intractable because the identities of malfunc-

ioning agents are not available in advance. To address this issue,

e introduce a TV norm penalty on the transmitted values, which

nclude the local iterates of the regular agents and the faulty values

rom the malfunctioning agents. For agent i , define R i as the set of

ts regular neighbors and M i := N i \R i as the set of its malfunc-

ioning neighbors. At time k , we expect to approximately solve 

 

k ∗ := [ x k ∗i ] = arg min 

x k :=[ x k 
i 
] 

∑ 

i ∈R 

f k i (x k i ) 

+ λ
∑ 

i ∈R 

( 

1 

2 

∑ 

j∈R i 

‖ x k i − x k j ‖ 1 + 

∑ 

j∈M i 

‖ x k i − z k j ‖ 1 

) 

, (3) 

here x k := [ x k 
i 
] ∈ R 

rp is a vector that stacks all the local variables

 

k 
i 

of regular agents, x k ∗ := [ x k ∗
i 

] ∈ R 

rp is the optimal solution of (3) ,

nd λ is a positive constant penalty factor. The second term in the

ost function of (3) is the TV norm penalty on the transmitted val-

es, whose minimization forces every x k 
i 

to be close to most of the

eceived values on agent i , but allows it to be different to those

eceived outliers [20] . Therefore, when the malfunctioning agents

re sparse within the network, the TV norm penalty helps miti-

ate their negative influence. For the applications of TV norm in

dentifying sparse outliers, readers are referred to [22,23] . 
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We propose a subgradient method to approximately solve (3) in

a decentralized and dynamic manner. The subgradient of the cost

function in (3) with respect to x k 
i 

is 

 

k 
i (x k i ) + λ

( ∑ 

j∈R i 

sign (x k i − x k j ) + 

∑ 

j∈M i 

sign (x k i − z k j ) 

) 

, 

where sign ( · ) is an element-wise sign function. Given a ∈ R ,

sign ( a ) equals to 1 when a > 0, −1 when a < 0, and an arbitrary

value within [ −1 , 1] when a = 0 . Note that this subgradient can be

easily generalized to the case that f k 
i 

is nondifferentiable, as long

as we replace ∇ f k 
i 
(x k 

i 
) by a subgradient of f k 

i 
at x k 

i 
. For every reg-

ular agent i , its subgradient update at time k is 

x k i = x k −1 
i 

− α∇ f k i (x k −1 
i 

) 

−αλ

( ∑ 

j∈R i 

sign (x k −1 
i 

− x k −1 
j 

) + 

∑ 

j∈M i 

sign (x k −1 
i 

− z k −1 
j 

) 

) 

, (4)

where α is a positive constant stepsize. We use a constant stepsize,

Algorithm 1 A subgradient method for robust decentralized dy-

namic optimization. 

Input: x 0 
i 

∈ R 

p for i ∈ R , λ > 0 and α > 0 

1: for Time k = 1 , 2 , · · · , every regular agent i ∈ R do 

2: Receive x k −1 
j 

from regularneighbors j ∈ R i and z k −1 
j 

from

malfunctioning neighbors j ∈ M i . 

3: Access local cost function f k 
i 

. 

4: Update local iterate x k 
i 

according to (4) . 

5: end for 

other than a diminishing one, for the purpose of adapting to the

dynamic cost functions [24] . 

The subgradient method to solve the robust decentralized dy-

namic optimization problem is outlined in Algorithm 1 . The algo-

rithm has two parameters, penalty factor λ and stepsize α. Ev-

ery regular agent i ∈ R initializes its local iterate as x 0 
i 
. At time

k , it accesses the local cost function f k 
i 
, after receiving local iter-

ates x k −1 
j 

from regular neighbors j ∈ R i and broadcast values z k −1 
j 

from malfunctioning neighbors j ∈ M i . Note that agent i does not

need to know which neighbors are regular or malfunctioning; it

only receives broadcast values without distinction. Having all these

information at hand, it updates the local iterate x k 
i 

according to

(4) . For regular agent i , its communication cost per iteration con-

sists of broadcasting a p -dimensional vector to and receiving |N i |
p -dimensional vectors from its neighbors. The computation cost,

which mainly comes from evaluating the local gradient ∇ f k 
i 
(x k −1 

i 
) ,

is lightweight. 

3. Performance analysis 

This section analyzes the tracking performance of the proposed

robust decentralized dynamic optimization algorithm at presence

of the malfunctioning agents. Section 3.1 lists basic assumptions

for the analysis. Section 3.2 investigates the TV norm regularized

problem (3) at any time k , showing the condition under which the

optimal solution of (3) is consensual and its gap from the opti-

mal solution of (2) is bounded. Then in Section 3.3 , we bound the

tracking error of Algorithm 1 , given that the variation of the dy-

namic optimal solution to (2) is bounded. 

3.1. Assumptions 

We make the following assumptions on the dynamic local cost

functions f k 
i 
, which are normal for convex analysis. 
ssumption 1 (Lipschitz continuous gradients). Local cost func-

ions f k 
i 

are differentiable and have Lipschitz continuous gradients

ith Lipschitz constants M 

f k 
i 

< M f i 
, where M f i 

> 0 are constants,

or all regular agents i ∈ R and times k ; namely, for any pair of

oints x i and y i , it holds ‖∇ f k 
i 
(x i ) − ∇ f k 

i 
(y i ) ‖ ≤ M 

f k 
i 
‖ x i − y i ‖ . 

ssumption 2 (Strong convexity). Local cost functions f k 
i 

are

trongly convex with strong convexity constants m 

f k 
i 

> m f i 
, where

 f i 
> 0 are constants, for all regular agents i ∈ R and times k ;

amely, for any pair of points x i and y i , it holds [ x i − y i ] 
T [ ∇ f k 

i 
(x i ) −

f k 
i 
(y i )] ≥ m 

f k 
i 
‖ x i − y i ‖ 2 . 

ssumption 3 (Bounded Gradients at Optimum). Local cost func-

ions f k 
i 

have bounded gradients at ˜ x k ∗, the dynamic optimal so-

ution to (2) , for all regular agents i ∈ R and times k ; namely,

∇ f k 
i 
( ̃  x k ∗) ‖ < ∞ . 

We also assume that the network of the regular agents is bidi-

ectionally connected. Otherwise, consensus among regular agents

s generally impossible. 

ssumption 4 (Network connectivity). The network consisting of

ll regular agents i ∈ R , denoted by (R , E ) , is bidirectionally con-

ected. 

For future usage, define the node-edge incidence matrix A =
 a ie ] ∈ R 

r×|E| of the network with all regular agents. If e = (i, j) ∈ E,

hen we set a ie = 1 and a je = −1 (the order of i and j is arbitrary,

ut by default we consider the ordered edge ( i, j ) with i < j ). If an

gent i is not attached to an edge e , then a ie = 0 . 

The last assumption is about the variation of the dynamic opti-

al solution of (2) over time, which must be bounded to guarantee

easonable tracking performance. 

ssumption 5. For any two successive times k − 1 and k , the vari-

tion of the dynamic optimal solution of (2) is bounded by a posi-

ive constant �; namely 

 ̃

 x k ∗ − ˜ x (k −1) ∗‖ ≤ �. (5)

.2. Gap between (2) and (3) 

Before stating the main result, we introduce an auxiliary prob-

em in the form of 

˜ 
 

k ∗ := arg min 

˜ y k 

∑ 

i ∈R 

f k i ( ̃  y k ) + λ
∑ 

i ∈R 

∑ 

j∈M i 

‖ ̃

 y k − z k j ‖ 1 . (6)

he first-order optimality condition of (6) is that, for any malfunc-

ioning agent j , there exists v j ∈ R 

p whose value satisfies the defi-

ition of sign ( ̃  y k ∗ − z k 
j 
) such that 

1 

λ

∑ 

i ∈R 

∇ f k i ( ̃  y k ∗) + 

∑ 

i ∈R 

∑ 

j∈M i 

v j = 0 . (7)

ndeed, v j is a the subgradient of ‖ ̃  y k − z k 
j 
‖ 1 at the point ˜ y k = ˜ y k ∗.

or notational simplicity, define a vector b k := [ b k 
i 
] ∈ R 

rp whose

 th block b k 
i 

:= ∇ f k 
i 
( ̃  y k ∗) /λ + 

∑ 

j∈M i 
v j . Thus, (7) is equivalent to

 

i ∈R 

b k 
i 

= 0 . An immediate implication of Assumptions 1 –3 , given

y the following lemma, is that b k is upper bounded. Its proof is

n Appendix A . 

emma 1. Under Assumptions 1 –3 , b k are upper bounded for all

imes k; namely, ‖ b k ‖ < ∞ . 

The following lemma provides a sufficient condition under

hich (3) and the auxiliary problem (6) are equivalent. Its proof

s in Appendix B . 
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emma 2. Define a vector u := [ u e ] ∈ R 

|E| p whose eth block is u e ∈
 

p . If there exists u whose elements are within the range of [ −1 , 1] ,

uch that A � I p u + b k = 0 holds, where I p is a p × p identity matrix,

hen under Assumption 2 , the optimal solution x k ∗ := [ x k ∗
i 

] of (3) is

onsensual and all the blocks x k ∗
i 

equal to the optimal solution ˜ y k ∗ of

6) . 

emark 1. Observe that Lemma 2 only provides a sufficient condi-

ion, which is not necessarily tight, for the equivalence of (3) and

6) . Now we show that A � I p u + b k = 0 may have a solution whose

lements are within the range of [ −1 , 1] . 

Since by Assumption 4 , the network consisting of all regular

gents (R , E ) is bidirectionally connected, the node-edge incidence

atrix A is with rank r − 1 and the null space of A 

T is span(1 r ),

here 1 r is an all-one r -dimensional vector. Therefore, any nonzero

 -dimensional vector with summation being 0 is not in the null

pace of A 

T . Consequently, the condition 

∑ 

i ∈R 

b k 
i 

= 0 guarantees

hat b k is not in the null space of A 

T 
�I p and the linear equation

 � I p u + b k = 0 has at least one solution. By Lemma 1 , this solu-

ion is bounded because ‖ b k ‖ < ∞ . 

To further guarantee that the elements of the solution are

ithin the range of [ −1 , 1] , the magnitude of b k must be small

nough. Note that i th block of b k is b k 
i 

= ∇ f k 
i 
( ̃  y k ∗) /λ + 

∑ 

j∈M i 
v j .

he magnitude of the first term ∇ f k 
i 
( ̃  y k ∗) /λ is small as long as λ

s sufficiently large. Because v j ∈ R 

p is a subgradient and its entries

re within the range of [ −1 , 1] , the second term is bounded by

 

∑ 

j∈M i 
v j ‖ ≤ √ 

p |M i | , meaning that the number of malfunction-

ng agents attached to every regular agent must be small enough. 

In summary, Lemma 2 implies that (3) and (6) are equivalent,

iven that the regularization factor λ is large enough and the num-

er of malfunctioning agents is small enough. 

We proceed to show that the optimal solutions of (2) and

6) have a bounded gap in Lemma 3 . Its proof is in Appendix C . 

emma 3. Under Assumption 2 , the distance between the dynamic

ptimal solution ˜ x k ∗ of (2) and the optimal solution ˜ y k ∗ of (6) is

ounded by 

 ̃

 x k ∗ − ˜ y k ∗‖ ≤ �k := 

λ
√ 

p ∑ 

i ∈R 

m f k 
i 

∑ 

i ∈R 

|M i | . (8)

In Lemma 3 , the gap �k is proportional to λ, meaning that

arge λ yields large approximation error. Meanwhile, Remark 1 as-

erts that large λ enhances consensus among the regular agents.

herefore, setting a proper λ helps achieve the tradeoff between

etwork consensus and approximation accuracy. Further, from

emark 1 and Lemma 3 , if the number of malfunctioning neigh-

ors is large, network consensus is difficult to reach and approx-

mation error is also remarkable. This makes sense because the

umber of malfunctioning agents dictates the performance of the

V norm regularized problem. 

Summarizing Lemmas 2 and 3 immediately yields the main

heorem on the bounded gap between (2) and (3) . Therefore, (3) is

 good surrogate of (2) , which minimizes the summation of the

egular agents’ local cost functions. 

heorem 1. Suppose that Assumptions 1–4 hold true. Define a vector

 := [ u e ] ∈ R 

|E| p whose eth block is u e ∈ R 

p . If there exists u whose

lements are within the range of [ −1 , 1] , such that A � I p u + b k = 0

olds, then the optimal solution x k ∗ := [ x k ∗
i 

] of (3) is consensual and

he distance between every block x k ∗
i 

and the optimal solution ˜ x k ∗ of

2) satisfies ‖ x k ∗
i 

− ˜ x k ∗‖ ≤ �k , where �k is defined in (8) . 

Below we provide two simple examples to illustrate the theo-

etical results. 
xample 1. Consider a network consisting of 3 fully connected

egular agents 1, 2 and 3, where two malfunctioning agents 4 and

 are attached to 1 and 2, respectively. For regular agent i , its lo-

al cost function is f k 
i 
( ̃  x ) = ( ̃  x k − i ) 2 / 2 . For malfunctioning agent j ,

e suppose that it always sends a constant z k 
j 
= 10 to its neigh-

or. The optimal solution of (6) is ˜ y k ∗ = 2 + 2 λ/ 3 if 0 < λ< 12 and

˜  k ∗ = 10 if λ≥ 12. The optimal solution of (3) , if reaching consen-

us, is x k ∗
i 

= ˜ y k ∗ for all i ∈ R . Numerical experiments show that

uch a consensus is attainable when λ≥ 0.44. 

Now we check the theoretical condition given by Theorem 1 .

he node-edge incidence matrix of the regular agents is 

 = 

( 

1 1 0 

−1 0 1 

0 −1 −1 

) 

. 

he vector b k = [1 /λ − 1 / 3 ;−1 / 3 ; −1 /λ + 2 / 3] T if 0 < λ< 12 and

 

k = [ −3 /λ;−4 /λ; 7 /λ] T if λ≥ 12. Because b k is not in the null

pace of A 

T , a sufficient condition for Au + b k = 0 to have a so-

ution whose elements are within the range of [ −1 , 1] is that

 b k ‖ / σ min ≤ 1, where σ min is the smallest nonzero singular value

f A . For this case, σmin = 

√ 

3 . Thus, it can be predicted that when

≥ 0.59, the optimal solution of (3) is consensual and every block

s the same as that of (6) . This theoretical threshold is close to the

umerical threshold 0.44. 

Then we check the gap between ˜ x k ∗ and ˜ y k ∗. Because ˜ x k ∗ = 2 ,

 ̃ x k ∗ − ˜ y k ∗‖ = 2 λ/ 3 if 0 < λ< 12 and ‖ ̃ x k ∗ − ˜ y k ∗‖ = 8 if λ≥ 12. This

s close to the theoretical gap 2 
√ 

3 λ/ 3 as predicted by Theorem 2 . 

xample 2. Consider another example whose setting is the same

s that in Example 1 , except that regular agents 2 and 3 are not

onnected. For this case, the node-edge incidence matrix of the

egular agents is 

 = 

( 

1 1 

−1 0 

0 −1 

) 

, 

whose smallest nonzero singular value is 1. Similar to the dis-

ussion in Example 1 , the theoretical condition for the equivalence

f (3) and (6) is λ≥ 0.87, while the numerical result is λ≥ 0.75.

he gap between ˜ x k ∗ and ˜ y k ∗ is the same as that in Example 1 . 

With particular note, Ben-Ameur et al. [20] analyzes conditions

nder which (3) achieves consensus, as well as (2) and (3) are

quivalent, given that all the agents are regular. Here we extend

he result to the more challenging case that the malfunctioning

gents exist and play negative roles. In addition, Ben-Ameur et al.

20] considers the static TV norm regularized problem, while we

urther investigate the dynamic tracking performance, as shown

elow. 

.3. Tracking performance 

Theorem 1 asserts that (3) is a good approximation of (2) . Now

e further show that Algorithm 1 , which approximately solves

3) using one subgradient evaluation per time, other than running

n inner loop of multiple subgradient evaluations at each time in-

ex, tracks the optimal solution of (3) with bounded error. 

heorem 2. Given that the conditions of Theorem 1 as well as

ssumption 5 hold true, the tracking error between x k and the op-

imal solution of (3) is upper bounded by 
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p  
‖ x k −x k ∗‖ ≤c k ‖ x 0 − x 0 ∗‖ + 

1 

1 −c 

(
2 c 

√ 

r max k �
k + c 

√ 

r � + d 
)
, (9)

if the stepsize α < min k 1 / ( min i ∈R 

m 

f k 
i 

+ max i ∈R 

M 

f k 
i 
) .

Here c := max k (1 − 2 αm f k M f k / (m f k + M f k )) 
1 / 2 and d :=

(8 α2 λ2 p 
∑ 

i ∈R 

|N i | 2 ) 1 / 2 are two constants. 

Since c is a constant within the range of (0,1), Theorem 2 im-

plies that the influence of the initial tracking error ‖ x 0 − x 0 ∗‖ van-

ishes at an exponential rate. The steady-state tracking error, as

k → ∞ , is proportional to max k �
k (the gap between the optimal

solutions of (2) and (6) ), � (the variation of the dynamic optimal

solution of (2) ), as well as ( 
∑ 

i ∈R 

|N i | 2 ) 1 / 2 (a constant determined

by the topology of regular and malfunctioning agents). 

Note that the term d in (9) depends on N i , not M i , due to the

proof techniques. To be specific, the proof in Appendix D needs

to bound the subgradient of the cost function in (3) , which re-

lies on not only M i (malfunctioning agents), but also R i (regular

agents). On the other hand, when we increase the connections be-

tween regular agents, the conditions in Theorem 2 can be satisfied

for a smaller λ. Therefore, the value of d could be reduced through

selecting a smaller λ so as to reduce the upper bound of the track-

ing error. 

Theorem 2 shows how Algorithm 1 tracks the optimal solution

of (3) . Combining Theorems 1 and 2 , it is straightforward assert

that Algorithm 1 is also able to track the dynamic optimal solution

of (2) with bounded error. 

Corollary 1. Given that the conditions of Theorem 1 as well as

Assumption 5 hold true, the tracking error between x k and the op-

timal solution of (2) is upper bounded by 

‖ x k − [ ̃  x k ∗] ‖ ≤ c k ‖ x 0 − x 0 ∗‖ 

+ 

1 

1 − c 

(
(1 + c) 

√ 

r max k �
k + c 

√ 

r � + d 
)
, (10)

if the stepsize α < min k 1 / ( min i ∈R 

m 

f k 
i 

+ max i ∈R 

M 

f k 
i 
) .

Here c := max k (1 − 2 αm f k M f k / (m f k + M f k )) 
1 / 2 and d :=

(8 α2 λ2 p 
∑ 

i ∈R 

|N i | 2 ) 1 / 2 are two constants, and [ ̃ x k ∗] ∈ R 

rp stacks r

optimal solution ˜ x k ∗ of (2) . 

4. Numerical experiments 

This section provides numerical experiments to demonstrate ro-

bustness of the proposed decentralized dynamic optimization algo-

rithm at presence of the malfunctioning agents. We compare the

proposed algorithm with the dynamic version of the celebrated de-

centralized gradient descent (DGD) method [25] , which does not

consider mitigating the influence of the malfunctioning agents. At

time k , DGD updates the local variables as 

x k +1 
i 

= 

∑ 

j∈R i 

w i j x 
k 
j + 

∑ 

j∈M i 

w i j z 
k 
j − β∇ f i (x k i ) , (11)

for all i ∈ R . Here β is a positive constant stepsize, and W = [ w i j ] ∈
R 

n ×n is the mixing matrix of the entire network including both

regular and malfunctioning agents. In the numerical experiments,

we choose W according to the maximum-degree rule [26] . 

We consider two kinds graphs, both with n = 100 agents. The

first one is a random geometric graph, which uniformly randomly

places 100 agents in a two-dimensional area [0, 3] × [0, 3] and

treats two agents as neighbors if and only if their distance is less

than 1. The second one is a line graph. The agents track a mov-

ing target whose true position x̌ k ∈ R 

2 evolves along a 3/4 cir-

cle, starting from (0,0), heading to (−3 , 3) and then (6,0), and

ending at (3,3). The velocity of the target is constant and each

1/4 circle takes 100 time slots. At time k , regular agent i mea-

sures a true position x̌ k through a linear observation function y k 
i 

=

 

k 
i 

x̌ k + e k 
i 
, where elements of the measurement matrix H 

k 
i 

∈ R 

2 ×2 

ollow normal distribution N (0 , 1) and elements of the measure-

ent noise e k 
i 

∈ R 

2 follow normal distribution N (0 , 1) . Thus, the

egular agents aim at finding ˜ x k ∗ := arg min 

∑ 

i ∈R 

f k 
i 
( ̃  x k ) , where

f k 
i 
( ̃  x k ) = ‖ H 

k 
i 

˜ x k − y k 
i 
‖ 2 / 2 . The performance metric is tracking error

efined by 
∑ 

i ∈R 

‖ x k 
i 

− ˜ x k ∗‖ /r. 

.1. Comparison with DGD 

We first compare Algorithm 1 with DGD in terms of their ro-

ustness to malfunctioning agents over both random geometric

raph and line graph. 

.1.1. Random geometric graph 

Randomly choose m = 3 malfunctioning agents among n = 100

gents, but guarantee that the network of regular agents is con-

ected. Suppose that the malfunctioning agents broadcast the

ame faulty vectors. We consider three different settings for faulty

ectors: for all k and for all i ∈ M , z k 
i 

= [5 ; 5] , z k 
i 

= [10 ; 10] , or

 

k 
i 

= [20 ; 20] . 

Performance of DGD with stepsize β = 0 . 2 , which is hand-

uned to yield balanced tracking performance, is illustrated in

ig. 1 . The left plot compares the true signal x̌ k and the decen-

ralized estimates of a randomly chosen regular agent for different

evels of faulty values. When the magnitude of the faulty vectors

ecomes larger, the bias between the decentralized estimate and

he true signal also becomes more significant. The impact of the

aulty vectors can be further observed from the right plot, which

hows the overall tracking error of the network. As the faulty vec-

ors vary from [5,5] to [20,20], the steady-state tracking error in-

reases from around 0.5 to around 2. 

Performance of Algorithm 1 with stepsize α = 0 . 1 and regular-

zation parameter λ = 0 . 1 is illustrated in Fig. 2 . Thanks to the TV

orm regularization term, the network is not sensitive to the faulty

ectors broadcast by the malfunctioning agents. The left plot shows

hat, no matter how the faulty vectors vary, the decentralized es-

imate of a randomly chosen regular agent is always close to the

rue signal x̌ k . The right plot depicts that the steady-state tracking

rrors are always around 0.3, which are much smaller than those

f DGD, for all the three cases. 

.1.2. Line graph 

The line graph connects agent i with agent i + 1 from i = 1 to

 = 99 . Choose m = 2 malfunctioning agents labelled as 1 and 100,

hich are the end nodes of the line. Similar to the previous setting,

e consider three different levels for faulty vectors: for all k and

or all i ∈ M , z k 
i 

= [5 ; 5] , z k 
i 

= [10 ; 10] , or z k 
i 

= [20 ; 20] . 

Fig. 3 shows performance of DGD with stepsize β = 0 . 2 . The left

lot demonstrates the true signal x̌ k and the decentralized esti-

ates of regular agent 2, which is directly connected with mal-

unctioning agent 1. The presence of a neighbor that constantly

roadcasts faulty vectors has significant influence on the estimates

f agent 2. When the faulty vectors are as large as [20; 20], agent

 is almost unable to track the true trajectory. Interestingly, the av-

rage impact of the malfunctioning agents does not vary too much

hen the magnitude of the faulty vectors increases, as observed

rom the overall tracking error in the right plot. We conjecture

hat the faulty vectors have to propagate from the end nodes to

he middle of the network, and their impact decays when the line

raph is large. Therefore, a large number of regular agents are still

ble to track the true trajectory well in this case (observed in the

xperiments but not shown here), even though the magnitude of

he faulty vectors is large. 

We test Algorithm 1 with stepsize α = 0 . 1 and regularization

arameter λ = 0 . 1 over the line graph, as shown in Fig. 4 . The left
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Fig. 1. DGD with three malfunctioning agents broadcasting the same faulty vectors, [5; 5], [10; 10] or [20; 20], over a random geometric graph. Left: True signal and 

decentralized estimates of a randomly chosen regular agent. Right: Tracking error of the network. 

Fig. 2. Algorithm 1 with three malfunctioning agents broadcasting the same faulty vectors, [5; 5], [10; 10] or [20; 20], over a random geometric graph. Left: True signal and 

decentralized estimates of a randomly chosen regular agent. Right: Tracking error of the network. 

Fig. 3. DGD with malfunctioning agents 1 and 100 broadcasting the same faulty vectors, [5; 5], [10; 10] or [20; 20], over a line graph. Left: True signal and decentralized 

estimates of regular agent 2. Right: Tracking error of the network. 
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lot demonstrate that, even constantly disturbed by a malfunction-

ng agent, regular agent 2 still gives satisfactory decentralized es-

imates that are close to the true signal x̌ k . The steady-state track-

ng errors depicted in the right plot are lower than 0.4, which are

uch smaller than those of DGD. 
Note that for the line graph, there does not exist any u whose

lements are within the range of [ −1 , 1] , such that A � I p u + b k = 0

olds. Though there is no theoretical guarantee, the proposed ro-

ust decentralized dynamic optimization algorithm still performs

ell, demonstrating its adaptability to network topology. 
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Fig. 4. Algorithm 1 with malfunctioning agents 1 and 100 broadcasting the same faulty vectors, [5; 5], [10; 10] or [20; 20], over a line graph. Left: True signal and decen- 

tralized estimates of regular agent 2. Right: Tracking error of the network. 

Fig. 5. Algorithm 1 with three malfunctioning agents broadcasting the same faulty vectors [10; 10] over a random geometric graph, while the regularization parameter λ

varies from 0, 0.02, 0.1, 0.3 to 0.5. Left: True signal and decentralized estimates of a randomly chosen regular agent. Right: Tracking error of the network. 
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4.2. Impact of various factors on Algorithm 1 

Now we investigate the impact of various factors, including

the regularization parameter λ, the number of malfunctioning

agents m and the form of faulty values, on the performance of

Algorithm 1 . All the experiments are conducted over the random

geometric graph with m = 100 agents. 

4.2.1. Impact of regularization parameter λ
Randomly choose m = 3 malfunctioning agents among n = 100

agents and suppose that the malfunctioning agents broadcast the

same faulty vectors [10; 10]. The stepsize remains to be α = 0 . 1

but the regularization parameter λ varies from 0, 0.02, 0.1, 0.3 to

0.5. Note that λ = 0 corresponds to that the malfunctioning agents

do not collaborate with any others, no matter regular or malfunc-

tioning, and independently optimize their own local cost functions.

The left plot of Fig. 5 shows the decentralized estimates of a ran-

dom regular agent, which are not far away from the true signal and

are robust to the setting of λ. Observing the right plot, we can see

that too large or too small λ both yield large steady-state tracking

error. 

In practice, selecting a proper λ so as to minimize the tracking

error is a challenging task. Indeed, Ben-Ameur et al. [20] provides

guidelines of selecting λ for two specific problems (average con-

sensus and medium consensus), when the environment is static
nd the malfunctioning agents are absent. For a general problem

nder dynamic environment and at presence of malfunctioning

gents, calculating the optimal λ relies on the global knowledge

f the network topology and the local cost functions. However, the

heoretical analysis still provides clues of selecting λ. As we have

iscussed after Lemma 3 , a large λ helps consensus of the regu-

ar agents, but the reached consensus is not necessarily close to

he dynamic optimal solution. Therefore, to achieve the tradeoff

etween consensus and approximation accuracy, we recommend

o select a relatively small λ, which allows the regular agents to

e “selfish” such that network-wide consensus is only slightly vio-

ated. Nevertheless, when the measurement noise becomes larger,

he best λ should also be larger, because “selfish” decisions in-

vitably lead to significant tracking errors. 

For every λ, we also count the number of time steps that the

heoretical condition is satisfied, namely, there exists u whose el-

ments are within the range of [ −1 , 1] such that A � I p u + b k = 0

olds. When λ = 0 . 3 and λ = 0 . 5 , 12 and 208 steps out of 300 sat-

sfy the condition, respectively. The condition cannot be satisfied

hen λ≤ 0.1 and is always satisfied when λ≥ 1. Note that the con-

ition is sufficient and not necessarily tight. We can observe that

he proposed algorithm is robust even when there is no theoretical

uarantee. How to establish a tighter condition remains an open

roblem. 



W. Xu et al. / Signal Processing 153 (2018) 24–33 31 

Fig. 6. Algorithm 1 with m malfunctioning agents broadcasting the same faulty vectors [10; 10] over a random geometric graph, while the number of malfunctioning agents 

m varies from 5, 20 to 40. Left: True signal and decentralized estimates of a randomly chosen regular agent. Right: Tracking error of the network. 

Fig. 7. Algorithm 1 with three malfunctioning agents broadcasting different forms of faulty values over a random geometric graph. Left: True signal and decentralized 

estimates of a randomly chosen regular agent. Right: Tracking error of the network. 
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.2.2. Impact of number of malfunctioning agents m 

Setting stepsize α = 0 . 1 and regularization parameter λ = 0 . 1 in

lgorithm 1 , we vary the number of malfunctioning agents m from

, 20 to 40. The m malfunctioning agents are randomly chosen,

ut guaranteeing that the network of regular agents remains con-

ected. The malfunctioning agents broadcast the same faulty vec-

ors [10; 10]. The left plot of Fig. 6 shows the true signal and the

ecentralized estimates of one agent, which is always regular in

he experiments. Surprisingly, even at presence of 40 malfunction-

ng agents, the regular agents are still able to track the true sig-

al well. The tracking error in the right plot increases from around

.3 to around 0.8, when m increases from 5 to 40. Therefore, the

V norm regularization is robust even when the malfunctioning

gents are no longer sparse within the network. 

.2.3. Impact of form of faulty values 

Finally, we validate that Algorithm 1 is robust to different forms

f faulty values. Also consider the random geometric graph with

 = 3 malfunctioning agents out of n = 100 . The stepsize is α =
 . 1 and the regularization parameter λ = 0 . 1 . We consider three

orms of faulty values. Track 1: the malfunctioning agents broad-

ast fixed faulty vectors [20; 20]. Track 2: the malfunctioning

gents broadcast random faulty vectors whose elements are uni-

ormly randomly chosen within [10, 15]. Track 3: each faulty vector

lso evolves along a 3/4 circle, but with an overshoot of 1/4 circle

for example, the faulty vector is (−3 , 3) when the true signal is
0,0). Observing the decentralized estimates of a randomly chosen

egular agent in the left plot as well as the tracking error of the

etwork in the right plot of Fig. 7 , we conclude that the proposed

V norm regularization technique and the subgradient method are

nsensitive to the form of faulty values. 

. Conclusion 

Dynamically minimizing the summation of time-varying local

ost functions over a network is of particular interest in various

pplications, such as target tracking and adaptive filtering. How-

ver, some of the network agents could be malfunctioning due

o the failures of their computation and/or communication units.

hen the regular agents broadcast their current iterates, the mal-

unctioning agents broadcast faulty values, and hence lead the op-

imization process to a wrong direction. Through introducing TV

orm regularization that has been proved to be a powerful tool in

ecentralized static optimization in [20] into decentralized dynamic

ptimization, we force the local variables of the regular agents to

e close while allows them to be different with the faulty values

roadcast by the malfunctioning agents. A fully decentralized sub-

radient algorithm is proposed to dynamically solve the TV norm

egularized problem. The tracking error is proved to be bounded,

iven that the variation of the optimal solution is also bounded.

umerical experiments demonstrate that, at presence of the mal-
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functioning agents, the proposed algorithm is superior to the dy-

namic version of DGD in terms of the tracking error. 

In the future work, we shall try to intelligently identify the mal-

functioning agents, and correct the optimization process using the

identification result so as to further enhance the robust tracking

performance. This is related to the adversarial agent identification

problem in randomized gossiping [19] and distributed detection

[27,28] . Another direction of research is to analyze the performance

of the proposed algorithm when the faulty messages are not arbi-

trary but follow certain rules, which could enable us to establish a

tighter bound of the tracking error. 

Appendix A. Proof of Lemma 1 

Proof. By Assumption 2 , 
∑ 

i ∈R 

f k 
i 
( ̃  x k ) is also strongly convex with

constant 
∑ 

i ∈R 

m 

f k 
i 

. Therefore, we have 

‖ ̃

 x k ∗ − ˜ y k ∗‖ ≤ 1 ∑ 

i ∈R 

m f k 
i 

‖ 

∑ 

i ∈R 

∇ f k i ( ̃  x k ∗) −
∑ 

i ∈R 

∇ f k i ( ̃  y k ∗) ‖ . (A.1)

From the first-order optimality condition of (2) , 
∑ 

i ∈R ∇ f k 
i 
( ̃  x k ∗) = 0 . From (7) , the first-order optimality condition of

(6) , 
∑ 

i ∈R 

∇ f k 
i 
( ̃  y k ∗) = −λ

∑ 

i ∈R 

∑ 

j∈M i 
v j . Thus, we can rewrite the

right-hand side of (A.1) and obtain 

‖ ̃

 x k ∗ − ˜ y k ∗‖ ≤ 1 ∑ 

i ∈R 

m f k 
i 

‖ λ
∑ 

i ∈R 

∑ 

j∈M i 

v j ‖ (A.2)

≤ λ
√ 

p 
∑ 

i ∈R 

|M i | ∑ 

i ∈R 

m f k 
i 

. 

By Assumption 1 , f k 
i 

has Lipschitz continuous gradients with con-

stant M 

f k 
i 

such that ‖∇ f k 
i 
( ̃  x k ∗) − ∇ f k 

i 
( ̃  y k ∗) ‖ ≤ M 

f k 
i 
‖ ̃ x k ∗ − ˜ y k ∗‖ . This

fact and (A.2) imply that 

‖∇ f k i ( ̃  x k ∗) − ∇ f k i ( ̃  y k ∗) ‖ ≤
λ
√ 

p M f k 
i 

∑ 

i ∈R 

|M i | ∑ 

i ∈R 

m f k 
i 

. (A.3)

Also noticing that ‖ ∑ 

j∈M i 
v j ‖ ≤ √ 

p |M i | because v j ∈ R 

p is a sub-

gradient and its entries are within the range of [ −1 , 1] , we can

bound b k 
i 

= ∇ f k 
i 
( ̃  y k ∗) /λ + 

∑ 

j∈M i 
v j by 

‖ b k i ‖ ≤ 1 

λ
‖∇ f k i ( ̃  x k ∗) ‖ + 

1 

λ
‖∇ f k i ( ̃  x k ∗) − ∇ f k i ( ̃  y k ∗) ‖ + ‖ 

∑ 

j∈M i 

v j ‖ 

≤ 1 

λ
‖∇ f k i ( ̃  x k ∗) ‖ + 

√ 

p M f k 
i 

∑ 

i ∈R 

|M i | ∑ 

i ∈R 

m f k 
i 

+ 

√ 

p |M i | . (A.4)

Because ‖∇ f k 
i 
( ̃  x k ∗) ‖ < ∞ according to Assumption 3 , we have

‖ b k 
i 
‖ ≤ ∞ , which implies that ‖ b k ‖ ≤∞ and completes the

proof. �

Appendix B. Proof of Lemma 2 

Proof. The optimality condition of (3) is that 

1 

λ
∇ f k i (x k ∗i ) + 

∑ 

j∈R i 

u i j + 

∑ 

j∈M i 

v i j = 0 , ∀ i ∈ R , (B.1)

where the value of u ij satisfies the definition of sign (x k ∗
i 

− x k ∗
j 

) for

every i ∈ R and j ∈ R i , and the value of v ij satisfies the definition

of sign (x k ∗
i 

− z k 
j 
) for every i ∈ R and j ∈ M i . The optimal solution

x k ∗ is unique since f k 
i 

is strongly convex by Assumption 2 . 

By hypothesis, there exist a group of variables u e whose ele-

ments are within the range of [ −1 , 1] for all edges e , such that
 � I p u + b k = 0 with u = [ u e ] . Substituting the definitions of A and

 

k yields 

1 

λ
∇ f k i ( ̃  y k ∗) + 

∑ 

j : e =(i, j ) 

u e −
∑ 

j: e =( j,i ) 

u e + 

∑ 

j∈M i 

v j = 0 , (B.2)

or all i ∈ R . Since the elements of u e are within the range of

 −1 , 1] , the value of u e satisfies the definition of sign (0) for every

dge e = (i, j) or e = ( j, i ) , where i ∈ R and j ∈ R i . Meanwhile, The

alue of v ij satisfies the definition of sign ( ̃  y k ∗ − z k 
j 
) for every i ∈ R

nd j ∈ M i . Thus, there exists a group of variables x k ∗
i 

= ˜ y k ∗ for all

 ∈ R , u i j = u e for all e = (i, j) with i ∈ R , j ∈ R i and i < j , u i j = −u e
or all e = (i, j) with i ∈ R , j ∈ R i and i > j , as well as v i j = v j for

ll i ∈ R and j ∈ M i , such that (B.1) holds. Thus, we conclude that

 

k ∗
i 

= ˜ y k ∗, ∀ i ∈ R is the optimal solution of (3) , where ˜ y k ∗ is the op-

imal solution of (6) . �

ppendix C. Proof of Lemma 3 

roof. The first-order optimality condition of (2) is 

 

i ∈R 

∇ f k i ( ̃  x k ∗) = 0 . (C.1)

he first-order optimality condition of (6) is that, for any malfunc-

ioning agent j , there exists v j ∈ R 

p whose value satisfies the defi-

ition of sign ( ̃  y k ∗ − z k 
j 
) such that 

 

i ∈R 

∇ f k i ( ̃  y k ∗) + λ
∑ 

i ∈R 

∑ 

j∈M i 

v j = 0 . (C.2)

ubtracting (C.1) and (C.2) , we have 

‖ 

∑ 

i ∈R 

∑ 

j∈M i 

v j ‖ = ‖ 

∑ 

i ∈R 

(∇ f k i ( ̃  x k ∗) − ∇ f k i ( ̃  y k ∗) 
)‖ (C.3)

≥
∑ 

i ∈R 

m f k 
i 
‖ ̃

 x k ∗ − ˜ y k ∗‖ . 

he last inequality holds because 
∑ 

i ∈R 

f k 
i 
( ̃  x k ) is strongly

onvex with constant 
∑ 

i ∈R 

m 

f k 
i 

. Applying the inequality

 

∑ 

i ∈R 

∑ 

j∈M i 
v j ‖ ≤ √ 

p 
∑ 

i ∈R 

|M i | to (C.3) yields (8) and com-

letes the proof. �

ppendix D. Proof of Theorem 1 

roof. For notational simplicity, define x k := [ x k 
i 
] ∈ R 

rp as a vec-

or that stacks all the local variables x k 
i 

of regular agents.

lso define two functions f k (x k ) := 

∑ 

i ∈R 

f k 
i 
(x k 

i 
) and g k (x k ) :=

(λ/ 2) 
∑ 

i ∈R 

∑ 

j∈R i 
‖ x k 

i 
− x k 

j 
‖ 1 + λ

∑ 

i ∈R 

∑ 

j∈M i 
‖ x k 

i 
− z k 

j 
‖ 1 . With these

efinitions, the update of x k in Algorithm 1 is 

 

k = x k −1 − α
(∇ f k (x k −1 ) + ∂g k (x k −1 ) 

)
, (D.1)

here ∂g k (x k −1 ) is a subgradient of g k at x k −1 . Subtracting both

ides of (D.1) by x k ∗ and taking squares, we have 

 x k −x k ∗‖ 

2 = ‖ x k −1 −x k ∗‖ 

2 −2 α〈∇ f k (x k −1 ) + ∂g k (x k −1 ) , x k −1 − x k ∗〉
+ α2 ‖∇ f k (x k −1 ) + ∂g k (x k −1 ) ‖ 

2 . (D.2

Now we process the second term at the right-hand side of

D.2) . Using the fact ∇ f k (x k ∗) + ∂g k (x k ∗) = 0 to split this term as 

−2 α〈∇ f k (x k −1 ) + ∂g k (x k −1 ) , x k −1 − x k ∗〉 
= −2 α〈∇ f k (x k −1 ) − ∇ f k (x k ∗) , x k −1 − x k ∗〉 
− 2 α〈∇∂g k (x k −1 ) − ∂g k (x k ∗) , x k −1 − x k ∗〉 . (D.3)
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ccording to Assumptions 1 and 2 , f k ( x ) is strongly convex with

onstant m f k = min i ∈R 

m 

f k 
i 

and has Lipschitz continuous gradients

ith constant M f k = max i ∈R 

M 

f k 
i 

. Thus, we have 

− 2 α〈∇ f k (x k −1 ) − ∇ f k (x k ∗) , x k −1 − x k ∗〉 
≤ −2 αm f k M f k 

m f k + M f k 
‖ x k −1 − x k ∗‖ 

2 

− 2 α

m f k + M f k 
‖∇ f k (x k −1 ) − ∇ f k (x k ∗) ‖ 

2 . (D.4) 

y the convexity of g k ( x ), we also have 

2 α〈∇∂g k (x k −1 ) − ∂g k (x k ∗) , x k −1 − x k ∗〉 ≤ 0 . (D.5) 

ubstituting (D.4) and (D.5) into (D.3) yields 

−2 α〈∇ f k (x k −1 ) + ∂g k (x k −1 ) , x k −1 − x k ∗〉 
≤ −2 αm f k M f k 

m f k + M f k 
‖ x k −1 − x k ∗‖ 

2 

− 2 α

m f k + M f k 
‖∇ f k (x k −1 ) − ∇ f k (x k ∗) ‖ 

2 . (D.6) 

In addition, using the fact of ∇ f k (x k ∗) + ∂g k (x k ∗) = 0 again, the

hird term at the right-hand side of (D.2) satisfies 

α2 ‖∇ f k (x k −1 ) + ∂g k (x k −1 ) ‖ 

2 

= α2 ‖∇ f k (x k −1 ) − ∇ f k (x k ∗) + ∂g k (x k −1 ) − ∂g(x k ∗) ‖ 

2 

≤ 2 α2 ‖∇ f k (x k −1 ) − ∇ f k (x k ∗) ‖ 

2 + 2 α2 ‖ ∂g k (x k −1 ) 

−∂g k (x k ∗) ‖ 

2 . (D.7) 

Substituting (D.6) and (D.7) into (D.2) , we have 

‖ x k − x k ∗‖ 

2 ≤
(

1 − 2 αm f k M f k 

m f k + M f k 

)
‖ x k −1 

− x k ∗‖ 

2 + 2 α2 ‖ ∂g k (x k −1 ) − ∂g k (x k ∗) ‖ 

2 

+ 

(
2 α2 − 2 α

m f k + M f k 

)
‖∇ f k (x k −1 ) − ∇ f k (x k ∗) ‖ 

2 . (D.8) 

ccording to the definitions of g k ( x ) and its subgra-

ient, we know ‖ ∂g k (x ) ‖ 2 ≤ λ2 p 
∑ 

i ∈R 

|N i | 2 such that

 α2 ‖ ∂g k (x k −1 ) − ∂g k (x k ∗) ‖ 2 ≤ 8 α2 λ2 p 
∑ 

i ∈R 

|N i | 2 . Mean-

hile, because α ≤ min k 1 / (m f k + M f k ) , the coefficients

 − 2 αm f k M f k / (m f k + M f k ) ≥ 0 and 2 α2 − 2 α/ (m f k + M f k ) ≤ 0 .

herefore, (D.8) becomes 

‖ x k − x k ∗‖ 

2 ≤
(

1 − 2 αm f k M f k 

m f k + M f k 

)
‖ x k −1 − x k ∗‖ 

2 + 8 α2 λ2 p 
∑ 

i ∈R 

|N i |

(D.

nd consequently 

‖ x k − x k ∗‖ ≤
(

1 − 2 αm f k M f k 

m f k + M f k 

)1 / 2 

‖ x k −1 − x k ∗‖ 

+ 

( 

8 α2 λ2 p 
∑ 

i ∈R 

|N i | 2 
) 1 / 2 

≤ c‖ x k −1 − x k ∗‖ + d. (D.10) 

ere, for notational simplicity define two constants c := max k (1 −
 αm f k M f k / (m f k + M f k )) 

1 / 2 and d := (8 α2 λ2 p 
∑ 

i ∈R 

|N i | 2 ) 1 / 2 . Ap-

lying the triangle inequality to (D.10) yields 

‖ x k − x k ∗‖ ≤ c‖ x k −1 − x (k −1) ∗‖ + c‖ x (k −1) ∗ − [ ̃  x (k −1) ∗] ‖ + c‖ [ ̃  x (k −1)

− [ ̃  x k ∗] ‖ + c‖ [ ̃  x k ∗] − x k ∗‖ + d. (D.1

ere [ ̃ x k ∗] ∈ R 

rp stacks r dynamic optimal solution ˜ x k ∗ of

2) . According to Theorem 1 , ‖ x k ∗
i 

− ˜ x k ∗‖ ≤ �k , and hence
 x k ∗ − [ ̃ x k ∗] ‖ ≤ √ 

r �k ≤ √ 

r max k �
k . This inequality also holds

rue for time k − 1 such that ‖ x (k −1) ∗ − [ ̃ x (k −1) ∗] ‖ ≤ √ 

r max k �
k .

y Assumption 5 , ‖ ̃ x k ∗ − ˜ x (k −1) ∗‖ ≤ �, which implies ‖ [ ̃ x k ∗] −
 ̃ x (k −1) ∗] ‖ ≤ √ 

r �. Therefore, from (D.11) we have 

 x k − x k ∗‖ ≤ c‖ x k −1 − x (k −1) ∗‖ + 2 c 
√ 

r max k �
k + c 

√ 

r � + d. (D.12) 

ultiplying c k −t to the two sides of (D.12) for time k = t, summing

p from time 1 to time k , and applying telescopic cancellation, we

btain (9) and complete the proof. �
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