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1. Introduction

Consider the problem of recovering a group sparse matrix Y = [y1, · · · , yL] ∈ R
n×L

from sparsely corrupted measurements

M = [A(1)y1, · · · ,A(L)yL] + S, (1)

where M = [m1, · · · , mL] ∈ R
m×L is a measurement matrix, A(i) ∈ R

m×n is the i-th 
sensing matrix, and S = [s1, · · · , sL] ∈ R

m×L is an unknown sparse error matrix. The 
error matrix S is sparse as it has only a small number of nonzero entries. The signal 
matrix Y is group sparse, meaning that Y is sparse and its nonzero entries appear in a 
small number of common rows.

Given M and A(i)’s, our goal is to recover Y and S from the linear measurement 
equation (1). In this paper, we propose to accomplish the recovery task through solving 
the following robust group lasso (RGL) model

min
Y,S

‖Y‖2,1 + λ‖S‖1, (2)

s.t. M = [A(1)y1, · · · ,A(L)yL] + S. (3)

Denoting yij and sij as the (i, j)-th entries of Y and S, respectively, ‖Y‖2,1 �∑n
i=1

√∑L
j=1 y

2
ij is defined as the �2,1-norm of Y and ‖S‖1 �

∑m
i=1
∑L

j=1 |sij | is de-
fined as the �1-norm of S. Minimizing the �2,1-norm term promotes group sparsity of Y
while minimizing the �1-norm term promotes sparsity of S; λ is a nonnegative parameter 
to balance the two terms. We prove that solving the RGL model (2)–(3), which is a 
convex program, enables exact recovery of Y and S with high probability, given that 
A(i)’s satisfy certain conditions.

1.1. From group lasso to robust group lasso

Sparse signal recovery has attracted much research interest in the signal processing 
and optimization communities during the past few years. Various sparsity models have 
been proposed to better exploit the sparse structures of high-dimensional data, such as 
sparsity of a vector [1], [2], group sparsity of vectors [3], and low-rankness of a matrix 
[4]. For more topics related to sparse signal recovery, readers are referred to the recent 
survey paper [5].

In this paper we are interested in the recovery of group sparse (also known as block 
sparse [6] or jointly sparse [7]) signals which finds a variety of applications such as 
direction-of-arrival estimation [8], [9], collaborative spectrum sensing [10–12] and motion 
detection [13]. A signal matrix Y = [y1, · · · , yL] ∈ R

n×L is called k-group sparse if k
rows of Y are nonzero. A measurement matrix M = [m1, · · · , mL] ∈ R

m×L is taken from 
linear projections mi = A(i)yi, i = 1, · · · , L, where A(i) ∈ R

m×n is a sensing matrix. In 
order to recover Y from A(i)’s and M, the standard �2,1-norm minimization formulation 
proposes to solve a convex program
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min
Y

‖Y‖2,1,

s.t. M = [A(1)y1, · · · ,A(L)yL]. (4)

This is a straightforward extension from the canonical �1-norm minimization formulation 
that recovers a sparse vector. Theoretical guarantee of exact recovery has been developed 
based on the restricted isometric property (RIP) of A(i)’s [14]. The performance of 
exploiting more structures of Y by simultaneously minimizing the �2,1-norm and the 
nuclear norm is analyzed in [15].

Consider that in practice the measurements are often corrupted by random noise, 
resulting in M = [A(1)y1, · · · , A(L)yL] + N where N = [n1, · · · , nL] ∈ R

m×L is a noise 
matrix. To address the noise-corrupted case, the group lasso model in [3] solves

min
Y,E

‖Y‖2,1 + γ‖N‖2
F ,

s.t. M = [A(1)y1, · · · ,A(L)yL] + N, (5)

where γ is a nonnegative parameter and ‖N‖F is the Frobenius norm of N. An alternative 
to (5) is

min
Y

‖Y‖2,1,

s.t. ‖M − [A(1)y1, · · · ,A(L)yL]‖2
F ≤ ε2, (6)

where ε controls the noise level. It has been shown in [14] that if the sensing ma-
trices A(i)’s satisfy RIP, then the distance between the solution to (6) and the true 
signal matrix, which is measured by the Frobenius norm, is within a constant multiple 
of ε.

The exact recovery guarantee for (6) is elegant, but works only if the noise level ε is 
not too large. However, in many practical applications, some of the measurements may 
be seriously contaminated or even missing due to uncertainties such as sensor failures 
and transmission errors. Meanwhile, this kind of measurement errors are often sparse 
(see [16] for detailed discussions). In this case, the exact recovery guarantee does not 
hold and the solution of (6) can be far away from the true signal matrix.

The need of handling large but sparse measurement errors in the group sparse signal 
recovery problem motivates the RGL model (2)–(3), which has found successful applica-
tions in, for example, the cognitive network sensing problem [16]. Efficient decentralized 
algorithms solving (2)–(3) are proposed in [17] and their performances are evaluated 
via extensive simulations. In (2)–(3), the measurement matrix M is contaminated by a 
sparse error matrix S = [s1, · · · , sL] ∈ R

m×L whose nonzero entries might be unbounded. 
Through simultaneously minimizing the �2,1-norm of Y and the �1 norm of S, we expect 
to recover the group sparse signal matrix Y and the sparse error matrix S.

The RGL model (2)–(3) is closely related to robust lasso and robust principle com-
ponent analysis (RPCA), both of which have been proved effectively in recovering true 
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signal from sparse gross corruptions. The robust lasso model, which has been discussed 
extensively in [18], [19], [20], minimizes �1-norm of a sparse signal vector and the �1-norm 
of a sparse error vector simultaneously in order to get rid of sparse corruptions. Whereas 
the RPCA model, which is first proposed in [21] and then extended by [22] and [23], re-
covers a low rank matrix by minimizing the nuclear norm of signal matrix plus �1-norm 
of sparse error matrix.

1.2. Contribution and paper organization

This paper proves that with high probability, the proposed RGL model (2)–(3) exactly 
recovers the group sparse signal matrix and the sparse error matrix simultaneously under 
certain restrictions on measurements for a very general class of sample matrices.

The rest of this paper is organized as follows. Section 2 provides the main result 
(see Theorem 1) on the recoverability of the RGL model (2)–(3) under assumptions 
on the sensing matrices and the true signal and error matrices (see Assumptions 1–4). 
Section 2 also introduces several supporting lemmas and corollaries (see Lemmas 1–4
and Corollaries 1–2). Section 3 gives the dual certificate of (2)–(3), which is a sufficient 
condition guaranteeing the exact recovery from the RGL model with high probability. 
Their proofs are based on two supporting lemmas (see Lemmas 5–6). Section 4 proves 
that the inexact dual certificate of (2)–(3) can be satisfied through a constructive manner 
(see Theorem 3 and Lemma 7). This way, we prove the main result given in Section 2. 
Section 5 concludes the paper.

1.3. Notations

We introduce several notations that are used in the subsequent sections. Bold up-
percase letters denote matrices, whereas bold lowercase letters with subscripts and 
superscripts stand for column vectors and row vectors, respectively. For a matrix U, 
we denote ui as its i-th column, ui as its j-th row, and uij as its (i, j)-th element. For a 
given vector u, we denote ui as its i-th element. The notations {U(i)} and {u(i)} denote 
the family of matrices and vectors indexed by i, respectively. The notations {U(i,j)} and 
{u(i,j)} denote the family of matrices and vectors indexed by (i, j), respectively. vec(·)
is the vectorizing operator that stacks the columns of a matrix one after another. {·}′
denotes the transpose operator. diag{·} represents a diagonal matrix and BLKdiag{·}
represents a block diagonal matrix. The notation 〈·, ·〉 denotes the inner product, when 
applying to two matrices U and V. sgn(u) and sgn(U) are sign vector and sign matrix 
for u and U, respectively.

Additionally, we use several standard matrix and vector norms. For a vector u ∈ R
n, 

define

• �2-norm: ‖u‖2 =
√∑n

j=1 u
2
j .

• �1-norm: ‖u‖1 =
∑n

j=1 |uj |.
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For a matrix U ∈ R
m×n, define

• �2,1-norm: ‖U‖2,1 =
∑m

i=1

√∑n
j=1 u

2
ij .

• �2,∞-norm: ‖U‖2,∞ = maxi

√∑n
j=1 u

2
ij .

• �1-norm: ‖U‖1 =
∑m

i=1
∑n

j=1 |uij |.
• Frobenius norm: ‖U‖F =

√∑m
i=1
∑n

j=1 u
2
ij .

• �∞-norm: ‖U‖∞ = maxi,j |uij |.

Also, we use the notation ‖U‖(p,q) to denote induced norms, which stands for

‖U‖(p,q) = max
x∈Rn

‖Ux‖p
‖x‖q

.

For the signal matrix Y ∈ R
n×L and noise matrix S ∈ R

m×L, we use the following 
set notations throughout the paper.

• T : The row group support (namely, the set of row coordinates corresponding to the 
nonzero rows of the signal matrix) whose cardinality is denoted as kT = |T |.

• T c: The complement of T (namely, {1, · · · , n} \ T ).
• Ω: The support of error matrix (namely, the set of coordinates corresponding to the 

nonzero elements of the error matrix) whose cardinality is denoted as kΩ = |Ω|.
• Ωc: The complement of Ω (namely, {1, · · · , n} × {1, · · · , L} \ Ω).
• Ωi: The support of the i-th column the error matrix whose cardinality is denoted as 

kΩi
= |Ωi|.

• Ωc
i : The complement of Ωi (namely, {1, · · · , n} \ Ωi).

• Ω∗
i : An arbitrary fixed subset of Ωc

i with cardinality m − kmax, where kmax =
maxi kΩi

. Intuitively, Ω∗
i stands for the maximal non-corrupted set across different 

i ∈ {1, · · · , L}.

For any given matrices U ∈ R
m×L, V ∈ R

n×L and given vectors u ∈ R
m, v ∈ R

n, define 
orthogonal projection operators as follows.

• PΩU: The orthogonal projection of matrix U onto Ω (namely, set every entry of U
whose coordinate belongs to Ωc as 0 while keep other entries unchanged).

• PΩi
u, PΩc

i
u, PΩ∗

i
u: The orthogonal projections of u onto Ωi, Ωc

i , and Ω∗
i , respectively.

• PTv: The orthogonal projection of v onto T .
• PΩi

U, PΩc
i
U, and PΩ∗

i
U: The orthogonal projections of each column of U onto 

Ωi, Ωc
i , and Ω∗

i , respectively (namely, PΩi
U = [PΩi

u1, · · · , PΩi
uL], PΩc

i
U =

[PΩc
i
u1, · · · , PΩc

i
uL] and PΩ∗

i
U = [PΩ∗

i
u1, · · · , PΩ∗

i
uL]).

• PTV: The orthogonal projection of each column of V onto T .
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Furthermore, we admit a notational convention that for any projection operator P and 
corresponding matrix U (or vector u), it holds

U′P = (PU)′ (or u′P = (Pu)′).

Finally, by saying an event occurs with high probability, we mean that the occurring 
probability of the event is at least 1 − C(nL)−1 where C is a constant.

2. Main result of exact recovery

This section provides the theoretical performance guarantee of the RGL model (2)–(3). 
Section 2.1 makes several assumptions under which (2)–(3) recovers the true group sparse 
signal and sparse error matrices with high probability. The main result is summarized 
in Theorem 1. Section 2.2 discusses several related results and applications. Section 2.3
gives several probability tools that are useful in the proof of the main result.

2.1. Assumptions and main result

We start from several assumptions on the sensing matrices, as well as the true group 
sparse signal and sparse error matrices.

Consider L distributions {Fi}Li=1 in Rn and an independently sampled vector a(i)
from each Fi. The correlation matrix is defined as

Σ(i) = E

[
a(i)a′

(i)

]
,

and the corresponding condition number is bounded as follows
√

λmax{Σ(i)}
λmin{Σ(i)}

≤ κ, ∀i ∈ {1, 2, · · · , L},

where κ is a positive constant and λmax{·}, λmin{·} denote the largest and smallest 
eigenvalues of a matrix, respectively. Observe that this condition number is finite if and 
only if the covariance matrix is invertible, and is larger than or equal to 1 in any case.

Assumption 1. For i = 1, · · · , L, define the i-th sensing matrix as

A(i) � 1√
m

⎛
⎜⎜⎝

a′
(i)1
...

a′
(i)m

⎞
⎟⎟⎠ ∈ R

m×n.

Therein, {a(i)1, · · · , a(i)m} is assumed to be a sequence of i.i.d. random vectors drawn 
from the distribution Fi in Rn.
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By Assumption 1, we suppose that every sensing matrix A(i) is randomly sampled 
from a corresponding distribution Fi. We proceed to assume the properties of the dis-
tributions {Fi}Li=1.

Assumption 2. For i = 1, · · · , L, every distribution Fi satisfy the following two proper-
ties.

• Completeness: The correlation matrix Σ(i) is invertible.
• Incoherence: Each sensing vector a(i) sampled from Fi satisfies

max
j∈{1,··· ,n}

|〈a(i), ek〉| ≤
√
μ, (7)

max
j∈{1,··· ,n}

|〈Σ−1
(i) a(i), ek〉| ≤

√
μ, (8)

for some fixed constant μ ≥ 1, where {ek}nk=1 is the standard basis in Rn.

We call μ as the incoherence parameter. Note that this incoherence condition is 
stronger than the one originally presented in [26], which does not require (8). If one 
wants to get rid of (8), then some other restrictions must be imposed on the sensing 
matrices (see [27] for related results).

Observe that the bounds (7) and (8) in Assumption 2 are meaningless unless we fix 
the scale of a(i). Thus, we have the following assumption.

Assumption 3. The correlation matrix Σ(i) satisfies

λmax{Σ(i)} = λmin{Σ(i)}−1, (9)

for any Fi, i = 1, · · · , L.

Given any complete Fi, (9) can always be achieved by scaling a(i) up or down. This is 
true because if we scale a(i) up, then λmax{Σ(i)} increases and λmin{Σ(i)}−1 decreases. 
Observe that the optimization problem (2)–(3) is invariant under scaling. Thus, Assump-
tion 3 does not pose any extra constraint.

Denote Y and S as the true group sparse signal and sparse error matrices to recover, 
respectively. The row group support of Y and the support of S are fixed and denoted as 
T and Ω, respectively.

The assumption on Y and S is given as follows,

Assumption 4. The true signal matrix Y and error matrix S satisfy the following two 
properties.

• Random sign: The signs of the elements of Y and S are i.i.d. and equally likely to 
be +1 or −1.
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• Row incoherence: Let yi be the i-th row of Y. Then, there exists a fixed constant 
ν ≥ 1 so that

max
l∈{1,2,··· ,L}

∣∣∣∣
〈

yi

‖yi‖2
, el
〉∣∣∣∣ ≤

√
ν

L
,

for any i ∈ T and l ∈ {1, 2, · · · , L}, where {el}Ll=1 is a standard basis in RL.

Under the assumptions stated above, we have the following main theorem on the 
recoverability of the RGL model (2)–(3).

Theorem 1. Let θ ∈ [1, L] be a tradeoff parameter. Under Assumptions 1–4, the solution 
pair (Ŷ, Ŝ) to the optimization problem (2)–(3) is exact and unique with probability at 
least 1 − (16 + 2e 1

4 )(nL)−1, provided that λ =
√

θ
L log(nL) ,

kT ≤ α
m

max
{
κ, ν

θ

}
μ log2(nL)

, kΩ ≤ β
mL

μθ
, kmax ≤ γ

m

κ
, (10)

where kmax � maxi kΩi
, and α ≤ 1

9600 , β ≤ 1
3136 , γ ≤ 1

4 are all positive constants.1

Note that from (10), the constant θ is indeed a trade-off parameter. Choosing θ large 
relaxes the constraint on row supports but restricts the number of sparse errors, and vice 
versa.

The incoherence condition of sensing vectors (Assumption 2) is common in lasso and 
robust lasso literatures, which implies that the columns of [A(1)y1, · · · , A(L)yL] are 
not aligned with sparse vectors. On the other hand, the row incoherence (Assump-
tion 4) is unique in the current group lasso context. It indicates that the rows of 
[A(1)y1, · · · , A(L)yL] are not aligned with sparse vectors either. Note that this con-
dition is trivial when ν = L, in which cases choosing θ = L in Theorem 1 gives the 
measurement bound mL ≥ O(kTL log2(nL)) and m ≥ O(kΩ). In general when L is large 
and the rows of the true signal matrix Y are dense, we could have ν 
 L, in which case 
choosing θ close to 1 results in an improved measurement bound mL ≥ O(kTL log2(nL))
and mL ≥ O(kΩ). For matrix recovery literatures, similar two-way incoherence assump-
tions are adopted. For example, in RPCA ([4], [21]), the signal matrices are assumed to 
have both left and right singular vectors being incoherent with sparse vectors.

Finally, notice that Y and S are assumed to have fixed supports but random signs. 
This assumption is commonly adopted in the RIPless analysis of lasso ([19], [26]) and 
seems to be crucial in the proof. Alternatively, one could always avoid assuming random 
signs of Y by taking the sensing matrices as A(i)D(i), i = 1, 2, · · · , L, where A(i) is 

1 The bounds on α, β, γ are chosen such that all the requirements on these constants in the subsequent 
lemmas and theorems are met.
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the same as above and D(i) ∈ R
n×n is a diagonal matrix with each diagonal entry i.i.d. 

and equally likely to be +1 or −1. It is still an open problem whether or not one can 
completely get rid of this random sign assumption.

2.2. Related works and applications

2.2.1. Examples
In this section, we provide several examples demonstrating that our sensing model 

covers a wide range of random measurements.

• Random Fourier measurements: An important application for our sensing model is 
the random subsampled discrete Fourier transform (DFT) matrix. Consider an n ×n

matrix W with each entry

W t
ω = e−i2πωt/n, w, t ∈ {0, 1, · · · , n− 1}.

Let A(i) ∈ C
m×n be a sensing matrix so that each row is sampled uniformly at 

random from the rows of W.2 It can be easily verified that E 
[
a(i)a′

(i)

]
= I and 

the incoherence parameter μ = 1. Such sensing model arises in various applications 
including magnetic resonance imaging and collaborative spectrum sensing ([11]). 
More generally, any random row sub-matrix A(i) of an arbitrary bounded orthogonal 
matrix W (with incoherent rows) fits into our model. This includes sampling from 
the class of Hadamard matrices (orthogonal matrices with all entries +1 or −1).

• Random sampling from frames: A frame is a set of vectors {uk}Kk=1 ⊆ R
n which 

satisfies the following relation: There exist positive constants C1 and C2 such that

C1‖x‖2
2 ≤ 1

K

K∑
k=1

〈uk,x〉2 ≤ C2‖x‖2
2, ∀x ∈ R

d.

This can be viewed as a generalization of orthogonal systems without linear inde-
pendence. Furthermore, assume that each uk satisfies the incoherence condition. Let 
A(i) ∈ R

m×n be a sensing matrix so that each row is sampled uniformly at random 
from the set {uk}Kk=1. This sampling model also fits into our formulation. Random 
measurements of this kind arise in Fourier transform with a continuous frequency 
spectrum ([31]) as well as wavelet frame based reconstruction ([32]).

2.2.2. Related results
We see from Theorem 1 that when the signal matrix Y is sufficiently group sparse and 

the error matrix S sufficiently sparse, then with high probability we are able to exactly 

2 Our model is developed in R while this example is over C, all our definitions and results can be generalized 
to complex numbers with little changes.
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recover both of them by solving a convex program. Similar results on structured recovery 
have been established previously by posing more restrictions on the measurements such 
as Gaussian ([29]) or orthogonality ([30]). Here, we prove the performance guarantee 
under a more general sensing model.

Note that the total number of measurements is mL. Thus, Theorem 1 gives the mea-
surement bounds mL ≥ O(kTL log2(nL)) and mL ≥ O(kΩ). Specifically, by setting 
L = 1, this result meets the measurement bounds in the robust lasso model (for ex-
ample, [19]), where the number of measurements m ≥ O(k log2 p) and m ≥ O(kΩ)
guarantees the high probability recovery of an p-dimensional k-sparse signal vector and 
an m-dimensional kΩ-sparse error vector simultaneously.

Theorem 1 is a result of RIPless analysis, which shares the same limitation as all other 
RIPless analyses. To be specific, Theorem 1 only holds for arbitrary but fixed Y and S
(except that the elements of Y and S have uniform random signs by Assumption 4). If we 
expect to have a uniform recovery guarantee here (namely, considering random sensing 
matrices as well as signal and error matrices with random supports), then certain stronger 
assumptions must be made on the sensing matrices such as the RIP condition.

The proof of Theorem 1 is based on the construction of an inexact dual certificate 
through the golfing scheme. The golfing scheme was first introduced in [24] for low rank 
matrix recovery. Subsequently, [26] and [27] refined and used the scheme to prove the 
lasso recovery guarantee. The work [19] generalized it to mix-norm recovery. In this 
paper, we consider a new mix-norm problem, namely, summation of the �2,1-norm and 
the �1-norm.

2.3. Matrix concentration inequalities

Below we give several probability tools that are useful in the proofs of the paper. We 
begin with two versions of Bernstein inequalities from [25]. The first one is a matrix 
Bernstein inequality.

Lemma 1 (Matrix Bernstein inequality). Consider a finite sequence of independent ran-
dom matrices {M(j) ∈ R

d×d}. Assume that every random matrix satisfies E 
[
M(j)

]
= 0

and ‖M(j)‖(2,2) ≤ B almost surely. Define

σ2 � max

⎧⎪⎨
⎪⎩
∥∥∥∥∥∥
∑
j

E

[
M′

(j)M(j)

]∥∥∥∥∥∥
(2,2)

,

∥∥∥∥∥∥
∑
j

E

[
M(j)M′

(j)

]∥∥∥∥∥∥
(2,2)

⎫⎪⎬
⎪⎭ .

Then, for all t ≥ 0, we have

Pr

⎧⎪⎨
⎪⎩
∥∥∥∥∥∥
∑
j

M(j)

∥∥∥∥∥∥
(2,2)

≥ t

⎫⎪⎬
⎪⎭ ≤ 2d exp

(
− t2/2
σ2 + Bt/3

)
.
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We also need a vector form of the Bernstein inequality.

Lemma 2 (Vector Bernstein inequality). Consider a finite sequence of independent ran-
dom vectors {g(j) ∈ R

d}. Assume that every random vector satisfies E 
[
g(j)

]
= 0 and 

‖g(j)‖2 ≤ B almost surely. Define σ2 �
∑

k E 
[
‖g(j)‖2

2
]
. Then, for all 0 ≤ t ≤ σ2/B, we 

have

Pr

⎛
⎝
∥∥∥∥∥∥
∑
j

g(j)

∥∥∥∥∥∥
2

≥ t

⎞
⎠ ≤ exp

(
− t2

8σ2 + 1
4

)
.

Next, we use the matrix Bernstein inequality to prove its extension on a block 
anisotropic matrix.

Lemma 3. Consider a matrix A(i) satisfying the model described in Section 2.1, and 
denote Ã(i) = Σ−1

(i) A
′
(i)PΩ∗

i
A(i). For any τ > 0, it holds

Pr

{∥∥∥∥PT

(
m

m− kmax
Ã(i)Σ−1

(i) − Σ−1
(i)

)
PT

∥∥∥∥
(2,2)

≥ τ

}

≤ 2kT exp
(
−m− kmax

κkTμ

τ2

4(κ + 2τ
3 )

)
,

and

Pr

{∥∥∥∥PT

(
m

m− kmax
Ã(i) − I

)
PT

∥∥∥∥
(2,2)

≥ τ

}
≤ 2kT exp

(
−m− kmax

κkTμ

τ2

4(1 + 2τ
3 )

)
.

We prove the first part in Appendix A, and the second part can be proved in 
a similar way. Two consequent corollaries of Lemma 3 show that the restriction of 

m
m−kmax

BLKdiag
{
Ã(1), · · · , Ã(L)

}
to the corresponding support T is near isometric.

Corollary 1. Denote Ã(i) = Σ−1
(i) A

′
(i)PΩ∗

i
A(i). Given kT ≤ α m

μκ log(nL) , kmax ≤ γm, and 
1−γ
α ≥ 64, then with probability at least 1 − 2(nL)−2, we have

∥∥∥∥BLKdiag
{
PT

(
m

m− kmax
Ã(1) − I

)
PT , · · · , PT

(
m

m− kmax
Ã(L) − I

)
PT

}∥∥∥∥
(2,2)

<
1
2 . (11)

Furthermore, given kT ≤ α m
μκ log2(nL) , kmax ≤ γm, and 1−γ

α ≥ 64, with at least the same 
probability, we have
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∥∥∥∥BLKdiag
{
PT

(
m

m− kmax
Ã(1) − I

)
PT , · · · , PT

(
m

m− kmax
Ã(L) − I

)
PT

}∥∥∥∥
(2,2)

<
1

2
√

log(nL)
. (12)

Proof. First, following directly from the first part of Lemma 3, for all i = 1, · · · , L, it 
holds

Pr

{∥∥∥∥PT

(
m

m− kmax
Ã(i) − I

)
PT

∥∥∥∥
(2,2)

≥ τ

}
≤ 2kT exp

{
−m− kmax

kTμκ

τ2

4(1 + 2τ
3 )

}
.

(13)

Taking a union bound over all i = 1, · · · , L yields

Pr

{∥∥∥∥∥BLKdiag
{
PT

(
m

m− kmax
Ã(1) − I

)
PT , · · · ,

PT

(
m

m− kmax
Ã(L) − I

)
PT

}∥∥∥∥
(2,2)

≥ τ

}

= Pr

{
max

i

{∥∥∥∥PT

(
m

m− kmax
Ã(i) − I

)
PT

∥∥∥∥
(2,2)

}
≥ τ

}

≤
L∑

i=1
Pr

{∥∥∥∥PT

(
m

m− kmax
Ã(i) − I

)
PT

∥∥∥∥
(2,2)

≥ τ

}

≤ 2kTL exp
{
−m− kmax

kTμκ

τ2

4(1 + 2τ
3 )

}
. (14)

Plugging in τ = 1
2 and using the fact that kT ≤ α m

μκ log(nL) and kmax ≤ γm, we get

The last line of (14) = 2kTL exp
{
−3(1 − γ)

64α log(nL)
}

= 2kTL(nL)−
3(1−γ)

64α ,

≤ 2kTL(nL)−3 ≤ 2(nL)−2

where the first inequality follows from 1−γ
α ≥ 64 and the second inequality follows from 

kT ≤ n. Similarly, plugging in τ = 1
2
√

log(nL) and using the fact that kT ≤ α m
μκ log2(nL) , 

we prove (12) as long as 1−γ
α ≥ 64. �

Corollary 2. Given that kT ≤ α m
μκ log(nL) , kmax ≤ γm, and 1−γ

α ≥ 64, then with proba-
bility at least 1 − 2(nL)−2, we have
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∥∥∥∥BLKdiag
{
PT

(
m

m− kmax
Ã(1)Σ−1

(1) − Σ−1
(1)

)
PT ,

· · · , PT

(
m

m− kmax
Ã(L)Σ−1

(L) − Σ−1
(L)

)
PT

}∥∥∥∥
(2,2)

<
κ

2 . (15)

The proof is the same as proving (11) using Lemma 3. We omit the details for brevity. 
Finally, we have the following lemma show that if the support of the columns in A(i)
is restricted to Ω∗

i , then no column indexed inside T can be well approximated by the 
column indexed outside of T . In other words, those columns correspond to the true signal 
matrix shall be well distinguished.

Lemma 4 (Off-support incoherence). Denote Ã(i) = Σ−1
(i) A

′
(i)PΩ∗

i
A(i). Given kT ≤

α m
μκ log(nL) and α < 1

24 , with probability at least 1 − e
1
4 (nL)−2, we have

max
i∈{1,··· ,L},k∈T c

∥∥PT Ã(i)ek
∥∥

2 ≤ 1, (16)

where {ek}nk=1 is a standard basis in Rn.

The proof of Lemma 4 is given in Appendix B.
With particular note, in the above lemmas and corollaries, all the requirements on 

the constants α, β and γ satisfy the bounds in Theorem 1.

3. Inexact dual certificates

This section gives the dual certificates of the RGL model, namely, the sufficient con-
ditions under which the optimal solution pair of the convex program (2)–(3) is unique 
and equal to the pair of the true signal and error matrices. First we have two preliminary 
lemmas.

Lemma 5. Suppose that Y ∈ R
n×L and S ∈ R

m×L are the true group sparse signal 
and sparse error matrices, respectively. If (Y + H, S−F) is an optimal solution pair to 
(2)–(3), where H ∈ R

n×L and F ∈ R
m×L, then the following results hold:

i)
[
A(1)h1, · · · ,A(L)hL

]
= F;

ii) ‖Y + H‖2,1 + λ‖S − F‖1 ≥ ‖Y‖2,1 + λ‖S‖1 + ‖PT cH‖2,1 + λ‖PΩcF‖1 + 〈V, H〉 −
λ〈sgn(S), F〉,

where V ∈ R
n×L satisfies (PTV)i = ȳi

‖ȳi‖2
and (PT cV)i = 0, ∀i = 1, · · · , n. Here 

(PTV)i denotes the i-th row of PTV and ȳi denotes the i-th row of Y.

The proof of Lemma 5 is given in Appendix C.
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Lemma 6. For any two matrices H ∈ R
n×L and F ∈ R

m×L, with probability at least 
1 − 2n−2, H = 0 and F = 0 if the following conditions are satisfied:

i) kT ≤ α m
μκ log2(nL) , kmax ≤ γm, and 1−γ

α ≥ 64;
ii)
[
A(1)h1, · · · ,A(L)hL

]
= F;

iii) PT cH = 0 and PΩcF = 0.

The proof of Lemma 6 is given in Appendix D.
Below we show that the optimal solution pair (Ŷ, Ŝ) of the convex program (2)–(3)

is equal to the true signal and noise pair (Y, S) when certain certificate conditions hold.

Theorem 2 (Inexact duality). Suppose that Y ∈ R
n×L and S ∈ R

m×L are the true 
group sparse signal and sparse error matrices satisfying the assumptions in Theorem 1. 
The pair (Y, S) is the unique solution to the RGL model (2)–(3) with probability at 
least 1 − (2 + e

1
4 )(nL)−1, if the parameter λ < 1 and there exists a dual certificate 

(W, V) ∈ R
m×L × R

n×L such that

‖PTV − V‖F ≤ λ

4
√
κ
, (17)

‖PT cV‖2,∞ ≤ 1
4 , (18)

‖PΩcW‖∞ ≤ λ

4 , (19)

and

V =
[
A′

(1)PΩc
1w1, · · · ,A′

(L)PΩc
L
wL

]
+ λ

[
A′

(1)sgn(s̄1), · · · ,A′
(L)sgn(s̄L)

]
, (20)

where V ∈ R
n×L satisfies (PTV)i = ȳi

‖ȳi‖2
and (PT cV)i = 0.

Proof. Suppose that (Y+H, S−F) is an optimal solution pair to (2)–(3). Therefore, the 
two results in Lemma 5 hold true. Proving that the pair (Y, S) is the unique solution 
to (2)–(3) is equivalent to showing that H = 0 and F = 0. Hence, the proof resorts to 
verifying the three conditions in Lemma 6.

Since Y and S satisfy the assumptions in Theorem 1, we have

kT ≤ α
m

μκ log2(nL)
, kmax ≤ γ

m

κ
, α ≤ 1

9600 , γ ≤ 1
4 .

Considering κ ≥ 1, we know that condition i) in Lemma 6 holds. By result i) of Lemma 5, 
condition ii) also holds. Therefore, it remains to verify condition iii), namely, PT cH = 0
and PΩcF = 0.
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Consider the term 〈V, H〉 −λ〈sgn(S), F〉 in result ii) of Lemma 5. Using the equation 
V = PTV + PT cV, we rewrite the term as

〈V,H〉 − λ〈sgn(S),F〉 = 〈V − PTV,H〉 − 〈PT cV,H〉 + 〈V,H〉 − λ〈sgn(S),F〉. (21)

Consider the term 〈V, H〉 −λ〈sgn(S), F〉 on the right hand side of (21). By (20), we have

〈V,H〉 − λ〈sgn(S),F〉

=
〈[

A′
(1)PΩc

1w1, · · · ,A′
(L)PΩc

L
wL

]
,H
〉

+ λ
〈[

A′
(1)sgn(s̄1), · · · ,A′

(L)sgn(s̄L)
]
,H
〉
− λ〈sgn(S),F〉.

By adjoint relations of inner products, we have
〈[

A′
(1)PΩc

1w1, · · · ,A′
(L)PΩc

L
wL

]
,H
〉

=
〈[
PΩc

1A(1)h1, · · · ,PΩc
L
A(L)hL

]
,W

〉
,

and

〈
[
A′

(1)sgn(s̄1), · · · ,A′
(L)sgn(s̄L)

]
,H〉

= 〈sgn(S),
[
A(1)h1, · · · ,A(L)hL

]
〉.

Thus, it holds

〈V,H〉 − λ〈sgn(S),F〉
=
〈[
PΩc

1A(1)h1, · · · ,PΩc
L
A(L)hL

]
,W

〉
+ λ

〈
sgn(S),

[
A(1)h1, · · · ,A(L)hL

]〉
− λ〈sgn(S),F〉.

According to conclusion i) in Lemma 5, which is 
[
A(1)h1, · · · ,A(L)hL

]
= F, it follows

〈V,H〉 − λ〈sgn(S,F)〉 = 〈PΩcF,W〉.

Combining (21) and above equality gives

〈V,H〉 − λ〈sgn(S),F〉 = 〈V − PTV,H〉 − 〈PT cV,H〉 + 〈PΩcF,W〉. (22)

Next, we manage to find out a lower bound for the right-hand side of the equality 
(22). First, by (17),

〈V− PTV,H〉 ≥ −‖PTV − V‖F ‖PTH‖F ≥ − λ√ ‖PTH‖F .
4 κ
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Then, by (18),

−〈PT cV,H〉 ≥ −‖PT cV‖2,∞‖PT cH‖2,1 ≥ −1
4‖PT cH‖2,1.

Finally, by (19),

〈PΩcF,W〉 ≥ −‖PΩcF‖1‖PΩcW‖∞ ≥ −λ

4 ‖PΩcF‖1.

Therefore, (22) gives

〈V,H〉 − λ〈sgn(S),F〉 ≥ − λ

4
√
κ
‖PTH‖F − 1

4‖PT cH‖2,1 −
λ

4 ‖PΩcF‖1.

Substitute the above inequality into conclusion ii) of Lemma 5 gives

‖Y + H‖2,1 + λ‖S − F‖1

≥‖Y‖2,1 + λ‖S‖1 + 3
4‖PT cH‖2,1 + 3λ

4 ‖PΩcF‖1 −
λ

4
√
κ
‖PTH‖F .

Since (Y+H, S−F) is an optimal solution pair to (2)–(3), it follows that ‖Y+H‖2,1 +
λ‖S − F‖1 ≤ ‖Y‖2,1 + λ‖S‖1. Hence, we have

3
4‖PT cH‖2,1 + 3λ

4 ‖PΩcF‖1 −
λ

4
√
κ
‖PTH‖F ≤ 0. (23)

To complete the proof, we need to show that inequality (23) implies PT cH = 0 and 
PΩcF = 0. To do so, we first derive an upper bound for ‖PTH‖F , expressed as a linear 
combination of ‖PT cH‖2,1 and ‖PΩcF‖1.

Using (11), it follows

∥∥∥∥BLKdiag
{
PT

(
m

m− kmax
Ã(1) − I

)
PT , · · · ,PT

(
m

m− kmax
Ã(L) − I

)
PT

}
vec(H)

∥∥∥∥
2

≤ 1
2‖PTH‖F .

Since ‖BLKdiag {PT , · · · ,PT } vec(H)‖2 = ‖PTH‖F , applying the triangle inequality 
yields

‖PTH‖F ≤ 2
∥∥∥∥ m

m− kmax
BLKdiag

{
PT Ã(1)PT , · · · ,PT Ã(L)PT

}
vec(H)

∥∥∥∥
2
.

Observing vec(PTH) = vec(H) − vec(PT cH) and using the triangle inequality again, we 
have
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‖PTH‖F ≤ 2
∥∥∥∥ m

m− kmax
BLKdiag

{
PT Ã(1), · · · ,PT Ã(L)

}
vec(H)

∥∥∥∥
2

+ 2
∥∥∥∥ m

m− kmax
BLKdiag

{
PT Ã(1), · · · ,PT Ã(L)

}
vec(PT cH)

∥∥∥∥
2
. (24)

Below, we upper bound the two terms at the right-hand side of (24), respectively.

1© Bounding the first term of (24): By definitions Ã(i) = Σ−1
(i) A

′
(i)PΩ∗

i
A(i), it follows

∥∥∥∥ m

m− kmax
BLKdiag

{
PT Ã(1), · · · ,PT Ã(L)

}
vec(H)

∥∥∥∥
2

=
∥∥∥∥ m

m− kmax
vec
([

PTΣ−1
(1)A

′
(1)PΩ∗

1A(1)h1, · · · ,PTΣ−1
(L)A

′
(L)PΩ∗

L
A(L)hL

])∥∥∥∥
2

=
∥∥∥∥ m

m− kmax
vec
([

PTΣ−1
(1)A

′
(1)PΩ∗

1 f1, · · · ,PTΣ−1
(L)A

′
(L)PΩ∗

L
fL
])∥∥∥∥

2
. (25)

Here the second equality comes from result i) in Lemma 5, namely, F = [A(1)h1, · · · ,
A(L)hL]. Recalling that Ω∗

i is a subset of Ωc
i for any i = 1, · · · , L, we have

∥∥vec
([
PΩ∗

1 f1, · · · ,PΩ∗
L
fL
])∥∥

2 ≤ ‖vec(PΩcF)‖2.

Based on this inequality, we upper bound (25) using the induced norm property
∥∥∥∥ m

m− kmax
BLKdiag

{
PT Ã(1), · · · ,PT Ã(L)

}
vec(H)

∥∥∥∥
2

≤
∥∥∥∥ m

m− kmax
BLKdiag

{
PTΣ−1

(1)A
′
(1)PΩ∗

1 , · · · ,PTΣ−1
(L)A

′
(L)PΩ∗

L

}∥∥∥∥
(2,2)

·
∥∥vec

([
PΩ∗

1 f1, · · · ,PΩ∗
L
fL
])∥∥

2

≤
∥∥∥∥ m

m− kmax
BLKdiag

{
PTΣ−1

(1)A
′
(1)PΩ∗

1 , · · · ,PTΣ−1
(L)A

′
(L)PΩ∗

L

}∥∥∥∥
(2,2)

· ‖vec(PΩcF)‖2

≤
∥∥∥∥ m

m− kmax
BLKdiag

{
PTΣ−1

(1)A
′
(1)PΩ∗

1 , · · · ,PTΣ−1
(L)A

′
(L)PΩ∗

L

}∥∥∥∥
(2,2)

· ‖PΩcF‖1. (26)

Using the definitions Ã(i) = Σ−1
(i) A

′
(i)PΩ∗

i
A(i) and applying the triangle inequality as 

well as Corollary 2, with probability at least 1 − 2(nL)−2 it holds
∥∥∥∥ m

m− kmax
BLKdiag

{
PTΣ−1

(1)A
′
(1)PΩ∗

1A(1)Σ−1
(1)PT , · · · ,

PTΣ−1
(L)A

′
(L)PΩ∗

L
A(L)Σ−1

(L)PT

}∥∥∥∥
(2,2)

=
∥∥∥∥ m

m− k
BLKdiag

{
PT Ã(1)Σ−1

(1)PT , · · · ,PT Ã(L)Σ−1
(L)PT

}∥∥∥∥

max (2,2)
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≤
∥∥∥∥BLKdiag

{
PT

(
m

m− kmax
Ã(1)Σ−1

(1) − Σ−1
(1)

)
PT , · · · ,

PT

(
m

m− kmax
Ã(L)Σ−1

(L) − Σ−1
(L)

)
PT

}∥∥∥∥
(2,2)

+
∥∥∥BLKdiag

{
PTΣ−1

(1)PT , · · · ,PTΣ−1
(L)PT

}∥∥∥
(2,2)

≤ κ

2 +
∥∥∥BLKdiag

{
PTΣ−1

(1)PT , · · · ,PTΣ−1
(L)PT

}∥∥∥
(2,2)

≤ 3
2κ.

Consequently,

∥∥∥∥
√

m

m− kmax
BLKdiag

{
PTΣ−1

(1)A
′
(1)PΩ∗

1 , · · · , PTΣ−1
(L)A

′
(L)PΩ∗

L

}∥∥∥∥
(2,2)

≤
√

3
2κ.

Combining (26), this gives

∥∥∥∥ m

m− kmax
BLKdiag

{
PT Ã(1), · · · ,PT Ã(L)

}
vec(H)

∥∥∥∥
2
≤
√

3
2

κm

m− kmax
‖PΩcF‖1 .

2© Bounding the second term of (24): The following chains of equalities and inequalities 
hold:

∥∥BLKdiag
{
PT Ã(1), · · · ,PT Ã(L)

}
vec(PT cH)

∥∥
2

=
∥∥[PT Ã(1)PT ch1, · · · ,PT Ã(L)PT chL

]∥∥
F

=

∥∥∥∥∥
∑
k∈T c

[
h1kPT Ã(1)ek, · · · , hLkPT Ã(L)ek

]∥∥∥∥∥
F

≤
∑
k∈T c

∥∥[h1kPT Ã(1)ek, · · · , hLkPT Ã(L)ek
]∥∥

F

=
∑
k∈T c

√√√√ L∑
i=1

∥∥PT Ã(i)ek
∥∥2

2 · |hik|2

≤
∑
k∈T c

(
max

i∈{1,··· ,L}

{∥∥PT Ã(i)ek
∥∥

2

})
·
∥∥hk

∥∥
2

≤
(

max
i∈{1,··· ,L}, k∈T c

{∥∥PT Ã(i)ek
∥∥

2

})
· ‖PT cH‖2,1 , (27)

where hk denotes the k-th row of matrix H and hik denotes the (i, k)-th element of H. 
In (27), the last inequality follows from the definition of the �2,1-norm. According to 
Lemma 4, with probability at least 1 − e

1
4 (nL)−2, (27) implies

∥∥BLKdiag
{
PT Ã(1), · · · ,PT Ã(L)

}
vec(PT cH)

∥∥ ≤ ‖PT cH‖2,1.
2
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Summarizing the results above, we have an upper bound for the right-hand side of 
(24):

‖PTH‖F ≤
√

6κm
m− kmax

‖PΩcF‖1 + 2m
m− kmax

‖PT cH‖2,1. (28)

Finally, substituting (28) into (23) gives

(
3
4 − 1

2
√
κ

m

m− kmax
λ

)
‖PT cH‖2,1 +

(
3
4 −

√
6

4

√
m

m− kmax

)
λ‖PΩcF‖1 ≤ 0.

In the above inequality, 3
4 −

√
6

4

√
m

m−kmax
and 3

4 − λ
2
√
κ

m
m−kmax

are both larger than zero 

provided that λ < 1 and kmax
m ≤ γ

κ < 1
3 . Thus, we have ‖PT cH‖2,1 = 0 and ‖PΩcF‖1 = 0, 

which prove PT cH = 0 and PΩcF = 0. �
4. Construction of dual certificate

By explicitly constructing a pair of dual certificate, this section proves the following 
theorem, which is sufficient for proving our main result given by Theorem 1.

Theorem 3. Under the assumptions in Theorem 1, with high probability, there exists a 
pair of dual certificate (U, W) such that

U =
[
A′

(1)PΩc
1w1, · · · ,A′

(L)PΩc
L
wL

]
,

and ∥∥∥λPT c

[
A′

(1)sgn(s̄1), · · · ,A′
(L)sgn(s̄L)

]∥∥∥
2,∞

≤ 1
8 , (29)

∥∥∥PTU + λPT

[
A′

(1)sgn(s̄1), · · · ,A′
(L)sgn(s̄L)

]
− V

∥∥∥
F
≤ λ

4
√
κ
, (30)

‖PT cU‖2,∞ ≤ 1
8 , (31)

‖PΩcW‖∞ ≤ λ

4 , (32)

where V ∈ R
n×L satisfies (PTV)i = ȳi

‖ȳi‖2
and (PT cV)i = 0, ∀i = 1, · · · , n.

Comparing to Theorem 2, the above theorem breaks ‖PT cV‖2,∞ ≤ 1
4 in (18) into 

two constraints (29) and (31). Thus, Theorem 3 implies that an inexact dual certificate 
exists with high probability. Therefore, Theorem 3 implies our main result Theorem 1.

We start with the procedure of constructing U and W. This procedure stems from 
the classical golfing scheme (see [19], [21], and [26]). Basically, it constructs a sequence of 
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matrices {Q(j)}lj=0 via l sampled batches of row vectors in each PΩ∗
i
A(i), i ∈ {1, · · · , L}, 

so that different batches are not overlapped and the sequence 
{
‖Q(j)‖F

}l
j=0 shrinks ex-

ponentially fast in finite steps with high probability. We then write W and subsequently 
U as functions of {Q(j)}lj=0 so that they meet the constraints (29)–(32).

Define the initial value of the sequence {Q(j)}lj=0 as

Q(0) = V − λPT [A′
(1)sgn(s̄1), · · · ,A′

(L)sgn(s̄L)]. (33)

For each i = 1, · · · , L, we split the maximal non-corrupted set Ω∗
i into l disjoint batch 

sets, namely, Ω∗
i ⊇ Ki1

⋃
· · ·
⋃

Kil, so that for any j = 1, · · · , l, the cardinalities of the 
sets |Kij | satisfy |K1j | = · · · = |KLj | � mj . Notice that it is possible to split Ω∗

i in this 
way since we enforce |Ω∗

1| = · · · = |Ω∗
L| = m − kmax.

Define PKij
as the orthogonal projection of a vector in Rm onto coordinates in Kij

and define Ã(i,j) = Σ−1
(i) A

′
(i)PKij

A(i) as the total number of batches l � �log(nL) + 1�. 
For each j = 1, · · · , l, recursively define

Q(j) =
[
PT

(
I − m

mj
Ã(1,j)

)
PTq(j−1)1, · · · ,PT

(
I − m

mj
Ã(L,j)

)
PTq(j−1)L

]

=
[(

j∏
r=1

PT

(
I − m

mr
Ã(1,r)

)
PT

)
q(0)1, · · · ,

(
j∏

r=1
PT

(
I − m

mr
Ã(L,r)

)
PT

)
q(0)L

]
.

(34)

We choose

m1 = m2 =
⌈m

4

⌉
, mj =

⌈
m

4 log(nL)

⌉
, ∀j ≥ 3.

Finally, we set W so that

PΩcW =

⎡
⎣ l∑
j=1

m

mj
PK1jA(1)PTq(j−1)1, · · · ,

l∑
j=1

m

mj
PKLj

A(L)PTq(j−1)L

⎤
⎦ , (35)

and PΩW = 0. Also, set U to be

U =
[
Σ−1

(1)A
′
(1)PΩc

1w1, · · · ,Σ−1
(L)A

′
(L)PΩc

L
wL

]

=

⎡
⎣ l∑
j=1

m

mj
Σ−1

(1)A
′
(1)PK1jA(1)PTq(j−1)1, · · · ,

l∑
j=1

m

mj
Σ−1

(L)A
′
(L)PKLj

A(L)PTq(j−1)L

⎤
⎦

=
l∑

j=1

m

mj

[
Ã(1,j)PTq(j−1)1, · · · , Ã(L,j)PTq(j−1)L

]
. (36)
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Our construction is justified by the following lemma, which shows the sequence {
‖Q(j)

∥∥
F
}lj=0 shrinks exponentially fast with high probability.

Lemma 7. Given kT ≤ α m
μκ log2(nL) with α ≤ 1

256 , then, with probability at least 1 −
2(nL)−1, the following set of inequalities hold simultaneously

∥∥∥∥BLKdiag
{
PT

(
m

mj
Ã(1,j) − I

)
PT , · · · , PT

(
m

mj
Ã(L,j) − I

)
PT

}∥∥∥∥
(2,2)

≤ cj , (37)

where c1 = c2 = 1
2
√

log(nL) and cj = 1
2 , j ≥ 3.

This lemma is proved in Appendix E. From Lemma 7, the following chains of con-
tractions hold with probability at least 1 − 2(nL)−1:

‖Q(1)‖F ≤ 1
2
√

log(nL)
‖Q(0)‖F , (38)

‖Q(2)‖F ≤ 1
4 log(nL)‖Q(0)‖F ,

...

‖Q(l)‖F ≤
l∏

j=1
cj‖Q(0)‖F ≤ 1

log(nL)
1
2l ‖Q(0)‖F . (39)

The next key observation behind this construction is that PTU = Q(0) − Q(l), and 
thus by definition of Q(0) in (33), the in-support difference

∥∥∥PTU + λPT

[
A′

(1)sgn(s̄1), · · · ,A′
(L)sgn(s̄L)

]
− V

∥∥∥
F

= ‖Q(l)‖F ,

which is exponentially small, while the size of the off-support terms ‖PT cU‖2,∞ and 
‖PΩcW‖∞ are roughly sum of geometric sequence and thus bounded. The details of the 
proof of Theorem 3 is given in Appendix F.

5. Conclusion

This paper proposes the robust group lasso (RGL) model that recovers a group sparse 
signal matrix for sparsely corrupted measurements. The RGL model minimizes the mixed 
�2,1/�1-norm under linear measurement constraints, and hence is convex. We establish 
the recoverability of the RGL model, showing that the true group sparse signal matrix 
and the sparse error matrix can be exactly recovered with high probability under certain 
conditions. Our theoretical analysis provides a solid performance guarantee to the RGL 
model.
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Appendix A. Proof of Lemma 3

Proof. Here we prove the second part of Lemma 3. By definitions Ã(i) = Σ−1
(i) A

′
(i)PΩ∗

i
×

A(i), it holds

PT

(
m

m− kmax
Ã(i)Σ−1

(i) − Σ−1
(i)

)
PT

=PT

(
m

m− kmax
Σ−1

(i) A
′
(i)PΩ∗

i
A(i)Σ−1

(i) − Σ−1
(i)

)
PT

=
∑
j∈Ω∗

i

M(j),

where

M(j) � 1
m− kmax

PT

(
Σ−1

(i) a(i)ja′
(i)jΣ

−1
(i) − Σ−1

(i)

)
PT .

Since E 
[
a(i)ja′

(i)j

]
= Σ(i), it is obvious that E 

[
M(j)

]
= 0. We estimate the induced 

�(2,2)-norm of M(j) in order to implement the matrix Bernstein inequality later. It holds

‖M(j)‖(2,2) =
∥∥∥∥ 1
m− kmax

PT

(
Σ−1

(i) a(i)ja′
(i)jΣ

−1
(i) − Σ−1

(i)

)
PT

∥∥∥∥
(2,2)

≤ 1
m− kmax

(∥∥∥PT

(
Σ−1

(i) a(i)ja′
(i)jΣ

−1
(i)

)
PT

∥∥∥
(2,2)

+
∥∥∥PTΣ−1

(i)PT

∥∥∥
(2,2)

)

≤ 1
m− kmax

(∥∥∥PT

(
Σ−1

(i) a(i)ja′
(i)jΣ

−1
(i)

)
PT

∥∥∥
(2,2)

+ κ

)

= 1
m− kmax

(∥∥∥PTΣ−1
(i) a(i)j

∥∥∥2

2
+ κ

)
≤ 1

m− kmax
(μkT + κ),

where the first inequality follows from the triangle inequality and the last inequality 
follows from Assumption (8). Since κ ≥ 1 and μ ≥ 1, the above bound on ‖M(j)‖(2,2)
can be further relaxed as

‖M(j)‖(2,2) ≤
2κμkT

m− kmax
� B.

Meanwhile, since M′
(j)M(j) = M(j)M′

(j), we only need to consider one of them.

∥∥∥E [M′
(j)M(j)

]∥∥∥
(2,2)

= 1
(m− kmax)2

∥∥∥∥E
[
PTΣ−1

(i) a(i)j

(
a′

(i)jΣ
−1
(i)PTΣ−1

(i) a(i)j

)
a′

(i)jΣ
−1
(i)PT

−
(
PTΣ−1

(i)PT

)2
]∥∥∥∥
(2,2)
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= 1
(m− kmax)2

∥∥∥∥E
[∥∥∥PTΣ−1

(i) a(i)j

∥∥∥2

2
PTΣ−1

(i) a(i,j)a′
(i)jΣ

−1
(i)PT

]
−
(
PTΣ−1

(i)PT

)2
∥∥∥∥

(2,2)

≤ 1
(m− kmax)2

(∥∥∥∥E
[∥∥∥PTΣ−1

(i) a(i)j

∥∥∥2

2
PTΣ−1

(i) a(i,j)a′
(i)jΣ

−1
(i)PT

]∥∥∥∥
(2,2)

+ κ2

)

≤ 1
(m− kmax)2

(
μkT

∥∥∥E [PTΣ−1
(i) a(i)ja′

(i)jΣ
−1
(i)PT

]∥∥∥
(2,2)

+ κ2
)

≤ κμkT + κ2

(m− kmax)2
≤ κ2(μkT + 1)

(m− kmax)2
≤ 2κ2μkT

(m− kmax)2
,

where the first equality follows from straight-up calculation using E 
[
a(i)ja′

(i)j

]
= Σ(i). 

The first inequality follows from triangle inequality, the second inequality follows from 
the definition of incoherence (8), and the rest of the inequalities uses the fact that κ ≥ 1
and μ ≥ 1. Thus, by triangle inequality,

∥∥∥∥∥∥E
⎡
⎣∑
j∈Ω∗

i

M′
(j)M(j)

⎤
⎦
∥∥∥∥∥∥

(2,2)

≤ 2κ2μkT
(m− kmax)2

· (m− kmax) = 2κ2μkT
m− kmax

� σ2.

Plugging B and σ2 into Matrix Bernstein inequality, we finish the proof of Lemma 3. �
Appendix B. Proof of Lemma 4

Proof. We use the vector Bernstein inequality to prove the lemma. Picking any k ∈ T c

and any i ∈ {1, · · · , L}, we have

Ã(i)ek = 1
m

∑
j∈Ω∗

i

〈a(i)j , ek〉Σ−1
(i) a(i)j .

Letting

g(i,j) = 1
m
〈a(i)j , ek〉PTΣ−1

(i) a(i)j ,

then it holds

PT Ã(i)ek =
∑
j∈Ω∗

i

g(i,j). (B.1)

Since {a(i)j}j∈Ω∗
i

are i.i.d. samples from Fi, the sequence of vectors 
{
g(i,j)

}
j∈Ω∗

i
are 

i.i.d. random variables. In order to apply the vector Bernstein inequality, we first need 
to show that E 

[
g(i,j)

]
= 0 for any j ∈ Ω∗

i :

E
[
g(i,j)

]
= 1

E

[
〈a(i)j , ek〉PTΣ−1a(i)j

]
= 1 PTΣ−1

E

[
a(i)ja′

(i)j

]
ek = 1 PTek = 0.
m (i) m (i) m
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The last equality is true since k ∈ T c. Second, we calculate the bound B for any single ∥∥g(i,j)
∥∥

2:

‖g(i,j)‖2
2 = 1

m2 |〈a(i)j , ek〉|2‖PTΣ−1
(i) a(i)j‖2

2 ≤
μ‖PTΣ−1

(i) a(i)j‖2
2

m2 ≤ μ2kT
m2 ,

where the first inequality follows from the incoherence condition (7) and the second 
inequality follows from (8). Furthermore, we have

E

[∥∥g(i,j)
∥∥2

2

]
= 1

m2E

[(
〈a(i)j , ek〉PTΣ−1

(i) a(i)j

)′ (
〈a(i)j , ek〉PTΣ−1

(i) a(i)j

)]

≤ 1
m2μE

[
a′

(i)jΣ
−1
(i)PTΣ−1

(i) a(i)j

]

= 1
m2μ · Tr

(
E

[
a(i)ja′

(i)j

]
Σ−1

(i)PTΣ−1
(i)

)

= 1
m2μ · Tr

(
PTΣ−1

(i)

)
≤ μkTκ

m2 ,

where Tr(·) denotes the trace of a matrix. The first inequality follows from the incoher-
ence property (7). The last inequality follows from the fact that PTΣ−1

(i) is of rank at 
most kT so that its trace is upper bounded by kTκ. Thus, it holds

∑
j∈Ω∗

i

E

[∥∥g(i,j)
∥∥2

2

]
≤
∑
j∈Ω∗

i

μκkT
m2 ≤ μκkT

m
� σ2. (B.2)

Substituting the above bound to the vector Bernstein inequality yields

Pr

⎛
⎝
∥∥∥∥∥∥
∑
j∈Ω∗

i

g(i,j)

∥∥∥∥∥∥
2

≥ t

⎞
⎠ ≤ exp

(
− t2

8μκkT

m

+ 1
4

)
,

given σ2/B =
√
kTκ ≥ 1. Let t =

√
C log(nL)μκkT

m . Using the fact that kT ≤ α m
μκ log(nL) , 

it holds t ≤
√
Cα when α ≤ 1

24 . We can choose C = 24 such that Cα ≤ 1, which 
guarantees t ≤ 1 and gives

Pr

⎛
⎝
∥∥∥∥∥∥
∑
j∈Ω∗

i

g(i,j)

∥∥∥∥∥∥
2

≥ 1

⎞
⎠ ≤ e

1
4 (nL)−3.

Recalling (B.1) and taking a union bound over all k ∈ T c and i ∈ {1, · · · , L}, we have

Pr

(
max

c

∥∥PT Ã(i)ek
∥∥

2 ≥ 1
)

i∈{1,··· ,L},k∈T
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≤
L∑

i=1

∑
k∈T c

Pr

⎛
⎝
∥∥∥∥∥∥
∑
j∈Ω∗

i

g(i,j)

∥∥∥∥∥∥
2

≥ 1

⎞
⎠

≤ (n− kT )Le 1
4 (nL)−3 ≤ e

1
4 (nL)−2.

This completes the proof. �
Appendix C. Proof of Lemma 5

Proof. Since Y and S are the true group sparse signal and sparse error matrices, respec-
tively, they satisfy the measurement equation

M = [A(1)ȳ1, · · · ,A(L)ȳL] + S.

Furthermore, since (Y + H, S − F) is an optimal solution to the RGL model (2)–(3), 
they must also satisfy the constraint

M = [A(1)(ȳ1 + h1), · · · ,A(L)(ȳL + hL)] + S − F.

Subtracting these two equations yields result i) of Lemma 5.
Since the objective function of (2)–(3) is convex, we obtain an inequality

‖Y + H‖2,1 + λ‖S − F‖1 ≥ ‖Y‖2,1 + λ‖S‖1 + 〈∂‖Y‖2,1,H〉 − λ〈∂‖S‖1,F〉, (C.1)

where ∂‖Y‖2,1 denotes a subgradient of the �2,1-norm at Y and ∂‖S‖1 denotes a subgra-
dient of the �1-norm at S. Furthermore, the corresponding subgradients can be written 
as

∂‖Y‖2,1 = V + R,

∂‖S‖1 = sgn(S) + Q,

where V ∈ R
n×L satisfies (PTV)i = yi

‖yi‖2
and (PT cV)i = 0, ∀i = 1, · · · , n; R ∈

R
n×L satisfies PTR = 0 and ‖PT cR‖2,∞ ≤ 1; Q ∈ R

m×L satisfies PΩQ = 0 and 
‖PΩcQ‖∞ ≤ 1. Therefore, we have

‖Y + H‖2,1 + λ‖S − F‖1 ≥ ‖Y‖2,1 + λ‖S‖1 + 〈V + R,H〉 − λ〈sgn(S) + Q,F〉,
(C.2)

for any R and Q satisfying the conditions mentioned above.
We construct a specific pair of R and Q in the following way. Let

r̄i =
{

hi

‖hi‖2
, if hi �= 0′ and i ∈ T c;

0′, otherwise,



X. Wei et al. / Linear Algebra and its Applications 557 (2018) 134–173 159
where hi and r̄i are the i-th row of H and R, respectively. Meanwhile, let Q =
−sgn(PΩcF). It follows that

〈R,H〉 = ‖PT cH‖2,1,

〈Q,F〉 = −‖PΩcF‖1.

Substituting the above equalities into (C.2) gives result ii) of Lemma 5. �
Appendix D. Proof of Lemma 6

Proof. We first show that PTH = 0. Since 
[
A(1)h1, · · · ,A(L)hL

]
= F and PΩcF = 0, 

it holds

[PΩc
1A(1)h1, · · · ,PΩc

L
A(L)hL] = 0.

Meanwhile, PT cH = 0 implies [PΩc
1A(1)PT ch1, · · · , PΩc

L
A(L)PT chL] = 0. Therefore, it 

holds

[PΩc
1A(1)PTh1, · · · ,PΩc

L
A(L)PThL]

= [PΩc
1A(1)h1, · · · ,PΩc

L
A(L)hL] − [PΩc

1A(1)PT ch1, · · · ,PΩc
L
A(L)PT chL] = 0.

Since for any i = 1, · · · , L, Ω∗
i is a subset of Ωc

i , it follows

[
PΩ∗

1A(1)PTh1, · · · ,PΩ∗
L
A(L)PThL

]
= 0,

and consequently

Blkdiag
{
PT

m

m− kmax
Ã(1)PT , · · · ,PT

m

m− kmax
Ã(L)PT

}
· vec(H)

= m

m− kmax
vec
([

PTΣ−1
(1)A

′
(1)PΩ∗

1A(1)PTh1, · · · ,PTΣ−1
(L)A

′
(L)PΩ∗

L
A(L)PThL

])
=0.

This equality implies
∥∥∥∥Blkdiag

{
PT

(
m

m− kmax
Ã(1) − I

)
PT , · · · ,PT

(
m

m− kmax
Ã(L) − I

)
PT

}
· vec(H)

∥∥∥∥
2

= ‖PTH‖F .

On the other hand, according to (12), it follows with high probability
∥∥∥∥Blkdiag

{
PT

(
m Ã(1) − I

)
PT , · · · ,PT

(
m Ã(L) − I

)
PT

}
· vec(H)

∥∥∥∥
m− kmax m− kmax 2
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≤
∥∥∥∥Blkdiag

{
PT

(
m

m− kmax
Ã(1) − I

)
PT , · · · ,PT

(
m

m− kmax
Ã(L) − I

)
PT

}∥∥∥∥
(2,2)

· ‖PTH‖F

≤ 1
2
√

log(nL)
‖PTH‖F .

Thus,

‖PTH‖F ≤ 1
2
√

log(nL)
‖PTH‖F ,

which implies PTH = 0. Because PT cH = 0, we have H = 0. Since F =[
A(1)h1, · · · ,A(L)hL

]
, it follows that F = 0. �

Appendix E. Proof of Lemma 7

Proof. Following the proof of Lemma 3, for any i = 1, · · · , L and j = 1, · · · , l we have

Pr

{∥∥∥∥PT

(
m

mj
Ã(i,j) − I

)
PT

∥∥∥∥
(2,2)

≥ τ

}
≤ 2kT exp

(
− mj

κkTμ

τ2

4(1 + 2τ
3 )

)
.

Next, same as the proof of (11) and (12), for each j = 1, · · · , l, taking a union bound 
over all i = 1, · · · , L, which gives

Pr

{∥∥∥∥BLKdiag
{
PT

(
m

mj
Ã(1,j) − I

)
PT , · · · , PT

(
m

mj
Ã(L,j) − I

)
PT

}∥∥∥∥
(2,2)

≥ τ

}

≤ 2kTL exp
{
− mj

kTμκ

τ2

4(1 + 2τ
3 )

}
. (E.1)

If j ≥ 3, then substituting τ = 1
2 and mj = m

4 log(nL) into above inequality gives

Pr

{∥∥∥∥BLKdiag
{
PT

(
m

mj
Ã(1,j) − I

)
PT , · · · , PT

(
m

mj
Ã(L,j) − I

)
PT

}∥∥∥∥
(2,2)

≥ τ

}

≤ 2kTL exp
{
− 3

256
m

kTμκ log(nL)

}

≤ 2kTL exp {−3 log(nL)} ≤ 2(nL)−2,

where the second inequality follows from kT ≤ α m
μκ log2(nL) and α ≤ 1

256 . If j ≤ 2, then 

substituting τ = 1√ and mj = m into (E.1) gives
2 log(nL) 4
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Pr

{∥∥∥∥BLKdiag
{
PT

(
m

mj
Ã(1,j) − I

)
PT , · · · , PT

(
m

mj
Ã(L,j) − I

)
PT

}∥∥∥∥
(2,2)

≥ τ

}

≤ 2kTL exp
{
− 3

64
m

kTμκ

√
log(nL)

log(nL)(3
√

log(nL) + 1)

}

≤ 2kTL exp
{
− 3

256
m

kTμκ

1
log(nL)

}

≤ 2kTL exp {−3 log(nL)} ≤ 2(nL)−2.

Now taking a union bound over all j = 1, · · · , l gives

Pr {(37) holds for all j = 1, · · · , l} ≥ 1 − 2(nL)−2l ≥ 1 − 2(nL)−2(log(nL) + 1)

≥ 1 − 2(nL)−1,

which finishes the proof. �
Appendix F. Proof of Theorem 3: existence of inexact dual certificate

1© Bounding the initial value:
∥∥∥λPT c

[
A′

(1)sgn(s̄1), · · · ,A′
(L)sgn(s̄L)

]∥∥∥
2,∞

≤ 1
8 .

Proof. It is sufficient to prove

∥∥∥λ [A′
(1)sgn(s̄1), · · · ,A′

(L)sgn(s̄L)
]∥∥∥

2,∞
≤ 1

8 . (F.1)

Let ar
(i) be the r-th row of 

√
mA′

(i) and a(i)rj be the (r, j)-th element in 
√
mA′

(i). 
Since sgn

(
S
)

is an i.i.d. Rademacher random matrix (because of i.i.d. signs), for any 
r = 1, · · · , n, we claim the following probability bound for the row �2-norm holds:

Pr

⎧⎨
⎩
√√√√ L∑

i=1
|ar

(i)sgn(s̄i)|2 −

√√√√ L∑
i=1

‖ar
(i)PΩi

‖2
2 ≥ t

⎫⎬
⎭

≤ 4 exp
{
−t2

/(
16

L∑
i=1

‖ar
(i)PΩi

‖2
2

)}
. (F.2)

The proof of (F.2) follows from Corollary 4.10 in [28]. The details are given below.
According to Corollary 4.10 in [28], if Z ∈ R

m×L is distributed according to some 
product measure on [−1, 1]m×L and there exists a function f : R

m×L → R which is 
convex and K-Lipschitz, then it holds

Pr{|f(Z) − E [f(Z)]| ≥ t} ≤ 4 exp
{
− t2

2

}
.
16K
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Here we take Z = sgn
(
S
)

and f(·) =
√∑L

i=1 |ar
(i)PΩi

(·)|2. Notice that sgn
(
S
)

is entry-
wise Bernoulli and the function f we choose is convex with the Lipschitz constant 

K ≤
√∑L

i=1

∥∥∥ar
(i)PΩi

∥∥∥2

2
, the requirements in above proposition are satisfied. In order to 

bound E [f(Z)] from above, we first compute E 
[
f(Z)2

]
and then use the property that 

E [f(Z)] ≤
√
E [f(Z)2]. We have

E
[
f(Z)2

]
= E

[
L∑

i=1

∣∣∣ar
(i)sgn(si)

∣∣∣2
]

= E

⎡
⎢⎣ L∑

i=1

∣∣∣∣∣∣
m∑
j=1

a(i)rjsgn(s̄ij)

∣∣∣∣∣∣
2
⎤
⎥⎦

=
L∑

i=1
E

⎡
⎢⎣
∣∣∣∣∣∣

m∑
j=1

a(i)rjsgn(s̄ij)

∣∣∣∣∣∣
2
⎤
⎥⎦

=
L∑

i=1

m∑
j=1

m∑
k=1

E
[
a(i)rja(i)rksgn(s̄ij)sgn(s̄ik)

]

=
L∑

i=1

∥∥∥ar
(i)PΩi

∥∥∥2

2
,

where the last step follows from the fact that for each i = 1, · · · , L, sgn(si) is a ran-
dom vector with nonzero entries i.i.d. sot that all cross terms vanish. Thus, E [f(Z)] ≤√∑L

i=1

∥∥∥ar
(i)PΩi

∥∥∥2

2
. Hence,

Pr

⎧⎨
⎩
√√√√ L∑

i=1

∣∣∣ar
(i)sgn(s̄i)

∣∣∣2 −
√√√√ L∑

i=1

∥∥∥ar
(i)PΩi

∥∥∥2

2
≥ t

⎫⎬
⎭

≤Pr

⎧⎨
⎩
√√√√ L∑

i=1

∣∣∣ar
(i)sgn(s̄i)

∣∣∣2 − E [f(Z)] ≥ t

⎫⎬
⎭

≤Pr

⎧⎨
⎩
∣∣∣∣∣∣
√√√√ L∑

i=1

∣∣∣ar
(i)sgn(s̄i)

∣∣∣2 − E [f(Z)]

∣∣∣∣∣∣ ≥ t

⎫⎬
⎭

≤ 4 exp
{
− t2

16K2

}
≤ 4 exp

{
t2

/(
16

L∑
i=1

∥∥∥ar
(i)PΩi

∥∥∥2

2

)}
,

which proves (F.2).
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Next, choose t = 6
√

log(nL)
√∑L

i=1

∥∥∥ar
(i)PΩi

∥∥∥2

2
. Then with probability exceeding 

1 − 4 exp
{
−9

4 log(nL)
}

= 1 − 4(nL)− 9
4 , it holds

λ

√√√√ L∑
i=1

∣∣∣ar
(i)sgn(s̄i)

∣∣∣2 ≤ λ
(
6
√

log(nL) + 1
)√√√√ L∑

i=1

∥∥∥ar
(i)PΩi

∥∥∥2

2

≤ 7

√√√√ θ

L

L∑
i=1

∥∥∥ar
(i)PΩi

∥∥∥2

2
≤ 7
√

μkΩθ

L
,

where the second from the last inequality follows from λ =
√

θ
L log(nL) , and the last 

inequality follows from the definition of incoherence parameter in (7) and the fact that 
|Ω| = kΩ. Recall that ar

(i) be the r-th row of 
√
mA′

(i), taking a union bound over all 
r = 1, · · · , n gives

Pr

{∥∥∥λPT c

[
A′

(1)sgn(s̄1) · · · A′
(L)sgn(s̄L)

]∥∥∥
2,∞

≥ 7
√

μkΩθ

mL

}

=Pr

⎧⎨
⎩ max

r∈{1,2,··· ,n}

⎧⎨
⎩λ

√√√√ L∑
i=1

∣∣∣ar
(i)sgn(s̄i)

∣∣∣2
⎫⎬
⎭ ≥ 7

√
μkΩθ

L

⎫⎬
⎭

≤
n∑

r=1
Pr

⎧⎨
⎩λ

√√√√ L∑
i=1

∣∣∣ar
(i)sgn(s̄i)

∣∣∣2 ≥ 7
√

μkΩθ

L

⎫⎬
⎭

≤ 4(nL)− 9
4 · n ≤ 4(nL)− 5

4 ≤ 4(nL)−1.

Substituting the bounds kΩ ≤ βmL
μθ and β ≤ 1

3136 into the above inequality finally gives

Pr

{∥∥∥λ [A′
(1)sgn(s̄1), · · · ,A′

(L)sgn(s̄L)
]∥∥∥

2,∞
≥ 1

8

}
≤ 4(nL)−1,

which finishes the proof. �
2© Bounding the term:

∥∥∥PTU + λPT

[
A′

(1)sgn(s̄1), · · · ,A′
(L)sgn(s̄L)

]
− V

∥∥∥
F
≤ λ

4
√
κ
.

Proof. Recalling the definition of U in (36), we have

PTU = PT

⎡
⎣ l∑
j=1

m

mj
Ã(1,j)PTq(j−1)1, · · · ,

l∑
j=1

m

mj
Ã(L,j)PTq(j−1)L

⎤
⎦ .
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According to the definition of Q(0) in (33), PTQ(0) = Q(0). Since each subsequent 
mapping from Q(j−1) to Q(j) defined in (34) is a mapping from T to T , it follows that 
PTQ(j) = Q(j) for any j = 1, · · · , l. Therefore, it holds

PTU =
l∑

j=1

(
Q(j−1) − PTQ(j−1)

)

+ PT

⎡
⎣ l∑
j=1

m

mj
Ã(1,j)PTq(j−1)1, · · · ,

l∑
j=1

m

mj
Ã(L,j)PTq(j−1)L

⎤
⎦

=
l∑

j=1

(
Q(j−1) −

[
PT

(
I − m

mj
Ã(1,j)

)
PTq(j−1)1, · · · ,

PT

(
I − m

mj
Ã(L,j)

)
PTq(j−1)L

])

=
l∑

j=1

(
Q(j−1) − Q(j)

)
= Q(0) − Q(l),

where the second last equality follows from the definition of Q(j). Thus, substituting the 
definition of Q(0) in (33) yields

Q(l) =Q(0) − PTU = V− λPT

[
A′

(1)sgn(s̄1), · · · ,A′
(L)sgn(s̄L)

]
− PTU,

which further implies∥∥∥PTU + λPT

[
A′

(1)sgn(s̄1), · · · ,A′
(L) ¯sgn(s̄L)

]
− V

∥∥∥
F

= ‖Q(l)‖F .

Thus, we are able to bound the target function on the left-hand side by bounding ‖Q(l)‖F
instead. It is enough to obtain an upper bound for ‖Q(0)‖F and apply contractions 
(38)–(39). From (F.1), it follows

∥∥∥λPT

[
A′

(1)sgn(s̄1), · · · ,A′
(L)sgn(s̄L)

]∥∥∥
F
≤

√
kT
8 .

Since ‖V‖F =
√
kT , by triangle inequality, we have

∥∥Q(0)
∥∥ =

∥∥∥λPT

[
A′

(1)sgn(s̄1), · · · ,A′
(L)sgn(s̄L)

]
− V

∥∥∥
F
≤ 9

√
kT

8 (F.3)

Thus, by contractions of {Q(j)}lj=1 in (38)–(39), we have

‖Q(l)‖F ≤ 1 1
l
‖Q(0)‖F ≤ 1 1

l

9
√
kT ≤ 1 1 9

√
kT ≤ λ√ ,
log n 2 log(nL) 2 8 log(nL) nL 8 4 κ
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provided that α ≤ 4
81 , where the last inequality follows from the fact kT ≤ α m

μκ log(nL) , 
and 

√
m ≤ √

μn log(nL). Furthermore, from the proof, as long as (37) and (F.1) hold, 
this bound is guaranteed. �
3© Bounding the term: ‖PT cU‖2,∞ ≤ 1

8 .

Proof. We claim that the following inequality is true with high probability:

‖PT cU‖2,∞ ≤
l∑

j=1

1
10

√
kT

‖Q(j−1)‖F . (F.4)

According to the definition of U in (36), it holds

PT cU =

⎡
⎣ l∑
j=1

m

mj
PT cÃ(1,j)PTq(j−1)1, · · · ,

l∑
j=1

m

mj
PT cÃ(L,j)PTq(j−1)L

⎤
⎦

=
l∑

j=1

[
m

mj
PT cÃ(1,j)PTq(j−1)1, · · · ,

m

mj
PT cÃ(L,j)PTq(j−1)L

]
.

Thus, it is enough to show that for any k ∈ T c, it holds
∥∥∥∥∥∥

l∑
j=1

[
m

mj
e′kÃ(1,j)PTq(j−1)1, · · · ,

m

mj
e′kÃ(L,j)PTq(j−1)L

]∥∥∥∥∥∥
2

≤
l∑

j=1

1
10

√
kT

‖Q(j−1)‖F ,

(F.5)

with high probability, where {ek}nk=1 is a standard basis in Rn. By the triangle inequality, 
a sufficient condition for (F.5) to satisfy is

l∑
j=1

∥∥∥∥
[
m

mj
e′kÃ(1,j)PTq(j−1)1 · · · m

mj
e′kÃ(L,j)PTq(j−1)L

]∥∥∥∥
2
≤

l∑
j=1

1
10

√
kT

‖Q(j−1)‖F .

Therefore, it resorts to proving a one-step-further sufficient condition that with high 
probability, for any j = 1, · · · , l and k ∈ T c, it holds
∥∥∥∥
[
m

mj
e′kÃ(1j)PTq(j−1)1 · · · m

mj
e′kÃ(L,j)PTq(j−1)L

]∥∥∥∥
2
≤ 1

10
√
kT

‖Q(j−1)‖F . (F.6)

We apply the vector Bernstein inequality to prove (F.6). First, for any i = 1, · · · , L, 
and any r ∈ Kij , let

g(i,r) = 1 e′kΣ−1
(i) a(i)ra′

(i)rPTq(j−1)i.

mj
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Observe the fact that {a(i)j}j∈Kij
is the set of column vectors in 

√
mA′

(i)PKij
, which 

are nonzero. Also, recall the definition Ã(i,j) = Σ−1
(i) A

′
(i)PKij

A(i). For any i = 1, · · · , L, 
it follows

∑
r∈Kij

g(i,r) = m

mj
e′kÃ(i,j)PTq(j−1)i. (F.7)

For notation convenience, without loss of generality, suppose Kij = {1, · · · , mj}, ∀i =
1, · · · , L. For any r = 1, · · · , mj , we align the scalars g(i,r), i = 1, · · · , L into a single 
vector as 

[
g(1,r), · · · , g(L,r)

]
. According to (F.7), this vector satisfies

mj∑
r=1

[
g(1,r), · · · , g(L,r)

]
=
[
m

mj
e′kÃ(1,j)PTq(j−1)1, · · · ,

m

mj
e′kÃ(L,j)PTq(j−1)L

]
.

Notice that Q(j−1) is also a random variable. In the following proof, we apply the 
vector Bernstein inequality conditioned on Q(j−1). It is obvious that given Q(j−1), [
g(1,r), · · · , g(L,r)

]
are i.i.d. for different r and

E
[[
g(1,r), · · · , g(L,r)

] ∣∣Q(j−1)
]

= m

mj

[
e′kPTq(j−1)1, · · · , e′kPTq(j−1)L

]
= 0,

since k ∈ T c. Next, we compute

E

[(
g(i,r)

)2∣∣∣Q(j−1)

]
= 1

m2
j

E

[(
e′kΣ−1

(i) a(i)ra′
(i)rPTq(j−1)i

)2
∣∣∣∣Q(j−1)

]

= 1
m2

j

E

[
(e′kΣ−1

(i) a(i)r)2(a′
(i)rPTq(j−1)i)2

∣∣∣Q(j−1)

]

≤ μ

m2
j

E

[
q′

(j−1)iPTa(i)ra′
(i)rPTq(j−1)i

∣∣∣Q(j−1)

]

≤ μκ

m2
j

‖q(j−1)i‖2
2.

Therein, the first inequality follows from the definition of the incoherence parameter 
(8). The second inequality follows from the fact that for each i = 1, · · · , L, the sampled 
batches of vectors PKij

A(i) are not overlapped for different batches j = 1, · · · , l such 
that q(j−1)i and a(i,r) are independent. Thus, we have

mj∑
r=1

E

[∥∥[g(1,r), · · · , g(L,r)
]∥∥2

2

∣∣Q(j−1)

]
≤

mj∑
r=1

L∑
i=1

μκ

m2
j

‖q(j−1)i‖2
2 ≤ μκ

mj
‖Q(j−1)‖2

F � σ2.

Moreover,

|g(i,r)| = 1 ∣∣∣e′kΣ−1
(i) a(i)ra′

(i)rPTq(j−1)i

∣∣∣ ≤ 1 √
μ
∣∣∣a′

(i)rPTq(j−1)i

∣∣∣ ≤ μ
√
kT ‖q(j−1)i‖2,
mj mj mj
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where the first inequality follows from the incoherence assumption (8) and the second 
inequality follows from the incoherence condition (7). Thus, it holds

∥∥[g(1,r), · · · , g(L,r)
]∥∥

2 ≤ μ
√
kT

mj
‖Q(j−1)‖F � B.

Substituting the above bounds into the vector Bernstein inequality conditioned on Q(j−1)
gives

Pr

(∥∥∥∥∥
mj∑
r=1

[
g(1,r), · · · , g(L,r)

]∥∥∥∥∥
2

≥ t

∣∣∣∣∣Q(j−1)

)
≤ exp

(
− t2

8μκ
mj

‖Q(j−1)‖2
F

+ 1
4

)
. (F.8)

We choose t =
√

24
mj

μκ log(nL)‖Q(j−1)‖F . First, we need to verify that such a choice 

satisfies t ≤ σ2

B . Recall that for any j = 1, · · · , l, mj ≥ m
4 log(nL) . Since kT ≤ α m

μκ log2(nL)
and α ≤ 1

9600 , it holds

t ≤

√
24μκ log2(nL)

m
‖Q(j−1)‖F ≤ 1

10
√
kT

‖Q(j−1)‖F ≤ κ‖Q(j−1)‖F = σ2

B
.

Thus, the choice of t is indeed valid. Substituting this t into (F.8) gives

Pr

(∥∥∥∥∥
mj∑
r=1

[
g(1,r), · · · , g(L,r)

]∥∥∥∥∥
2

≥
√

24
mj

μκ log(nL)‖Q(j−1)‖F

∣∣∣∣∣Q(j−1)

)
≤ e

1
4 (nL)−3,

which implies

Pr

(∥∥∥∥∥
mj∑
r=1

[
g(1,r), · · · , g(L,r)

]∥∥∥∥∥
2

≥ 1
10

√
kT

‖Q(j−1)‖F

∣∣∣∣∣Q(j−1)

)
≤ e

1
4 (nL)−3.

Since the right-hand side does not depend on Q(j−1), taking expectation from both sides 
regarding Q(j−1) gives

Pr

(∥∥∥∥∥
mj∑
r=1

[
g(1,r), · · · , g(L,r)

]∥∥∥∥∥
2

≥ 1
10

√
kT

‖Q(j−1)‖F

)
≤ e

1
4 (nL)−3.

Take a union bound over all j = 1, · · · , l and k ∈ T c gives

Pr

(
max

j∈{1,··· ,l},k∈T c

{∥∥∥∥∥
mj∑
r=1

[
g(1,r), · · · , g(L,r)

]∥∥∥∥∥
2

}
≥ 1

10
√
kT

‖Q(j−1)‖F

)

≤
l∑ ∑

c

Pr

(∥∥∥∥∥
mj∑[

g(1,r), · · · , g(L,r)
]∥∥∥∥∥ ≥ 1

10
√
kT

‖Q(j−1)‖F

)

j=1 k∈T r=1 2
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≤
l∑

j=1

∑
k∈T c

e−
1
4 (nL)−3 ≤ (log(nL) + 1) · n · e 1

4 (nL)−3 ≤ e
1
4 (nL)−1.

This proves (F.6) and further implies that (F.4) holds. Finally, applying the contractions 
(38)–(39) gives

‖PT cU‖2,∞ ≤
l∑

j=1

1
10

√
kT

‖Q(j−1)‖F ≤
l∑

j=1

1
10

√
kT

1
2j ‖Q(0)‖F ≤ 1

10
√
kT

‖Q(0)‖F .

Substituting the bound on ‖Q(0)‖F in (F.3) gives the desired result. Notice that the 
inequality ‖PT cU‖2,∞ ≤ 1

8 requires (37), (F.1) and (F.4) to hold simultaneously. �
4© Bounding the term: ‖PΩcW‖∞ ≤ λ

4 .

Proof. According to the definition of W in (35), we aim to prove

∥∥∥[∑l
j=1

m
mj

PK1jA(1)PTq(j−1)1, · · · ,
∑l

j=1
m
mj

PKLj
A(L)PTq(j−1)L

]∥∥∥
∞

≤ λ

4 .

Notice that the batch sets Kij, j = 1, · · · , l are not overlapped. Therefore, it is enough 
to show with high probability, for any i = 1, · · · , L, any j = 1, · · · , l, and any vector 
a(i)r with r ∈ Kij , it holds

∣∣∣∣
√
m

mj
a′

(i)rPTq(j−1)i

∣∣∣∣ ≤ λ

4 .

Equivalently, according to the definition of Q(j) in (34), it is enough to prove for j ≥ 2
it holds ∣∣∣∣∣

√
m

mj
a′

(i)r

(
j−1∏
k=1

PT

(
I − Ã(1,k)

)
PT

)
q(0)i

∣∣∣∣∣ ≤ λ

4 ,

and for j = 1 it holds
∣∣∣∣
√
m

mj
a′

(i)rPTq(0)i

∣∣∣∣ ≤ λ

4 .

In order to further simplify the notation, for any vector a(i)r such that r ∈ Kij , let

g′
(i,r) �

{
a′

(i)r

(∏j−1
k=1 PT

(
I − Ã(1,k)

)
PT

)
, if j ≥ 2;

a′
(i)r, if j = 1.

Our goal is to prove that for any i = 1, · · · , L, any j = 1, · · · , l, and any vector a(i,r)
in the j-th batch vectors PKij

A(i), with high probability it holds
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∣∣∣∣
√
m

mj
g′

(i,r)q(0)i

∣∣∣∣ ≤ λ

4 . (F.9)

Since both g(i,r) and q(0)i are random variables, it is easier to first bound the left-hand 
side of (F.9) conditioned on g(i,r). Recall the definition of Q(0) in (33), for any i =
1, · · · , L, it holds

q(0)i = v̄i − PTA′
(i)sgn(si).

By the triangle inequality, we bound 
∣∣∣g′

(i,r)v̄i

∣∣∣ and 
∣∣∣λg′

(i,r)PTA′
(i)sgn(si)

∣∣∣ respectively.

Let us first bound 
∣∣∣g′

(i,r)v̄i

∣∣∣ conditioned on g(i,r). From our assumption, the vector 
v̄i is fixed except for the i.i.d. signs. Denote |v̄i| as the entry-wise absolute value vector
of v̄i, which is not random. Then,

g′
(i,r)v̄i =

(
g(i,r) � |v̄i|

)′ · sgn(v̄i)

where � denotes the entry-wise Hadamand product. Notice that sgn(v̄i) and g(i,r) are 
mutually independent. Applying Hoeffding inequality conditioned on g(i,r) gives

Pr
{∣∣∣(g(i,r) � |v̄i|

)′ · sgn(v̄i)
∣∣∣ ≥ t

∣∣∣ g(i,r)

}
≤ 2 exp

{
− t2

2
∥∥g(i,r) � |v̄i|

∥∥2
2

}
.

By the row incoherence condition (Assumption 4) each entry of v̄i is within 
[
−
√

ν
L ,
√

ν
L

]
. 

Taking t = 2
√

log(nL)
√

ν
L‖g(i,r)‖2, it follows

Pr

{∣∣∣(g(i,r) � |v̄i|
)′ · sgn(v̄i)

∣∣∣ ≥ 2
√

log(nL)
√

ν

L
‖g(i,r)‖2

∣∣∣∣ g(i,r)

}
≤ 2(nL)−2.

(F.10)

Second, we bound 
∣∣∣g′

(i,r)PTA′
(i)sgn(s̄i)

∣∣∣ conditioned on g(i,r). The key is to prove the 

argument that PTg(i,r) is independent of PTA′
(i)sgn(s̄i). Notice that by definition, g(i,r)

is generated by the column vectors in A′
(i) with column indices from the batch sets Kij , 

j = 1, · · · , l. Recall the definition of these batch sets under (33), ∪l
j=1Kij ⊆ Ω∗

i ⊆ Ωc
i . 

On the other hand, A′
(i)sgn(si) picks out those column vectors in A(i) with the column 

indices from Ωi. Since different columns of A′
(i) are i.i.d. samples from the distribution Fi, 

the argument holds true.
Moreover, since the noise support Ωi are assumed to be fixed and the signs of noise 

matrix are i.i.d., A(i) and sgn(s̄i) are also independent. We write

g′
(i,r)PTA′

(i)sgn(s̄i) = 1√
m

∑
g′

(i,r)a(i)x · sgn(s̄ix).

x∈Ωi
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Then, for any x ∈ Ωi, we have

E

[
g′

(i,r)PTa(i)xsgn(s̄ix)
∣∣∣g(i,r)

]
= g′

(i,r)E
[
PTa′

(i)x

]
E [sgn(s̄ix)] = 0,∣∣∣g′

(i,r)PTa(i)xsgn(s̄ix)
∣∣∣ ≤√μkT ‖g(i,r)‖2,

E

[∣∣∣g′
(i,r)PTa(i)xsgn(s̄ix)

∣∣∣2∣∣∣∣g(i,r)

]
= g′

(i,r)E
[
PTa(i)xa′

(i)xPT

]
g(i,r) ≤ κ‖g(i,r)‖2

2.

Thus, using the one dimensional Bernstein inequality (which can also be viewed as a 
special case of the matrix Bernstein’s inequality), we have

Pr

{∣∣∣g′
(i,r)PTA′

(i)sgn(s̄i)
∣∣∣ > t√

m

∣∣∣∣g(i,r)

}

=Pr

{∣∣∣∣∣
∑
x∈Ωi

g′
(i,r)a(i)x · sgn(s̄ix)

∣∣∣∣∣ > t

∣∣∣∣∣g(i,r)

}

≤ 2 exp
(
−

1
2 t

2

kΩi
κ‖g(i,r)‖2

2 +
√
kTμ

‖g(i,r)‖2t

3

)

Since kmax ≤ γm
κ with γ ≤ 1

4 and kT ≤ α m
μκ log2(nL) with α ≤ 1

9600 , choosing t =
2
√

m log(nL)‖g(i,r)‖2 gives

Pr
{∣∣∣g′

(i,r)PTA′
(i)sgn(s̄i)

∣∣∣ > 2
√

log(nL)‖g(i,r)‖2

∣∣∣g(i,r)

}

≤ 2 exp
{
− 2m log(nL)

m
4 + 1

60
√

6 log(nL)

}
≤ 2(nL)−2,

which implies

Pr

{∣∣∣λg′
(i,r)PTA′

(i)sgn(s̄i)
∣∣∣ > 2

√
log(nL)

L
‖g(i,r)‖2

∣∣∣∣∣g(i,r)

}
≤ 2(nL)−2. (F.11)

Combining (F.10) and (F.11) gives

Pr

{∣∣∣g′
(i,r)q(0)i

∣∣∣ > 4
√

ν log(nL)
L

‖g(i,r)‖2

∣∣∣∣∣g(i,r)

}

≤Pr

{∣∣∣g′
(i,r)PTA′

(i)sgn(s̄i)
∣∣∣ > 2

√
log(nL)

L
‖g(i,r)‖2

∣∣∣∣∣g(i,r)

}

+ Pr

{∣∣∣g′
(i,r)v̄i

∣∣∣ ≥ 2
√

ν log(nL)
L

‖g(i,r)‖2

∣∣∣∣∣g(i,r)

}
≤ 4(nL)−2.
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Notice that because we bound the probability conditioned on g(i,r), the bound hold for 
any j = 1, · · · , l and any r ∈ Kij . Now take a union bound over all i = 1, · · · , L,

Pr

{
L⋃

i=1

{∣∣∣g′
(i,r)q(0)i

∣∣∣ > 4
√

ν log(nL)
L

‖g(i,r)‖2

}∣∣∣∣∣g(i,r)

}

≤
L∑

i=1
Pr

{∣∣∣g′
(i,r)q(0)i

∣∣∣ > 4
√

ν log(nL)
L

‖g(i,r)‖2

∣∣∣∣∣g(i,r)

}

≤L · 4(nL)−2 ≤ 4(nL)−1.

Since the probability on the right-hand side does not depend on g(i,r) and the inequality 
holds for any j = 1, · · · , l, any r ∈ Kij , and any i = 1, · · · , L, with probability at least 
1 − 4(nL)−1 it follows

∣∣∣∣
√
m

mj
g′

(i,r)q(0)i

∣∣∣∣ ≤ 4
√
m

mj

√
ν log(nL)

L
‖g(i,r)‖2. (F.12)

Next, we bound ‖g(i,r)‖2 using contractions (38)–(39). According to Lemma 7, with 
probability at least 1 − 2(nL)−1, (38)–(39) hold simultaneously. Thus, with probability 
at least 1 − 2(nL)−1, for any j ≥ 3, any r ∈ Kij , and any i = 1, · · · , L, it holds

‖g(i,r)‖2 ≤‖a(i)r‖2

∥∥∥∥∥
(

j−1∏
k=1

PT

(
I − Ã(1,k)

)
PT

)∥∥∥∥∥
(2,2)

≤ 1
log(nL)

1
2j−1

√
kTμθ ≤ 1

log2(nL)

√
αmθ

ν
,

given kT ≤ α mθ
μν log2 n

. Thus, combining with (F.12) gives

∣∣∣∣
√
m

mj
g′

(i,r)q(0)i

∣∣∣∣ ≤ m

mj
4 log−

3
2 (nL)

√
αθ

L

≤ 16√
9600

√
θ

L
log−

1
2 (nL)

= 2
5
√

6
λ ≤ λ

4 ,

given α ≤ 1
9600 .

On the other hand, for any j ≤ 2, any r ∈ Kij , and any i = 1, · · · , L, it holds

‖g(i,r)‖2 ≤‖a(i)r‖2 ≤
√

kTμ ≤ 1
log n

√
αmθ

ν
,
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given kT ≤ α mθ
μν log2(nL) . Thus, combining with (F.12) again gives

∣∣∣∣
√
m

mj
g′

(i,r)q(0)i

∣∣∣∣ ≤ m

mj
4 log−

1
2 (nL)

√
αθ

L
≤ 2

5
√

6
λ ≤ λ

4 , (F.13)

given α ≤ 1
9600 . Hence, we finish the proof. Notice that this bound requires (37) and 

(F.12) to hold simultaneously. �
5© Estimation of the total success probability.

So far, we have proved that 1©, 2©, 3©, 4© hold with high probability, respectively. We 
want a success probability in recovering the true signal, which not only requires 1©, 2©, 
3©, 4© to hold simultaneously, but also requires (11), (12), Corollary 2, and Lemma 4 to 
succeed. From the above proofs, we have

• The bound 1© is implied by (F.1) (holds with probability 1 − 4(nL)−1).
• The bound 2© is implied by (37) (holds with probability 1 − 2(nL)−1) and (F.1).
• The bound 3© is implied by (37), (F.1) and (F.4) (holds with probability 1 −

e
1
4 (nL)−1)

• The bound 4© is implied by (37) and (F.12) (holds with probability 1 − 4(nL)−1).

Thus, we take a union bound to get

Pr{ 1©∪ 2©∪ 3©∪ 4©} ≥ 1 − 4(nL)−1 − 2(nL)−1 − e−
1
4 (nL)−1 − 4(nL)−1

= 1 −
(
10 + e

1
4

)
(nL)−1.

On the other hand, taking a union bound over (11), (12), Corollary 2, and Lemma 4
to find that they hold simultaneously with probability at least 1 −

(
6 + e

1
4

)
(nL)−2. 

Summarizing the above results, we know that the success probability in recovering the 
true signal and error matrices is at least 1 − (16 + 2e 1

4 )(nL)−1.
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