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ON THE CONVERGENCE OF DECENTRALIZED GRADIENT
DESCENT∗

KUN YUAN† , QING LING† , AND WOTAO YIN‡

Abstract. Consider the consensus problem of minimizing f(x) =
∑n

i=1 fi(x), where x ∈ Rp

and each fi is only known to the individual agent i in a connected network of n agents. To solve this
problem and obtain the solution, all the agents collaborate with their neighbors through information
exchange. This type of decentralized computation does not need a fusion center, offers better network
load balance, and improves data privacy. This paper studies the decentralized gradient descent
method [A. Nedic and A. Ozdaglar, IEEE Trans. Automat. Control, 54 (2009), pp. 48–61], in which
each agent i updates its local variable x(i) ∈ Rn by combining the average of its neighbors’ with a
local negative-gradient step −α∇fi(x(i)). The method is described by the iteration x(i)(k + 1) ←∑n

j=1 wijx(j)(k)−α∇fi(x(i)(k)), for each agent i, where wij is nonzero only if i and j are neighbors

or i = j and the matrix W = [wij ] ∈ Rn×n is symmetric and doubly stochastic. This paper analyzes
the convergence of this iteration and derives its rate of convergence under the assumption that each
fi is proper closed convex and lower bounded, ∇fi is Lipschitz continuous with constant Lfi > 0,
and the stepsize α is fixed. Provided that α ≤ min{(1 +λn(W ))/Lh, 1/Lf̄}, where Lh = maxi{Lfi}
and Lf̄ = 1

n

∑n
i=1 Lfi , the objective errors of all the local solutions and the networkwide mean

solution reduce at rates of O(1/k) until they reach a level of O(α). If fi are strongly convex with
modulus µfi and α ≤ min{(1+λn(W ))/Lh, 1/(Lf̄ +µf̄ )}, where µf̄ = 1

n

∑n
i=1 µfi , then all the local

solutions and the mean solution converge to the global minimizer x∗ at a linear rate until reaching an
O(α)-neighborhood of x∗. We also develop an iteration for decentralized basis pursuit and establish
its linear convergence to an O(α)-neighborhood of the true sparse signal. This analysis reveals how
the convergence of x(i)(k+ 1)←

∑n
j=1 wijx(j)(k)−α∇fi(x(i)(k)), for each agent i, depends on the

stepsize, function convexity, and network spectrum.

Key words. decentralized, distributed, consensus, optimization, gradient descent

AMS subject classifications. 90C25, 90C30

DOI. 10.1137/130943170

1. Introduction. Consider that n agents form a connected network and collab-
oratively solve a consensus optimization problem

minimize
x∈Rp

f(x) =

n∑
i=1

fi(x),(1)

where each fi is only available to agent i. A pair of agents can exchange data if
and only if they are connected by a direct communication link; we say that two such
agents are neighbors of each other. Let X ∗ denote the set of solutions to (1), which
is assumed to be nonempty, and let f∗ denote the optimal objective value.

The traditional (centralized) gradient descent iteration is

(2) x(k + 1) = x(k)− α∇f(x(k)),
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1836 KUN YUAN, QING LING, AND WOTAO YIN

where α is the stepsize, either fixed or varying with k. To apply iteration (2) to
problem (1) under the decentralized situation, one has two choices of implementation:

• let a fusion center (which can be a designated agent) carry out iteration (2);
• let all the agents carry out the same iteration (2) in parallel.

In either way, fi (and thus ∇fi) is only known to agent i. Therefore, in order to ob-
tain ∇f(x(k)) =

∑n
i=1∇fi(x(k)), every agent i must have x(k), compute ∇fi(x(k)),

and then send out ∇fi(x(k)). This approach requires synchronizing x(k) and scat-
tering/collecting ∇fi(x(k)), i = 1, . . . , n, over the entire network, which incurs a
significant amount of communication traffic, especially when the network is large and
sparse. A decentralized approach will be more viable since its communication is re-
stricted to neighbors. Although there is no guarantee that decentralized algorithms
use less communication (as they tend to take more iterations), they provide better
network load balance and tolerance to the failure of individual agents. In addition,
each agent can keep its fi and ∇fi private to some extent.1

Decentralized gradient descent [20] does not rely on a fusion center or network-
wide communication. It carries out an approximate version of (2) in the following
fashion:

• let each agent i hold an approximate copy x(i) ∈ Rp of x ∈ Rp;
• let each agent i update its x(i) to the weighted average of its neighborhood;
• let each agent i apply −∇fi(x(i)) to decrease fi(x(i)).

At each iteration k, each agent i performs the following steps:
1. computes ∇fi(x(i)(k));
2. computes the neighborhood weighted average x(i)(k+1/2) =

∑n
j=1 wijx(j)(k),

where wij 6= 0 only if j is a neighbor of i or j = i;
3. applies x(i)(k + 1) = x(i)(k + 1/2)− α∇fi(x(i)(k)).

Steps 1 and 2 can be carried out in parallel, and their results are used in step 3.
Putting the three steps together, we arrive at our main iteration

(3) x(i)(k + 1) =

n∑
j=1

wijx(j)(k)− α∇fi(x(i)(k)), i = 1, 2, . . . , n.

When fi is not differentiable, by replacing ∇fi with a member of ∂fi we obtain the
decentralized subgradient method [20]. Other decentralization methods are reviewed
in section 1.2.

We assume that the mixing matrix W = [wij ] is symmetric and doubly stochastic.
The eigenvalues of W are real and sorted in a nonincreasing order 1 = λ1(W ) ≥
λ2(W ) ≥ · · · ≥ λn(W ) ≥ −1. Let the second largest magnitude of the eigenvalues of
W be denoted as

(4) β = max {|λ2(W )|, |λn(W )|} .

The optimization of matrix W and, in particular, β, is not our focus; the reader is
referred to [4].

Some basic questions regarding the decentralized gradient method include the
following: (i) When does x(i)(k) converge? (ii) Does it converge to x∗ ∈ X ∗? (iii) If
x∗ is not the limit, does consensus (i.e., x(i)(k) = x(j)(k) ∀i, j) hold asymptotically?
(iv) How do the properties of fi and the network affect convergence?

1Neighbors of i may know the samples of fi and/or ∇fi at some points through data exchanges
and thus obtain an interpolation of fi.
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CONVERGENCE OF DECENTRALIZED GRADIENT DESCENT 1837

1.1. Background. The study on decentralized optimization can be traced back
to the seminal work in the 1980s [30, 31]. Compared to optimization with a fusion
center that collects data and performs computation, decentralized optimization enjoys
the advantages of scalability to network sizes, robustness to dynamic topologies, and
privacy preservation in data-sensitive applications [7, 17, 22, 32]. These properties are
important for applications where data are collected by distributed agents, communi-
cation to a fusion center is expensive or impossible, and/or agents tend to keep their
raw data private; such applications arise in wireless sensor networks [16, 24, 27, 38],
multivehicle and multirobot networks [5, 26, 39], smart grids [10, 13], cognitive radio
networks [2, 3], etc. The recent research interest in big data processing also motivates
the work of decentralized optimization in machine learning [8, 28]. Furthermore, the
decentralized optimization problem (1) can be extended to the online or dynamic set-
tings where the objective function becomes an online regret [29, 32] or a dynamic cost
[6, 12, 15].

To demonstrate how decentralized optimization works, we take spectrum sens-
ing in a cognitive radio network as an example. Spectrum sensing aims at detecting
unused spectrum bands, and thus enables the cognitive radios to opportunistically
use them for data communication. Let x be a vector whose elements are the signal
strengths of spectrum channels. Each cognitive radio i takes time-domain measure-
ment bi = F−1Gix + ei, where Gi is the channel fading matrix, F−1 is the inverse
Fourier transform matrix, and ei is the measurement noise. To each cognitive radio i,
assign a local objective function fi(x) = (1/2)‖bi−F−1Gix‖2 or the regularized func-
tion fi(x) = (1/2)‖bi−F−1Gix‖2 + φ(x), where φ(x) promotes a certain structure of
x. To estimate x, a set of geologically nearby cognitive radios collaboratively solve the
consensus optimization problem (1). Decentralized optimization is suitable for this
application since communication between nearby cognitive radios is fast and energy-
efficient and, if a cognitive radio joins and leaves the network, no reconfiguration is
needed.

1.2. Related methods. The decentralized stochastic subgradient projection al-
gorithm [25] handles constrained optimization; the fast decentralized gradient meth-
ods [11] adopt Nesterov’s acceleration; the distributed online gradient descent algo-
rithm2 [29] has nested iterations, where the inner loop performs a fine search; the
dual averaging subgradient method [8] carries out a projection operation after av-
eraging and descending. Unsurprisingly, decentralized computation tends to require
more assumptions for convergence than similar centralized computation. All of the
above algorithms are analyzed under the assumption of bounded (sub)gradients. Un-
bounded gradients can potentially cause algorithm divergence. When using a fixed
stepsize, the above algorithms (and iteration (3) in particular) converge to a neigh-
borhood of x∗ rather than x∗ itself. The size of the neighborhood goes monotonic
in the stepsize. Convergence to x∗ can be achieved by using diminishing stepsizes in
[8, 11, 29] at the price of slower rates of convergence. With diminishing stepsizes,
[11] shows an outer loop complexity of O(1/k2) under Nesterov’s acceleration when
the inner loop performs a substantial search job, without which the rate reduces to
O(log(k)/k).

1.3. Contribution and notation. This paper studies the convergence of iter-
ation (3) under the following assumptions.

2Here we consider its decentralized batch version.
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1838 KUN YUAN, QING LING, AND WOTAO YIN

Assumption 1. (a)For i = 1, . . . , n, fi is proper closed convex, lower bounded,
and Lipschitz differentiable with constant Lfi > 0.

(b) The network has a synchronized clock in the sense that (3) is applied to all the
agents at the same time intervals, the network is connected, and the mixing
matrix W is symmetric and doubly stochastic with β < 1 (see (4) for the
definition of β).

Unlike [8, 11, 20, 25, 29], which characterize the ergodic convergence of f(x̂(i)(k)),

where x̂(i)(k) = 1
k

∑k−1
s=0 x(i)(s), this paper establishes the nonergodic convergence

of all local solution sequences {x(i)(k)}k≥0. In addition, the analysis in this paper
does not assume bounded ∇fi. Instead, the following stepsize condition will ensure
bounded ∇fi:

(5) α ≤ (1 + λn(W ))/Lh,

where Lh = max{Lf1
, . . . , Lfn}. This result is obtained through interpreting the

iteration (3) for all the agents as a gradient descent iteration applied to a certain
Lyapunov function.

Under Assumption 1 and condition (5), the rate of O(1/k) for “near” conver-
gence is shown. Specifically, the objective errors evaluated at the mean solution,
f( 1

n

∑n
i=1 x(i)(k)) − f∗, and at any local solution, f(x(i)(k)) − f∗, both reduce at

O(1/k) until reaching the level O( α
1−β ). The rate of the mean solution is obtained by

analyzing an inexact gradient descent iteration, somewhat similar to [8, 11, 20, 25].

However, all of their rates are given for the ergodic solution x̂(i)(k) = 1
k

∑k−1
s=0 x(i)(s).

Our rates are nonergodic.
In addition, a linear rate of “near” convergence is established if f is also strongly

convex with modulus µf > 0, namely,

〈∇f(xa)−∇f(xb), xa − xb〉 ≥ µf‖xa − xb‖2 ∀xa, xb ∈ domf,

or f is restricted strongly convex [14] with modulus νf > 0,

(6) 〈∇f(x)−∇f(x∗), x− x∗〉 ≥ νf‖x− x∗‖2 ∀x ∈ domf, x∗ = ProjX∗(x),

where ProjX∗(x) is the projection of x onto the solution set X ∗ and ∇f(x∗) = 0. In
both cases, we show that the mean solution error ‖ 1

n

∑n
i=1 x(i)(k)−x∗‖ and the local

solution error ‖x(i)(k) − x∗‖ reduce geometrically until reaching the level O( α
1−β ).

Restricted strongly convex functions are studied as they appear in the applications
of sparse optimization and statistical regression; see [37] for some examples. The
solution set X ∗ is a singleton if f is strongly convex but not necessarily so if f is
restricted strongly convex.

Since our analysis uses a fixed stepsize, the local solutions will not be asymptot-
ically consensual. To adapt our analysis to diminishing stepsizes, significant changes
will be needed.

Based on iteration (3), a decentralized algorithm is derived for the basis pursuit
problem with distributed data to recover a sparse signal in section 3. The algorithm
converges linearly until reaching an O( α

1−β )-neighborhood of the sparse signal.
Section 4 presents numerical results on the test problems of decentralized least

squares and decentralized basis pursuit to verify our developed rates of convergence
and the levels of the landing neighborhoods.
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CONVERGENCE OF DECENTRALIZED GRADIENT DESCENT 1839

Throughout the rest of this paper, we employ the following notations of stacked
vectors:

[x(i)] :=


x(1)

x(2)

...
x(n)

 ∈ Rnp and h(k) :=


∇f1(x(1)(k))
∇f2(x(2)(k))

...
∇fn(x(n)(k))

 ∈ Rnp.

2. Convergence analysis.

2.1. Bounded gradients. Previous methods and analysis [8, 11, 20, 25, 29]
assume bounded gradients or subgradients of fi. The assumption indeed plays a key
role in the convergence analysis. For decentralized gradient descent iteration (3),
it gives bounded deviation from mean ‖x(i)(k) − 1

n

∑n
j=1 x(j)(k)‖. It is necessary

in the convergence analysis of subgradient methods, whether they are centralized
or decentralized. But as we show below, the boundedness of ∇fi does not need
to be guaranteed but is a consequence of bounded stepsize α, with dependence on
the spectral properties of W . We derive a tight bound on α for ∇fi(x(i)(k)) to be
bounded.

Example. Consider x ∈ R and a network formed by three connected agents (ev-
ery pair of agents are directly linked). Consider the following consensus optimization
problem:

minimize
x

f(x) =
∑

i=1,2,3

fi(x), where fi(x) =
Lh
2

(x− 1)2,

and Lh > 0. This is a trivial average consensus problem with ∇fi(x(i)) = Lh(x(i)−1)
and x∗ = 1. Take any τ ∈ (0, 1/3) and let the mixing matrix be

W =

1− 2τ τ τ
τ τ 1− 2τ
τ 1− 2τ τ

 ,
which is symmetric doubly stochastic. We have λ3(W ) = 3τ − 1 ∈ (−1, 0). Starting
from (x(1), x(2), x(3)) = (1, 0, 2), simple calculations yield the following:

• if α < (1+λ3(W ))/Lh, then x(i)(k) converges to x∗, i = 1, 2, 3 (the consensus
among x(i)(k) as k →∞ is due to design);

• if α > (1+λ3(W ))/Lh, then x(i)(k) diverges and is asymptotically unbounded
where i = 1, 2, 3;

• if α = (1 + λ3(W ))/Lh, then (x(1)(k), x(2)(k), x(3)(k)) equals (1, 2, 0) at odd
k and (1, 0, 2) at even k.

Clearly, if x(i) converges, then ∇fi(x(i)) converges and thus stays bounded. In the
above example α = (1 + λ3(W ))/Lh is the critical stepsize.

As each ∇fi(x(i)) is Lipschitz continuous with constant Lfi , h(k) is Lipschitz
continuous with constant

Lh = max
i
{Lfi}.

We formally show that α ≤ (1 + λn(W ))/Lh ensures bounded h(k). The analysis is
based on the Lyapunov function

(7) ξα([x(i)]) := −1

2

n∑
i,j=1

wijx
T
(i)x(j) +

n∑
i=1

(
1

2
‖x(i)‖2 + αfi(x(i))

)
,
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1840 KUN YUAN, QING LING, AND WOTAO YIN

which is convex since all fi are convex and the remaining term 1
2

(∑n
i=1 ‖x(i)‖2 −∑n

i,j=1 wijx
T
(i)x(j)

)
is also convex (and uniformly nonnegative) due to λ1(W ) = 1.

In addition, ∇ξα is Lipschitz continuous with constant Lξα ≤ (1 − λn(W )) + αLh.
Rewriting iteration (3) as

x(i)(k + 1) =

n∑
j=1

wijx(j)(k)− α∇fi(x(i)(k)) = x(i)(k)−∇iξα([x(i)(k)]),

we can observe that decentralized gradient descent reduces to unit-stepsize centralized
gradient descent applied to minimize ξα([x(i)]).

Theorem 1. Under Assumption 1, if the stepsize

(8) α ≤ (1 + λn(W ))/Lh,

then, starting from x(i)(0) = 0, i = 1, 2, . . . , n, the sequence x(i)(k) generated by the
iteration (3) converges. In addition, we also have

(9) ‖h(k)‖ ≤ D :=

√√√√2Lh

(
n∑
i=1

fi(0)− fo
)

for all k = 1, 2, . . ., where fo :=
∑n
i=1 fi(x

o
(i)) and xo(i) = arg minx fi(x).

Proof. Note that the iteration (3) is equivalent to the gradient descent iteration
for the Lyapunov function (7). From the classic analysis of gradient descent iteration
in [1] and [21], [x(i)(k)], and hence x(i)(k), will converge to a certain point when
α ≤ (1 + λn(W ))/Lh.

Next, we show (9). Since β < 1, we have λn(W ) > −1 and (Lξα/2 − 1) ≤ 0.
Hence,

ξα([x(i)(k + 1)]) ≤ ξα([x(i)(k)]) +∇ξα([x(i)(k)])T ([x(i)(k + 1)− x(i)(k)])

+
Lξα
2
‖[x(i)(k + 1)− x(i)(k)]‖2

= ξα([x(i)(k)]) + (Lξα/2− 1)‖∇ξα([x(i)(k)])‖2

≤ ξα([x(i)(k)]).

Recall that 1
2

(∑n
i=1 ‖x(i)‖2 −

∑n
i,j=1 wijx

T
(i)x(j)

)
is nonnegative. Therefore, we have

(10)
n∑
i=1

fi(x(i)(k)) ≤ α−1ξα([x(i)(k)]) ≤ · · · ≤ α−1ξα([x(i)(0)]) = α−1ξα(0) =

n∑
i=1

fi(0).

On the other hand, for any differentiable convex function g with the minimizer x∗

and Lipschitz constant Lg, we have g(xa) ≥ g(xb)+∇gT (xb)(xa−xb)+ 1
2Lg
‖∇g(xa)−

∇g(xb)‖2 and ∇g(x∗) = 0. Then, ‖∇g(x)‖2 ≤ 2Lg(g(x) − g∗), where g∗ := g(x∗).
Applying this inequality and (10), we obtain

‖h(k)‖2 =

n∑
i=1

‖∇fi(x(i)(k))‖2 ≤
n∑
i=1

2Lfi
(
fi(x(i)(k))− foi

)
≤ 2Lh

(
n∑
i=1

fi(0)− fo
)
,

(11)

where foi = fi(x
o
(i)) and xo(i) = arg minx fi(x). Note that xo(i) exists because of As-

sumption 1. Besides, we denote fo =
∑n
i=1 f

o
i . This completes the proof.
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CONVERGENCE OF DECENTRALIZED GRADIENT DESCENT 1841

In the above theorem, we choose x(i)(0) = 0 for convenience. For general x(i)(0),
a different bound for ‖h(k)‖ can still be obtained. Indeed, if x(i)(0) 6= 0, then

α−1ξα(0) =
∑n
i=1 fi(0) + 1

2α

(∑n
i=1 ‖x(i)(0)‖2 −

∑n
i,j=1 wijx(i)(0)Tx(j)(0)

)
in (10).

Hence, we have ‖h(k)‖2 ≤ 2Lh
(∑n

i=1 fi(0) − fo
)

+ Lh
α

(∑n
i=1 ‖x(i)(0)‖2 −

∑n
i,j=1

wijx(i)(0)Tx(j)(0)
)
. The initial values of x(i)(0) do not influence the stepsize condi-

tion though they change the bound of gradient. For simplicity, we let x(i)(0) = 0 in
the rest of this paper.

Dependence on stepsize. In (3), the negative gradient step −α∇fi(x(i)) does
not diminish at x(i) = x∗. Even if we let x(i) = x∗ for all i, x(i) will immediately
change once (3) is applied. Therefore, the term −α∇fi(x(i)) prevents the consensus
of x(i). Even worse, because both terms in the right-hand side of (3) change x(i), they
can possibly add up to an uncontrollable amount and cause x(i)(k) to diverge. The
local averaging term is stable itself, so the only choice we have is to limit the size of
−α∇fi(x(i)) by bounding α.

Network spectrum. One can design W so that λn(W ) > 0 and thus simply
bound (8) to

α ≤ 1/Lh,

which no longer requires any spectral information of the underlying network. Given
any mixing matrix W̃ satisfying 1 = λ1(W̃ ) > λ2(W̃ ) ≥ · · · ≥ λn(W̃ ) > −1 (cf. [4]),
one can design a new mixing matrix W = (W̃ + I)/2 that satisfies 1 = λ1(W ) >
λ2(W ) ≥ · · · ≥ λn(W ) > 0. The same argument applies to the results throughout
this paper.

2.2. Bounded deviation from mean. Let

x̄(k) :=
1

n

n∑
i=1

x(i)(k)

be the mean of x(1)(k), . . . , x(n)(k). We will later analyze the error in terms of x̄(k) and
then each x(i)(k). To enable that analysis, we shall show that the deviation from mean
‖x(i)(k)−x̄(k)‖ is bounded uniformly over i and k. Then, any bound of ‖x̄(k)−x∗‖ will
give a bound of ‖x(i)(k)− x∗‖. Intuitively, if the deviation from mean is unbounded,
then there would be no approximate consensus among x(1)(k), . . . , x(n)(k). Without
this approximate consensus, descending individual fi(x(i)(k)) will not contribute to
the descent of f(x̄(k)) and thus convergence is out of the question. Therefore, it is
critical to bound the deviation ‖x(i)(k)− x̄(k)‖.

Lemma 2. If (9) holds and β < 1, then the total deviation from mean is bounded,
namely,

‖x(i)(k)− x̄(k)‖ ≤ αD

1− β
∀k, ∀i.

Proof. Recall the definition of [x(i)] and h(k). From (3) we have

[x(i)(k + 1)] = (W ⊗ I)[x(i)(k)]− αh(k),

where ⊗ denotes the Kronecker product. From it, we obtain

(12) [x(i)(k)] = −α
k−1∑
s=0

(W k−1−s ⊗ I)h(s).

D
ow

nl
oa

de
d 

09
/2

7/
16

 to
 1

14
.2

14
.1

61
.2

17
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1842 KUN YUAN, QING LING, AND WOTAO YIN

Besides, letting [x̄(k)] = [x̄(k); · · · ; x̄(k)] ∈ Rnp, it follows that

[x̄(k)] =
1

n
((1n1Tn )⊗ I)[x(i)(k)].

As a result,

‖x(i)(k)− x̄(k)‖ ≤ ‖[x(i)(k)]− [x̄(k)]‖

= ‖[x(i)(k)]− 1

n
((1n1Tn )⊗ I)[x(i)(k)]‖

=

∥∥∥∥− α k−1∑
s=0

(W k−1−s ⊗ I)h(s) + α

k−1∑
s=0

1

n
((1n1TnW

k−1−s)⊗ I)h(s)

∥∥∥∥
=

∥∥∥∥− α k−1∑
s=0

(W k−1−s ⊗ I)h(s) + α

k−1∑
s=0

1

n
((1n1Tn )⊗ I)h(s)

∥∥∥∥(13)

= α

∥∥∥∥ k−1∑
s=0

((
W k−1−s − 1

n
1n1Tn

)
⊗ I
)
h(s)

∥∥∥∥
≤ α

k−1∑
s=0

∥∥∥∥W k−1−s − 1

n
1n1Tn

∥∥∥∥‖h(s)‖

= α

k−1∑
s=0

βk−1−s‖h(s)‖,

where (13) holds since W is doubly stochastic. From ‖h(k)‖ ≤ D and β < 1, it follows
that

‖x(i)(k)− x̄(k)‖ ≤ α
k−1∑
s=0

βk−1−s‖h(s)‖ ≤ α
k−1∑
s=0

βk−1−sD ≤ αD

1− β
,

which completes the proof.

The proof of Lemma 2 utilizes the spectral property of the mixing matrix W .
The constant in the upper bound is proportional to the stepsize α and monotonically
increasing with respect to the second largest eigenvalue modulus β. The papers [8],
[20], and [25] also analyze the deviation of local solutions from their mean, but their
results are different. The upper bound in [8] is given at the termination time of
the algorithm, which is not uniform in k. The two papers [20] and [25], instead of
bounding ‖W − 1

n11
T ‖, decompose it as the sum of elementwise |wij − 1

n | and then
bounds it with the minimum nonzero element in W .

As discussed after Theorem 1, D is affected by the value of x(i)(0) if it is nonzero.

In Lemma 2, if x(i)(0) 6= 0, then [x(i)(k)] = (W k ⊗ I)[x(i)(0)] − α
∑k−1
s=0 (W k−1−s ⊗

I)h(s). Substituting it into the proof of Lemma 2, we obtain

‖x(i)(k)− x̄(k)‖ ≤ βk‖[x(i)(0)]‖+
αD

1− β
.

When k →∞, βk‖[x(i)(0)]‖ → 0 and, therefore, the last term dominates.
A consequence of Lemma 2 is that the distance between the following two quan-
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tities is also bounded:

g(k) :=
1

n

n∑
i=1

∇fi(x(i)(k)),

ḡ(k) :=
1

n

n∑
i=1

∇fi(x̄(k)).

Lemma 3. Under Assumption 1, if (9) holds and β < 1, then

‖∇fi(x(i)(k))−∇fi(x̄(k))‖ ≤ αDLfi
1− β

,

‖g(k)− ḡ(k)‖ ≤ αDLh
1− β

.

Proof. Assumption 1 gives

‖∇fi(x(i)(k))−∇fi(x̄(k))‖ ≤ Lfi‖x(i)(k)− x̄(k)‖ ≤ αDLfi
1− β

,

where the last inequality follows from Lemma 2. On the other hand, we have

‖g(k)− ḡ(k)‖ =

∥∥∥∥ 1

n

n∑
i=1

(
∇fi(x(i)(k))−∇fi(x̄(k))

)∥∥∥∥ ≤ 1

n

n∑
i=1

Lfi‖x(i)(k)− x̄(k)‖

≤ αDLh
1− β

,

which completes the proof.

We are interested in g(k) since −αg(k) updates the average of x(i)(k). To see
this, by taking the average of (3) over i and noticing W = [wij ] is doubly stochastic,
we obtain

(14) x̄(k+1) =
1

n

n∑
i=1

x(i)(k+1) =
1

n

n∑
i,j=1

wijx(j)−
α

n

n∑
i=1

∇fi(x(i)(k)) = x̄(k)−αg(k).

On the other hand, since the exact gradient of 1
n

∑n
i=1 fi(x̄(k)) is ḡ(k), iteration (14)

can be viewed as an inexact gradient descent iteration (using g(k) instead of ḡ(k)) for
the problem

(15) minimize
x

f̄(x) :=
1

n

n∑
i=1

fi(x).

It is easy to see that f̄ is Lipschitz continuous with the constant

Lf̄ =
1

n

n∑
i=1

Lfi .

If any fi is strongly convex, then so is f̄ , with the modulus µf̄ = 1
n

∑n
i=1 µfi . Based

on the above interpretation, next we bound f(x̄(k))− f∗ and ‖x̄(k)− x∗‖.
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2.3. Bounded distance to minimum. We consider the convex, restricted
strongly convex, and strongly convex cases. In the former two cases, the solution
x∗ may be nonunique, so we use the set of solutions X ∗. We need the following for
our analysis:

• objective error r̄(k) := f̄(x̄(k)) − f̄∗ = 1
n (f(x̄(k)) − f∗), where f̄∗ := f̄(x∗),

x∗ ∈ X ∗;
• solution error ē(k) := x̄(k)− x∗(k), where x∗(k) = ProjX∗(x̄(k)) ∈ X ∗.

Theorem 4. Under Assumption 1, if α ≤ min{(1 + λn(W ))/Lh, 1/Lf̄}, then
while

r̄(k) > C
√

2 · αLhD
1− β

= O

(
α

1− β

)
(where constants C and D are defined in (17) and (9), respectively), the reduction of
r̄(k) obeys

r̄(k + 1) ≤ r̄(k)− α

4C2
r̄2(k),

and therefore,

r̄(k) ≤ 4C2r̄(0)

4C2 + kαr̄(0)
= O

(
1

αk

)
.(16)

In other words, r̄(k) decreases at rate O(1/k) until reaching O( α
1−β ).

Proof. First, we show that ‖ē(k)‖ ≤ C. To this end, recall the definition of
ξα([x(i)]) in (7). Let X̃ denote its set of minimizer(s), which is nonempty since each fi
has a minimizer due to Assumption 1. Following the arguments in [21, p. 69] and with
the bound on α, we have d(k) ≤ d(k−1) ≤ · · · ≤ d(0), where d(k) := ‖[x(i)(k)− x̃(i)]‖
and [x̃(i)] ∈ X̃ . Using ‖a1 + · · ·+ an‖ ≤

√
n‖[a1; . . . ; an]‖, we have

‖ē(k)‖ = ‖x̄(k)− x∗(k)‖ =

∥∥∥∥ 1

n

n∑
i=1

(x(i)(k)− x∗)
∥∥∥∥ ≤ 1√

n
‖[x(i)(k)− x∗]‖

≤ 1√
n

(‖[x(i)(k)− x̃(i)]‖+ ‖[x̃(i) − x∗]‖)

≤ 1√
n

(‖[x(i)(0)− x̃(i)]‖+ ‖[x̃(i) − x∗]‖) =: C.(17)

Next, we show the convergence of r̄(k). By the assumption, we have 1−αLf̄ ≥ 0,
and thus

r̄(k + 1) ≤ r̄(k) + 〈ḡ(k), x̄(k + 1)− x̄(k)〉+
Lf̄
2
‖x̄(k + 1)− x̄(k)‖2

(14)
= r̄(k)− α〈ḡ(k), g(k)〉+

α2Lf̄
2
‖g(k)‖2

= r̄(k)− α〈ḡ(k), ḡ(k)〉+
α2Lf̄

2
‖ḡ(k)‖2 + 2α

1− αLf̄
2

〈ḡ(k), ḡ(k)− g(k)〉

+
α2Lf̄

2
‖ḡ(k)− g(k)‖2 ≤ r̄(k)− α

(
1−

αLf̄
2
− δ

1− αLf̄
2

)
‖ḡ(k)‖2

+ α

(
αLf̄

2
+ δ−1

1− αLf̄
2

)
‖ḡ(k)− g(k)‖2,
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where the last inequality follows from Young’s inequality ±2aT b ≤ δ−1‖a‖2 + δ‖b‖2
for any δ > 0. Although we can later optimize over δ > 0, we simply take δ = 1.
Since α ≤ (1 + λn(W ))/Lh, we can apply Theorem 1 and then Lemma 3 to the last
term above and obtain

r̄(k + 1) ≤ r̄(k)− α

2
‖ḡ(k)‖2 +

α3D2L2
h

2(1− β)2
.

Since ‖ē(k)‖ ≤ C as shown in (17), from r̄(k) = f̄(x̄(k))− f̄∗ ≤ 〈ḡ(k), x̄(k)−x∗(k)〉 =
〈ḡ(k), ē(k)〉, we obtain that

‖ḡ(k)‖ ≥ ‖ḡ(k)‖‖ē(k)‖
C

≥ |〈ḡ(k), ē(k)〉|
C

≥ r̄(k)

C
,

which gives

r̄(k + 1) ≤ r̄(k)− α

2C2
r̄2(k) +

α3D2L2
h

2(1− β)2
.

Hence, while α
2C2 r̄

2(k) > 2 · α
3D2L2

h

2(1−β)2 or, equivalently, r̄(k) > C
√

2 · αLhD1−β , we have

r̄(k + 1) ≤ r̄(k)− α

4C2
r̄2(k),

from which we know r̄(k + 1) ≤ r̄(k). Dividing both sides by r̄(k)r̄(k + 1), we have

1

r̄(k + 1)
≥ 1

r̄(k)
+

α

4C2

r̄(k)

r̄(k + 1)
≥ 1

r̄(k)
+

α

4C2
≥ 1

r̄(0)
+

(k + 1)α

4C2
.

Therefore, when r̄(k) > C
√

2 · αLhD1−β , we reach

r̄(k) ≤ 4C2r̄(0)

4C2 + kαr̄(0)
= O

(
1

αk

)
,

which completes the proof.

Theorem 4 shows that until reaching f∗ + O( α
1−β ), f(x̄(k)) reduces at the rate

of O(1/(αk)). For fixed α, there is a tradeoff between the convergence rate and
optimality. Again, upon the stopping of iteration (3), x̄(k) is not available to any of
the agents but obtainable by invoking an average consensus algorithm.

Remark 5. Since f̄(x) is convex, we have for all i = 1, 2, . . . , n,

f̄(x(i)(k))− f̄∗ ≤ r̄(k) + 〈ḡ(x(i)(k)), x(i)(k)− x̄(k)〉

≤ r̄(k) +
1

n

n∑
j=1

‖∇fj(x(i)(k))‖‖x(i)(k)− x̄(k)‖

≤ r̄(k) +
αD2

1− β
.

From Theorem 4 we conclude that f̄(x(i)(k))− f̄∗, like r̄(k), converges at O(1/k) until
reaching O( α

1−β ).
This nearly sublinear convergence rate is stronger than those of the distributed

subgradient method [20] and the dual averaging subgradient method [8]. Their rates
are in terms of objective error f(x̂(i)(k)) − f∗ evaluated at the ergodic solution

x̂(i)(k) = 1
k

∑k−1
s=0 x(i)(s).
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Next, we bound ‖ē(k+ 1)‖ under the assumption of restricted or standard strong
convexities. To start, we present a lemma.

Lemma 6. Suppose that ∇f̄ is Lipschitz continuous with constant Lf̄ . Then, we
have

〈x− x∗,∇f̄(x)−∇f̄(x∗)〉 ≥ c1‖∇f̄(x)−∇f̄(x∗)‖2 + c2‖x− x∗‖2

(where x∗ ∈ X ∗ and ∇f̄(x∗) = 0) for the following cases:
(a) (see [21, Theorem 2.1.12]) if f̄ is strongly convex with modulus µf̄ , then c1 =

1
µf̄+Lf̄

and c2 =
µf̄Lf̄
µf̄+Lf̄

;

(b) (see [37, Lemma 2]) if f̄ is restricted strongly convex with modulus νf̄ , then

c1 = θ
Lf̄

and c2 = (1− θ)νf̄ for any θ ∈ [0, 1].

Theorem 7. Under Assumption 1, if f is either strongly convex with modulus µf
or restricted strongly convex with modulus νf , and if α ≤ min{(1 + λn(W ))/Lh, c1}
and β < 1, then we have

‖ē(k + 1)‖2 ≤ c23‖ē(k)‖2 + c24,

where

c23 = 1−αc2 +αδ−α2δc2, c24 = α3(α+δ−1)
L2
hD

2

(1− β)2
, D =

√√√√2Lh

n∑
i=1

(fi(0)− foi ),

constants c1 and c2 are given in Lemma 6, µf̄ = µf/n and νf̄ = νf/n, and δ is any

positive constant. In particular, if we set δ = c2
2(1−αc2) such that c3 =

√
1− αc2

2 ∈
(0, 1), then we have

‖ē(k)‖ ≤ ck3‖ē(0)‖+
C1α

1− β
,(18)

where C1 = 2LhD/c2 is a constant.

Proof. Recalling that x∗(k + 1) = ProjX∗(x̄(k + 1)) and ē(k + 1) = x̄(k + 1) −
x∗(k + 1), we have

‖ē(k + 1)‖2 ≤ ‖x̄(k + 1)− x∗(k)‖2

= ‖x̄(k)− x∗(k)− αg(k)‖2

= ‖ē(k)− αḡ(k) + α(ḡ(k)− g(k))‖2

= ‖ē(k)− αḡ(k)‖2 + α2‖ḡ(k)− g(k)‖2 + 2α(ḡ(k)− g(k))T (ē(k)− αḡ(k))

≤ (1 + αδ)‖ē(k)− αḡ(k)‖2 + α(α+ δ−1)‖ḡ(k)− g(k)‖2,

where the last inequality follows again from ±2aT b ≤ δ−1‖a‖2 + δ‖b‖2 for any δ > 0.
The bound of ‖ḡ(k) − g(k)‖2 follows from Lemma 3 and Theorem 1, and we shall
bound ‖ē(k)−αḡ(k)‖2, which is a standard exercise; we repeat below for completeness.
Applying Lemma 6 and noticing ḡ(x) = ∇f̄(x) by definition, we have

‖ē(k)− αḡ(k)‖2 = ‖ē(k)‖2 + α2‖ḡ(k)‖2 − 2αē(k)T ḡ(k)

≤ ‖ē(k)‖2 + α2‖ḡ(k)‖2 − αc1‖ḡ(k)‖2 − αc2‖ē(k)‖2

= (1− αc2)‖ē(k)‖2 + α(α− c1)‖ḡ(k)‖2.
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We shall pick α ≤ c1 so that α(α− c1)‖ḡ(k)‖2 ≤ 0. Then from the last two inequality
arrays, we have

‖ē(k + 1)‖2 ≤ (1 + αδ)(1− αc2)‖ē(k)‖2 + α(α+ δ−1)‖ḡ(k)− g(k)‖2

≤ (1− αc2 + αδ − α2δc2)‖ē(k)‖2 + α3(α+ δ−1)
L2
hD

2

(1− β)2
.

Note that if f is strongly convex, then c1c2 =
µf̄Lf̄

(µf̄+Lf̄ )2 < 1; if f is restricted

strongly convex, then c1c2 =
θ(1−θ)νf̄

Lf̄
< 1 because θ ∈ [0, 1] and νf̄ < Lf̄ . Therefore,

we have c1 < 1/c2. When α < c1, (1 + αδ)(1− αc2) > 0.
Next, since

‖ē(k)‖2 ≤ c2k3 ‖ē(0)‖2 +
1− c2k3
1− c23

c24 ≤ c2k3 ‖ē(0)‖2 +
c24

1− c23
,

we get

‖ē(k)‖ ≤ ck3‖ē(0)‖+
c4√

1− c23
.

If we set
δ =

c2
2(1− αc2)

,

then we obtain
c23 = 1− αc2

2
< 1,

c4√
1− c23

=
αLhD

1− β

√√√√α(α+ 2(1−αc2)
c2

)
αc2
2

=
αLhD

1− β

√
4

c22
− 2

c2
α ≤ 2αLhD

c2(1− β)
= O

(
α

1− β

)
,

which completes the proof.

Remark 8. As a result, if f is strongly convex, then x̄(k) geometrically converges
until reaching an O( α

1−β )-neighborhood of the unique solution x∗; on the other hand,

if f is restricted strongly convex, then x̄(k) geometrically converges until reaching an
O( α

1−β )-neighborhood of the solution set X ∗.

2.4. Local agent convergence.

Corollary 9. Under Assumption 1, if f is either strongly convex or restricted
strongly convex, α < min{(1 + λn(W ))/Lh, c1}, and β < 1, then we have

‖x(i)(k)− x∗(k)‖ ≤ ck3‖x∗(0)‖+
c4√

1− c23
+

αD

1− β
,

where x∗(0), x∗(k) ∈ X ∗ are solutions defined at the beginning of subsection 2.3 and
the constants c3, c4, D are the same as given in Theorem 7.

Proof. From Lemma 2 and Theorem 7 we have

‖x(i)(k)− x∗(k)‖
≤‖x̄(k)− x∗(k)‖+ ‖x(i)(k)− x̄(k)‖

≤ ck3‖x∗(0)‖+
c4√

1− c23
+

αD

1− β
,

which completes the proof.
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Remark 10. Similar to Theorem 7 and Remark 5, if we set δ = c2
2(1−αc2) , and if f

is strongly convex, then x(i)(k) geometrically converges to an O( α
1−β )-neighborhood

of the unique solution x∗; if f is restricted strongly convex, then x(i)(k) geometrically
converges to an O( α

1−β )-neighborhood of the solution set X ∗.

3. Decentralized basis pursuit.

3.1. Problem statement. We derive an algorithm for solving a decentralized
basis pursuit problem to illustrate the application of iteration (3).

Consider a multiagent network of n agents who collaboratively find a sparse rep-
resentation y of a given signal b ∈ Rp that is known to all the agents. Each agent i
holds a part Ai ∈ Rp×qi of the entire dictionary A ∈ Rp×q, where q =

∑n
i=1 qi, and

shall recover the corresponding yi ∈ Rqi . Let

y :=

 y1

...
yn

 ∈ Rq, A :=

 | |
A1 . . . An
| |

 ∈ Rp×q.

The problem is

minimize
y

‖y‖1,(19)

subject to

n∑
i=1

Aiyi = b,

where
∑n
i=1Aiyi = Ay. This formulation is a column-partitioned version of decen-

tralized basis pursuit, as opposed to the row-partitioned version in [19] and [36]. Both
versions find applications in, for example, collaborative spectrum sensing [2], sparse
event detection [18], and seismic modeling [19].

Developing efficient decentralized algorithms to solve (19) is nontrivial since the
objective function is neither differentiable nor strongly convex, and the constraint
couples all the agents. In this paper, we turn to an equivalent and tractable reformu-
lation by appending a strongly convex term and solving its Lagrange dual problem
by decentralized gradient descent. Consider the augmented form of (19) motivated
by [14]:

minimize
y

‖y‖1 +
1

2γ
‖y‖2,(20)

subject to Ay = b,

where the regularization parameter γ > 0 is chosen so that (20) returns a solution to
(19). Indeed, provided that Ay = b is consistent, there always exists γmin > 0 such
that the solution to (20) is also a solution to (19) for any γ ≥ γmin [9, 33]. Linearized
Bregman iteration proposed in [35] is proven to converge to the unique solution of
(20) efficiently. See [33] for its analysis and [23] for important improvements. Since
the problem (20) is now to be solved over a network of agents, we need to devise a
decentralized version of linearized Bregman iteration.

The Lagrange dual of (20), cast as a minimization (instead of maximization)
problem, is

minimize
x

f(x) :=
γ

2
‖ATx− Proj[−1,1](A

Tx)‖2 − bTx,(21)
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where x ∈ Rp is the dual variable and Proj[−1,1] denotes the elementwise projection
onto [−1, 1].

We turn (21) into the form of (1):

(22) minimize
x

f(x) =

n∑
i=1

fi(x), where fi(x) :=
γ

2
‖ATi x−Proj[−1,1](A

T
i x)‖2− 1

n
bTx.

The function fi is defined with Ai and b, where matrix Ai is the private information
of agent i. The local objective functions fi are differentiable with the gradients given
as

∇fi(x) = γAiShrink(ATi x)− b

n
,(23)

where Shrink(z) is the shrinkage operator defined as max(|z|−1, 0)sign(z) component-
wise.

Applying the iteration (3) to the problem (22) starting with x(i)(0) = 0, we obtain
the iteration

x(i)(k + 1) =

n∑
j=1

wijx(j)(k)−α
(
Aiyi(k)− b

n

)
, where yi(k) = γShrink(ATi x(i)(k)).

(24)

Note that the primal solution yi(k) is iteratively updated, as a middle step for the
update of x(i)(k + 1).

It is easy to verify that the local objective functions fi are Lipschitz differentiable
with the constants Lfi = γ‖Ai‖2. Besides, given that Ay = b is consistent, [14]
proves that f(x) is restricted strongly convex with a computable constant νf > 0.
Therefore, the objective function f(x) in (21) has Lh = max{γ‖Ai‖2 : i = 1, 2, . . . , n},
Lf̄ = γ

n

∑n
i=1 ‖Ai‖2, and νf̄ = νf/n. By Theorem 7, any local dual solution x(i)(k)

generated by iteration (24) linearly converges to a neighborhood of the solution set
of (21), and the primal solution y(k) = [y1(k); · · · ; yn(k)] linearly converges to a
neighborhood of the unique solution of (20).

Theorem 11. Consider x(i)(k) generated by iteration (24) and x̄(k) := 1
n

∑n
i=1

x(i)(k). The unique solution of (20) is y∗ and the projection of x̄(k) onto the optimal
solution set of (21) is x̄∗(k) = ProjX∗(x̄(k)). If the stepsize α < min{(1 + λn(W ))/
Lh, c1}, we have

‖x(i)(k)− x̄∗(k)‖ ≤ ck3‖x̄∗(0)‖+

(
c4√

1− c23
+

αD

1− β

)
,(25)

where the constants c3 and c4 are the same as given in Theorem 7. In particular, if
we set δ = c2

2(1−αc2) such that c3 =
√

1− αc2
2 ∈ (0, 1), then c4√

1−c23
+ αD

1−β = O( α
1−β ).

On the other hand, the primal solution satisfies

‖y(k)− y∗‖ ≤ nγmax
i

(
‖Ai‖‖x(i)(k)− x̄∗(k)‖

)
.(26)

Proof. The result (25) is a corollary of Corollary 9. We focus on showing (26).
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Given any dual solution x̄(k), the primal solution of (20) is y∗ = γShrink(AT x̄∗(k)).
Recall that y(k) = [y1(k); · · · ; yn(k)] and yi(k) = γShrink(ATi x(i)(k)). We have

‖y(k)− y∗‖ =‖[γShrink(AT1 x(1)(k)); · · · ; γShrink(ATnx(n)(k))]− γShrink(AT x̄∗(k))‖

(27)

≤ γ
n∑
i=1

‖Shrink(ATi x(i)(k))− Shrink(ATi x̄
∗(k))‖.

Due to the contraction of the shrinkage operator, we have the bound ‖Shrink(ATi x(i)(k))

− Shrink(ATi x̄
∗(k))‖ ≤ ‖Ai‖‖x(i)(k)− x̄∗(k)‖ ≤ maxi

(
‖Ai‖‖x(i)(k)− x̄∗(k)‖

)
. Com-

bining this inequality with (27), we get (26).

4. Numerical experiments. In this section, we report our numerical results
applying the iteration (3) to a decentralized least squares problem and the iteration
(24) to a decentralized basis pursuit problem.

We generate a network consisting of n agents with n(n−1)
2 η edges that are uni-

formly randomly chosen, where n = 100 and η = 0.3 are chosen for all the tests. We
ensure a connected network.

4.1. Decentralized gradient descent for least squares. We apply the iter-
ation (3) to the least squares problem

minimize
x∈R3

1

2
‖b−Ax‖2 =

n∑
i=1

1

2
‖bi −Aix‖2.(28)

The entries of the true signal x∗ ∈ R3 are independent and identically distributed
(i.i.d.) samples from the Gaussian distribution N (0, 1). Ai ∈ R3×3 is the linear
sampling matrix of agent i whose elements are i.i.d. samples from N (0, 1), and bi =
Aix

∗ ∈ R3 is the measurement vector of agent i.
For the problem (28), let fi(x) = 1

2‖bi−Aix‖
2. For any xa, xb ∈ R3, ‖∇fi(xa)−

∇fi(xb)‖ = ‖ATi Ai(xa − xb)‖ ≤ ‖ATi Ai‖‖xa − xb‖, so ∇fi(x) is Lipschitz continu-
ous. In addition, 1

2‖b − Ax‖
2
2 is strongly convex since A has full column rank, with

probability 1.
Figure 1 depicts the convergence of the error ē(k) corresponding to five different

stepsizes. It shows that ē(k) reduces linearly until reaching an O(α)-neighborhood,
which agrees with Theorem 7. Not surprisingly, a smaller α causes the algorithm to
converge more slowly.

Figure 2 compares our theoretical stepsize bound in Theorem 1 to the empirical

bound of α. The theoretical bound for this experimental network is min{ 1+λn(W )
Lh

, c1} =
0.1038. In Figure 2, we choose α = 0.1038 and then the slightly larger α = 0.12. We
observe convergence with α = 0.1038 but clear divergence with α = 0.12. This shows
that our bound on α is quite close to the actual requirement.

4.2. Decentralized gradient descent for basis pursuit. In this subsection
we test the iteration (24) for the decentralized basis pursuit problem (19).

Let y ∈ R100 be the unknown signal whose entries are i.i.d. samples from N (0, 1).
The entries of the measurement matrix A ∈ R50×100 are also i.i.d. samples from
N (0, 1). Each agent i holds the ith column of A. b = Ay ∈ R50 is the measurement
vector. We use the same network as in the last test.
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Fig. 1. Comparison of the decentralized gradient descent algorithm for least squares with dif-
ferent fixed stepsizes.
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)

 

 

α=0.12
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Fig. 2. Comparison of the decentralized gradient descent algorithm for least squares with step-
sizes α = 0.1038 and α = 0.12.

Figure 3 depicts the convergence of x̄(k), the mean of the dual variables at iter-
ation k. As stated in Theorem 11, x̄(k) converges linearly to an O(α)-neighborhood
of the solution set X ∗. The limiting errors ē(k) corresponding to the four values of
α are proportional to α. As the stepsize becomes smaller, the algorithm converges
more accurately to X ∗. Figure 4 shows the linear convergence of the primal variable
y(k). It is interesting that the y(k) corresponding to three different values of α appear
to reach the same level of accuracy, which might be related to the error forgetting
property of the first-order `1 algorithm [34] and deserves further investigation.
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Fig. 3. Convergence of the mean value of the dual variable x̄(k).
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Fig. 4. Convergence of the primal variable y(k). y∗ is the solution of the problem (20).

5. Conclusion. Consensus optimization problems in multiagent networks arise
in applications such as mobile computing, self-driving cars’ coordination, cognitive
radios, as well as collaborative data mining. Compared to the traditional centralized
approach, a decentralized approach offers more balanced communication load and
better privacy protection. In this paper, our effort is to provide a mathematical
understanding to the decentralized gradient descent method with a fixed stepsize. We
give a tight condition for guaranteed convergence, as well as an example to illustrate
the failure of convergence when the condition is violated. We provide the analysis of
convergence and the rates of convergence for problems with different properties and
establish the relations between network topology, stepsize, and convergence speed,
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which shed some light on network design. The numerical observations reasonably
match the theoretical results.

Acknowledgment. The authors thank Yangyang Xu for helpful comments.
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