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Abstract In this paper, we focus on the decentralized online learning problem where
online data streams are separately collected and collaboratively processed by a network
of decentralized agents. Comparing to centralized batch learning, such a framework
is faithful to the decentralized and online natures of the data streams. We propose an
online decentralized alternating direction method of multipliers that efficiently solves
the online learning problem over a decentralized network. We prove its O(

√
T ) regret

bound when the instantaneous local cost functions are convex, and its O(log T ) regret
bound when the instantaneous local cost functions are strongly convex, where T is the
number of iterations. Both regret bounds are in the same orders as those of centralized
online learning. Numerical experiments on decentralized online least squares and
classification problems demonstrate effectiveness of the proposed algorithm.
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1 Introduction

This paper considers solving a decentralized online learning problem in a connected
network composed of n agents. Let x̃ ∈ R

p be a vector to learn. At time k + 1, agent i
receives an instantaneous local cost function f i

k (x̃) : Rp → R. Then agent i updates
its estimate on x̃ , which is denoted by xi

k+1, based on the instantaneous local cost
function f i

k (x̃), its previous estimate xi
k , as well as its neighbors’ previous estimates

x j
k for all j ∈ Ni where Ni is the set of agent i’s neighbors. After T iterations, the
agents expect to find a network-wide optimal solution

x̃∗ = argmin
x̃

T∑

k=1

n∑

i=1

f i
k (x̃). (1.1)

When n = 1, the decentralized online learning problem (1.1) reduces to its centralized
counterpart that finds applications in sequential decision making, e.g., online regres-
sion and classification [1]. If the online data streams are separately collected by decen-
tralized agents and communications from the agents to a fusion center are costly, decen-
tralized computing is a natural choice. Such application scenarios includewireless sen-
sor networks and autonomous robot teams. Indeed, decentralized batch optimization
in a multi-agent network has received extensive research interests recently [2–6]. This
paper combines online learning and decentralized optimization and aims at designing
an algorithm that is faithful to the decentralized and online natures of the data streams.

Observe that there exists a gap between the instantaneous local estimates and the
optimal solution, which leads to the regret of online learning. In decentralized online
learning, we encounter two types of regrets. The first is the nominal regret

RN =
T∑

k=1

n∑

i=1

(
f i
k

(
xi

k

)
− f i

k (x̃∗)
)

, (1.2)

which sums up the local regrets over the entire network. However, the nominal regret is
unable to reflect the similarity of local estimates; it is possible that the local estimates
are quite different but the nominal regret is small. Therefore, we introduce the second
type of regret, termed as the global regret

RG := max
j

R j
G := max

j

T∑

k=1

n∑

i=1

(
f i
k

(
x j

k

)
− f i

k (x̃∗)
)

. (1.3)

Since any local estimate can be used as a final solution of decentralized online learning,
we define RG as the maximum value of the aggregated regrets R j

G using all possible

solutions x j
k . Therefore, the global regret measures the quality of the local estimates

from the network perspective. Different to the case of centralized online learning (i.e.,
n = 1) where RN and RG are identical, characterizing upper bounds of the global
regret RG is of practical importance in decentralized online learning.

123

Author's personal copy
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Here, we briefly introduce several existing decentralized online learning algorithms
and their centralized counterparts, as well as the corresponding regret bounds. Therein,
a common assumption is that the local or global cost functions have bounded sub-
gradients. Motivated by the distributed subgradient method [3], in the distributed
autonomous online learning algorithm, each agent combines neighboring estimates
and descends along with the local subgradient direction [7]. When the local cost func-
tions are convex, [7] proves an O(

√
T ) regret bound that matches the centralized

case in [8]. When the local cost functions are strongly convex, the regret bound is
O(log T ), the same order as that of the centralized online subgradient method [9].
Reference [10] develops an online version of the distributed dual averaging algorithm
in [4] and proves an O(

√
T ) regret bound with respect to the running-average local

estimates for convex local cost functions. For strongly convex local cost functions, its
regret bound is O(log T ) in the running-average sense [11]. These bounds are similar
to those established for centralized dual averaging in [12]. Reference [13] reformulates
the decentralized online learning problem to a constrained form and approximately
solves it with the saddle-point algorithm in [14] at every time. The algorithm alternates
between primal subgradient descent and dual subgradient ascent, and the regret bound
is O(

√
T ) for the convex case.

All the aforementioned decentralized online learning algorithms are based on
subgradient information of local cost functions, which fits for agents with limited
computation abilities. If computation is not an issue, one can expect that letting each
agent solve an optimization problem, other than move a subgradient descent step,
yields a more powerful algorithm. This intuition motivates us to develop an online and
decentralized version of the alternating direction method of multipliers (ADMM), i.e.
the online Decentralized alternating direction Method of multipliers, named as oDM
in this paper.

For decentralized batch optimization, ADMM first reformulates an optimization
problem with consensus constraints, and then alternatingly minimizes its augmented
Lagrangian function with respect to two blocks of variables linked by the consensus
constraints and updates the Lagrange multipliers. The resulting algorithm is fully
decentralizedwhere each agentminimizes the sum of its local cost function and a time-
varying quadratic term [2], followed by the update of its local Lagrangemultiplier. The
decentralized ADMM has found successful applications in wireless sensor networks,
computer networks, smart grids, etc [15–18]. Analysis of its convergence follows that
of the centralized ADMM [19,20], and its linear rate of convergence is established
in [21]. The decentralized ADMM is also able to handle the case that the local cost
functions are dynamic [22].

This paper is related to the centralized online ADMM algorithm and its regret
analysis in [23]; however, the proposed oDM is designed from a different perspective
and its analysis is along a different line as explained below.

The centralized online ADMMminimizes an instantaneous cost function that is the
sum of two separable functions with respect to two blocks of variables; the two blocks
of variables are linked with linear constraints. Through alternating minimization of
the augmented Lagrangian function and update of the Lagrange multipliers, the cen-
tralized online ADMM is able to handle the constrained online learning problem.
In this paper, we consider the unconstrained decentralized online learning prob-
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540 H.-F. Xu et al.

lem (1.1) that is reformulated to a constrained one through introducing a block of
auxiliary variables and linking the auxiliary variables with the local estimates via
consensus constraints (see Sect. 2). Applying ADMM to this online constrained
formulation leads to a decentralized algorithm (see Sect. 3). In other words, the
technique of ADMM is used to handle the intrinsic constraints in the centralized
online algorithm, while it makes the iterations decentralized in the proposed algo-
rithm.

Further, the regret derived in [23] contains two parts, one is about function value,
which corresponds to the nominal regret in the decentralized regime, and another is the
sum of the norms of constraint violations over time. The regret with respect to function
value is O(

√
T ) for the convex case and O(log T ) for the strongly convex case under

the assumption of bounded subgradients. The regretwith respect to constraint violation
is also O(

√
T ) for the convex case and O(log T ) for the strongly convex case. Since

the regret with respect to constraint violation does not translate to the gap between the
global and nominal regrets, implanting the analysis of [23] to the decentralized case
cannot directly yield the same bounds for the global regret. In this paper, we establish
the gap between the global and nominal regrets through a series of supporting lemmas
(see Lemmas 4.2–4.5 in Sect. 4.1). Based on these lemmas, we prove that when the
local cost functions are convex and have bounded subgradients, the global regret RG
has an O(

√
T ) bound (see Theorem 4.6 in Sect. 4.2). For the strongly convex case, the

bound is O(log T ) under the same assumption of bounded subgradients (see Theorem
4.7 in Sect. 4.2).

2 Problem Statement

Throughout this paper, we consider a network composed of a set of n agents V =
{1, 2, · · · , n} and a set of m arcs A = {1, 2, · · · , m}. Here each arc a ∼ (i, j)
is associated with an ordered pair (i, j) indicating that i can communicate to j . We
assume the network is connected and communication is bidirectional. The set of agents
adjacent to i is termed as its neighborhood and denoted asNi . The cardinality of this set
is the degree di of agent i . We define the block arc sourcematrix As ∈ R

mp ×np where
the block (As)a,i = Ip ∈ R

p×p is an identity matrix if the arc a ∼ (i, j) originates
at agent i and is null otherwise. Likewise, define the block arc destination matrix
Ad ∈ R

mp×np where the block (Ad)a,i = Ip ∈ R
p×p if the arc a ∼ (i, j) terminates

at the node j and is null otherwise. Observe that the extended oriented incidencematrix
can be written as Eo = As− Ad and the unoriented incidence matrix as Eu = As+ Ad.
The extend oriented Laplacian is given by Lo = 1

2 ET
o Eo, the unoriented Laplacian

is Lu = 1
2 ET

u Eu, and the degree matrix containing nodes’ degrees di in the diagonal
is D = 1

2 (Lo + Lu). The largest eigenvalue of the unoriented Laplacian is denoted
by Γu, which is related to the connectedness of the network; smaller Γu means better
connectedness.

At time k +1, decentralized online learning (approximately) solves an optimization
problem
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{xi
k+1} = argmin

{xi }

n∑

i=1

f i
k (xi ) + ηk+1

2

n∑

i=1

‖xi − xi
k‖2

s.t. x1 = x2 = · · · = xn .

(2.1)

In (2.1),
∑n

i=1 f i
k (xi ) is the summation of the local cost functions f i

k evaluated at
different local estimates xi , ηk+1 is a constant or time-varying positive parameter
such that the term (ηk+1/2)

∑n
i=1 ‖xi − xi

k‖2 makes the local estimates xi close to
their previous values xi

k , and the constraints x1 = x2 = · · · = xn enforce all the local
estimate xi to reach a network-wide consensus. Observe that the consensus constraints
couple all the agents in the entire network and are thus nontrivial.

To address this issue, we introduce auxiliary variables zi j ∈ R
p associated with

arcs (i, j) ∈ A and rewrite (2.1) as

{xi
k+1, zi j

k+1} = argmin
{xi ,zi j }

n∑

i=1

f i
k (xi ) + ηk+1

2

n∑

i=1

‖xi − xi
k‖2,

s.t. xi = zi j , x j = zi j , ∀ (i, j) ∈ A. (2.2)

The constraints xi = zi j and x j = zi j imply that for all pairs of agents (i, j) ∈ A
forming arcs, the feasible set of (2.2) is such that xi = x j . We interpret the auxiliary
variables zi j as being attached to the arc (i, j) with the purpose of enforcing the
equality of the variables xi and x j attached to its source agent i and destination agent
j . For a connected network, these local neighborhood constraints further imply that
feasible variables must satisfy xi = x j for all, not necessarily neighboring, pairs of
agents i and j . As a consequence, the optimal local variables xi in (2.2) must coincide
with those in (2.1).

For clarity of discussion, we define x = [x1; x2; · · · ; xn] ∈ R
np that containing all

variables xi and z = [z1; z2; · · · ; zm] ∈ R
m p that containing all variables za = zi j if

a ∼ (i, j). Recalling the definitions of the arc source matrix As and the arc destination
matrix Ad, the consensus constraints (2.2) can be represented as Asx − z = 0 and
Adx − z = 0. We further define the aggregated function fk : Rnp → R as fk(x) :=∑n

i=1 f i
k (xi ). Using these definitions, we can rewrite (2.2) in a matrix form as

{xk+1, zk+1} = argmin
{x,z}

fk(x) + ηk+1

2
‖x − xk‖2

s.t. Ax + Bz = 0,
(2.3)

where A = [As; Ad], B = [−Imp;−Imp].
Given time k + 1, (2.3) fits the standard form that can be solved by ADMM, i.e.,

minimizing the sum of two separable functions fk(x)+(ηk+1/2)‖x − xk‖2 and 0 with
respect to two blocks of variables x and z under the linear constraint Ax + Bz = 0.
Based on this reformulation, we develop a decentralized online algorithm that utilizes
the idea of ADMM.
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3 Algorithm Development

This section develops oDM that sequentially and approximately solves (2.3) (and
(2.1), equivalently). Associate the constraint Asx − z = 0 with a Lagrange multiplier
β ∈ R

m p and Adx − z = 0 with γ ∈ R
m p, and denote λ = [β; γ ] ∈ R

2mp as the
Lagrange multiplier associated with the constraint Ax + Bz = 0. At any time k + 1,
the augmented Lagrangian function of (2.3) is

Lk+1(x, z, λ) = fk(x)+ ηk+1

2
‖x − xk‖2+λT(Ax + Bz)+ ρk+1

2
‖Ax + Bz‖2, (3.1)

where the stepsize ρk+1 is a constant or time-varying positive value.
In oDM, the augmented Lagrangian function Lk+1(x, z, λ) is minimized with

respect to the primal variables x and z in an alternating manner, followed by an ascent
step on the dual variable λ. To be specific, given past iterates zk and λk , the primal
iterate xk+1 is defined as xk+1 := argminx Lk+1(x, zk, λk) and given as the solution
of the first-order optimality condition

∂ fk(xk+1) + ATλk + ρk+1AT(Axk+1 + Bzk) + ηk+1(xk+1 − xk) 	 0. (3.2)

Using the value of xk+1 from (3.2) along with the previous dual iterate λk , the primal
iterate zk+1 is defined as zk+1 := argminz Lk+1(xk+1, z, λk) and explicitly given by
the solution of the first-order optimality condition

BTλk + ρk+1BT(Axk+1 + Bzk+1) = 0. (3.3)

The dual iterate λk is then updated by the constraint violation Axk+1 + Bzk+1 corre-
sponding to primal iterates xk+1 and zk+1 such that

λk+1 − λk − ρk+1(Axk+1 + Bzk+1) = 0. (3.4)

Note that in the online learning setting, iteration k +1 runs (3.2)–(3.4) once, and hence
(2.3) is only approximately solved.

The computations to implement (3.2)–(3.4) are decentralized through the network.
However, it is also possible to rearrange (3.2)–(3.4) such that with proper initializa-
tion the updates of the auxiliary variables zk are not necessary, and the Lagrange
multipliers β ∈ R

mp and γ ∈ R
mp can be replaced by a smaller dimension vector

α = [α1;α2; · · · ;αn] ∈ R
np. We summarize the initialization conditions and the

simplified algorithms in the following proposition.

Proposition 3.1 Consider the sequence of variables xk+1 generated by (3.2)–(3.4).
If the algorithm is initialized with β1 = −γ1 and 1

2 Eux1 = z1, then the iterates xk+1
can be alternatively generated by the recursion

∂ fk(xk+1) + αk + 2ρk+1Dxk+1 − ρk+1Luxk + ηk+1(xk+1 − xk) 	 0, (3.5)

αk+1 − αk − ρk+1Loxk+1 = 0. (3.6)
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Proof See Appendix 1.

The updates of (3.5) and (3.6) are decentralized to the agents. Indeed, using the
definitions of the degree matrix D, the unoriented Laplacian Lu, and the oriented
Laplacian Lo, the iterations are equivalent to

∂ f i
k

(
xi

k+1

)
+ (ηk+1 + 2ρk+1di ) xi

k+1 −
⎛

⎝ηk+1xi
k + ρk+1

∑

j∈Ni

(
xi

k + x j
k

)
⎞

⎠

+ αi
k 	 0, (3.7)

αi
k+1 = αi

k + ρk+1

∑

j∈Ni

(
xi

k+1 − x j
k+1

)
. (3.8)

The update of xi
k+1 in (3.7) and the update of α

i
k+1 in (3.8) are decentralized since they

only rely on local and neighboring information. We summarize oDM in Algorithm 1.

Algorithm 1 oDM at agent i

Require: Initialize local variables to xi
1 = 0 and αi

1 = 0.

Require: Initialize neighboring variables x j
1 = 0 for all j ∈ Ni .

Step 1. for k + 1 = 2, 3, · · · do
Step 2. Observe instantaneous local cost function f i

k .
Step 3. Set parameters ρk+1 > 0 and ηk+1 > 0.
Step 4. Compute local estimate xi

k+1 from [cf. (3.7)]

∂ f i
k

(
xi

k+1

)
+ (

ηk+1 + 2ρk+1di
)

xi
k+1 −

⎛

⎝ηk+1xi
k + ρk+1

∑

j∈Ni

(xi
k + x j

k )

⎞

⎠ + αi
k 	 0.

Step 5. Transmit xi
k+1 to and receive x j

k+1 from neighbors j ∈ Ni .

Step 6. Update local variable αi
k+1 as [cf. (3.8)]

αi
k+1 = αi

k + ρk+1
∑

j∈Ni

(
xi

k+1 − x j
k+1

)
.

Step 7. end for

4 Regret Bounds

This section analyzes the regret bounds of oDM for two cases: (1) an O(
√

T ) regret
bound when the local cost functions f i

k are convex; (2) an O(log T ) regret bound
when the local cost functions f i

k are strongly convex. The roadmap of the analysis
is as following. First, we show that the global regret RG can be upper bounded by
the summation of three terms: the nominal regret RN, the accumulated constraint
violation, and the accumulated inverse of stepsize (see Sect. 4.1). Second, we prove
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that the summation of the first two terms (the nominal regretRN and the accumulated
constraint violation) and the third term (the accumulated inverse of stepsize) both have
the O(

√
T ) and O(log T ) regret bounds for the convex and strongly convex cases,

respectively (see Sect. 4.2).
Throughout the analysis, we assume that a finite optimal solution x̃∗ to (1.1) exists.

Define x∗ as a vector stacking n copies of x̃∗ and z∗ as a vector stackingm copies of x̃∗.
Apparently, x∗ and z∗ satisfy the equality Ax∗ + Bz∗ = 0. Assume that ‖x̃∗‖ � Dx̃ ,
which implies that ‖x∗‖ � √

nDx̃ , ‖z∗‖ � √
m Dx̃ , and ‖Bz∗‖ �

√
2m Dx̃ .

We also assume that the local cost functions have bounded subgradients. This
assumption is common in the centralized/decentralized online learning literature.

Assumption 4.1 (Bounded Subgradient) For all agents i and all times k, the subgra-
dients of the local cost functions ∂ f i

k with respect to the Euclidean norm are upper
bounded by a positive constant L f . In consequence for all times k, the aggregated cost
functions fk satisfy ‖∂ fk‖ � √

nL f .

4.1 Supporting Lemmas

This subsection proves a series of supporting lemmas and shows that the global
regret RG contains three components: the nominal regret RN, the accumulated con-
straint violation, and the accumulated inverse of stepsize. The discussion is based on
Lemma 4.2.

Lemma 4.2 Consider the points (xk, zk, λk) generated by the iterations (3.2)–(3.4).
Recall that the stepsize at time k is ρk and define the diameter of the network of n
agents as σ . If the local cost functions f i

k are convex and Assumption 1 holds, then
the global regret

RG � RN +
T∑

k=1

ρk

2nσ
max

j

n∑

i=1

‖x j
k − xi

k‖2 + n2σ L2
f

2

T∑

k=1

1

ρk
. (4.1)

Proof See Appendix 2.

Observe that given one local estimate x j
k ,

∑n
i=1 ‖x j

k − xi
k‖2 accumulates its dis-

crepancies with others. Therefore, in (4.1) the second term max j
∑n

i=1 ‖x j
k − xi

k‖2
means the largest accumulated discrepancy over the entire network. Since ‖x j

k − xi
k‖2

does not explicitly appear in the oDM iterates, we replace it by the constraint violation
term ‖Axk + Bzk‖2 (see Lemma 4.3). Further using the fact that ‖Axk+1+ Bzk+1‖2 �
‖Axk+1 + Bzk‖2 (see Lemma 4.4), we can replace the second term of (4.1) by the
constraint violation with respect to the primal solutions xk+1 and zk , which enables
the analysis of the regret bounds.

Lemma 4.3 Consider the points (xk, zk, λk) generated by the iterations (3.2)–(3.4).
If the length of the shortest path from agent i to agent j is σi j (1 � σi j � n − 1), then
for all times k

‖xi
k − x j

k ‖2 � σi j‖Axk + Bzk‖2. (4.2)
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Proof See Appendix 3.

Recalling that σ = maxi, j σi j is the diameter of the network, an immediate conclu-

sion fromLemma4.3 is thatmaxi, j ‖xi
k−x j

k ‖2 � σ‖Axk+Bzk‖2,which is determined
by the constraint violation and the network topology. The following lemma further
states that the constraint violation at time k +1 (i.e., ‖Axk+1 + Bzk+1‖2) is no greater
than the constraint violation with respect to the primal solutions xk+1 and zk (i.e.,
‖Axk+1 + Bzk‖2).
Lemma 4.4 Consider the points (xk, zk, λk) generated by the iterations (3.2)–(3.4)
under the initialization x1 = 0, z1 = 0, and λ1 = 0. For all times k, it holds

‖Axk+1 + Bzk+1‖2 � ‖Axk+1 + Bzk‖2. (4.3)

Proof See Appendix 4.

According to Lemmas 4.2–4.4, the global regretRG is upper bounded by the sum-
mation of three terms: the nominal regret RN, the accumulated constraint violation,
and the accumulated inverse of stepsize. We conclude it with the lemma below.

Lemma 4.5 Consider the points (xk, zk, λk) generated by the iterations (3.2)–(3.4)
under the initialization x1 = 0, z1 = 0, and λ1 = 0. Define the length of the shortest
path from agent i to agent j as σi j (1 � σi j � n − 1) and define the diameter of the
network of n agents as σ = maxi, j σi j . Then for all times k

RG � RN +
T∑

k=1

ρk+1

2
‖Axk+1 + Bzk‖2 + n2σ L2

f

2

T∑

k=1

1

ρk
. (4.4)

Proof See Appendix 5.

4.2 Bounds of the Global Regret RG

Wefirst establish the boundof the global regretRG given that the local cost functions
f i
k are convex.

Theorem 4.6 Consider the points (xk, zk, λk) generated by the iterations (3.2)–(3.4)
under the initialization x1 = 0, z1 = 0, and λ1 = 0. The network has n agents and
m arcs, and the network diameter is σ . If the local cost functions f i

k are convex and

Assumption 4.1 holds, letting the algorithm parameters ρk = c1n
√

T and ηk = Lf
Dx̃

√
T

where c1 > 0 is an arbitrary constant, then the global regret satisfies

RG �
(

c1nm D2
x̃ + nL f Dx̃ + nσ L2

f

2c1

)√
T . (4.5)

Proof See Appendix 6.
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Remark We briefly discuss how to choose the arbitrary constant c1 such as the coeffi-
cient c1nm D2

x̃ +nL f Dx̃ +(nσ L2
f )/(2c1) is order optimal with respect to n, the number

of the agents. Observe that for the two topology-related constantsm and σ , the number
of arcs m = O(n) in sparse topologies and m = O(n2) in dense topologies; the net-
work diameter σ = O(n) in line-like topologies, σ = O(

√
n) in grid-like topologies,

and σ = O(1) in dense topologies. Therefore, for dense topologies (m = O(n2) and
σ = O(1)), choosing c1 = O(1/n) yields a coefficient at the order of O(n2). For
line-like topologies (m = O(n) and σ = O(n)), c1 = O(1) also yields a coefficient
at the order of O(n2). For grid-like topologies (m = O(n) and σ = O(

√
n)), the

order improves to O(n7/4) by choosing c1 = O(n−1/4). The best is for the star-like
topologies (m = O(n) and σ = O(1)), where the order is O(n3/2) by choosing
c1 = O(n−1/2).

Next we further establish the bound of the global regret RG given that the local
cost functions f i

k are strongly convex.

Theorem 4.7 Consider the points (xk, zk, λk) generated by the iterations (3.2)–(3.4)
under the initialization x1 = 0, z1 = 0, and λ1 = 0. The network has n agents
and m arcs, the network diameter is σ , and the largest eigenvalue of the unoriented
Laplacian Lu = 1

2 ET
u Eu is Γu. If the local cost functions f i

k are μ-strongly convex
and Assumption 4.1 holds, letting the algorithm parameters ρk = μ

2Γu
k and ηk = μ

2 k,
then the global regret satisfies

RG � 2m + Γun

2Γun
μD2

x +
(

nL2
f

μ
+ Γun2σ L2

f

μ

)
(log T + 1). (4.6)

Proof See Appendix 7.

Observe that the O(
√

T ) regret bound in Theorem 4.6 and the O(log T ) regret
bound in Theorem 4.7 match the optimal ones established in centralized online learn-
ing.

5 Numerical Experiments

This section demonstrates performance of oDM for decentralized online learning
problems. Specifically, we consider a least squares problem and a classification prob-
lem. In the numerical experiments, we compare oDM with two decentralized online
learning algorithms:

(1) Distributed online gradient descent (DOGD) [11];
(2) Distributed autonomous online learning (DAOL) [7].

Recall that DOGD is based on the distributed dual averaging algorithm and DAOL
is an online version of the distributed subgradient method; see the paper survey in
Sect. 1. For fair comparison, we hand-tune the algorithm parameters to the best
ones.
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5.1 Decentralized Online Least Squares

We consider the decentralized online least square problem. Suppose that a network
of n agents take linear measurements on a vector x̃ ∈ R

10. For agent i at time k,
the measurement is bi

k = Ai x̃ + ei
k ∈ R

10 where Ai ∈ R
1×10 is the measurement

matrix and ei
k ∈ R

10 is the measurement error. Elements of the true x̃ and Ai follow
zero mean normal distribution with variance 1, while elements of ei

k follow the zero
mean normal distribution with variance 10−2. In decentralized online least squares,
the instantaneous local cost function of agent i at time k is f i

k (x̃) = (1/2)‖Ai x̃ −bi
k‖2.

Given such f i
k , the oDM iterations (3.7) and (3.8) become

xi
k+1 =

(
(Ai )T Ai + (ηk+1 + 2ρk+1di )I10

)−1

×
⎛

⎝ηk+1xi
k + ρk+1

∑

j∈Ni

(
xi

k + x j
k

)
+ (Ai )Tbi

k − αi
k

⎞

⎠ ,

αi
k+1 = αi

k + ρk+1

∑

j∈Ni

(
xi

k+1 − x j
k+1

)
.

In the numerical experiments, we generate data from times 1 to T = 200.We define
two performance metrics. One is the average loss

1

nT

T∑

t=1

n∑

i=1

(
f i
t

(
x j

k

)
− f i

t (x̃∗)
)

,

which, at time k, evaluates the local estimate x j
k of an arbitrary agent j on all local cost

functions and then averages over times 1 to T . Another is the average disagreement

1

n

n∑

i=1

‖x j
k − xi

k‖
‖x̃∗‖ ,

which characterizes the disagreement between the instantaneous local estimates and
the one held by an arbitrary reference agent j . For simplicity, we let j = 1 here.

In the first set of numerical experiments, we compare the three decentralized online
learning algorithms on a network of n = 100 agents where 1 980 arcs out of 9 900
possible ones are randomly chosen to be connected. Average losses and average
disagreements of the decentralized online algorithms are shown in Fig. 1. oDMdemon-
strates the fastest convergence among the three algorithms. DOGD performs well at
the low-accuracy stage and degrades at the high-accuracy stage. Observe that DOGD
keeps the tightest consensus during the learning process,while oDMhas the largest dis-
agreement. This observation suggests that keeping tight consensus during the learning
process may be unfavorable since the consensual local solutions are possibly far away
from the optimum, which yields worse average loss. Performance of DAOL is between
those of oDM and DOGD, in terms of both average loss and average disagreement.

123

Author's personal copy



548 H.-F. Xu et al.

0 50 100 150 200
10

−6

10
−4

10
−2

10
0

10
2

k

A
ve

ra
ge

 L
os

s

DOGD
DAOL
oDM

0 50 100 150 200
10

−6

10
−4

10
−2

k

A
ve

ra
ge

 D
is

ag
re

em
en

t

DOGD
DAOL
oDM

(a)

(b)

Fig. 1 Performance of the decentralized online learning algorithms on the least squares problem: (a)
Average Loss; (b) Average Disagreement

In the second set of numerical experiments, we discuss the impact of topology on the
performance of oDM. Consider networks of n = 100 agents where 9 900× r random
arcs are connected. The value of r determines the ratio of connected arcs; larger r
means better network connectivity. Observe from Fig. 2 that better connectivity yields
faster convergence and tighter consensus. However, the performance degradation from
a dense network (r = 0.8) to a sparse network (r = 0.05) is not remarkable, suggesting
that it is beneficial to use a sparse network when the communication cost is an issue.
Similar observation holds for special topologies such as line, star, and complete, see
Fig. 3. Unless the network is extremely sparse (line), oDM shows similar convergence
properties.

In the third set of numerical experiments, we show the influence of network size
on the performance of oDM. We choose different values of n and keep the ratio of
connected arcs invariant; specifically, we let n(n−1)×20% random arcs be connected.
Fig. 4 depicts convergence of oDM as the network size varies. Larger network size
leads to sharper reduction of the average loss and the average disagreement; this makes
sense since more data are involved in the learning process.
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Fig. 2 Performance of oDM on the least squares problem with random networks: (a) Average Loss; (b)
Average Disagreement

5.2 Decentralized Online Classification

Next we consider the decentralized online classification problem. We use 30 000
training samples and 16 281 testing samples from the a9a dataset [24]. The training
samples are trained with a network of n = 30 agents in an online manner, and the
time duration is T = 1 000. At time k, agent i has a training sample (ai

k, bi
k) where

ai
k ∈ R

123 is a vector containing 123 features and bi
k is a binary-valued scalar repre-

senting the label.
The task of decentralized online learning is to train a classifier x̃ ∈ R

123. Here,
we choose the support vector machine as the optimization model [25]. At time k,
the instantaneous local cost function of agent i is f i

k (x̃) = (κ/2)‖x̃‖2 + max{1 −
bi

k〈ai
k, x̃〉, 0} where the regularization parameter κ = 0.1. Given such f i

k , the oDM
updates (3.7) and (3.8) become

123

Author's personal copy



550 H.-F. Xu et al.

0 50 100 150 200
10

−6

10
−4

10
−2

10
0

10
2

k

A
ve

ra
ge

 L
os

s

Line
Star
Complete

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

k

A
ve

ra
ge

 D
is

ag
re

em
en

t

Line
Star
Complete

(a)

(b)

Fig. 3 Performance of oDM on the least squares problem with special topologies: (a) Average Loss; (b)
Average Disagreement

xi
k+1 = argmin

xi

κ + ηk+1 + 2ρk+1di

2
‖xi‖2 + max{1 − bi

k+1〈ai
k+1, xi 〉, 0}

+
〈
ηk+1xi

k + ρk+1

∑

j∈Ni

(xi
k + x j

k ) − αi
k, xi

〉

αi
k+1 = αi

k + ρk+1

∑

j∈Ni

(
xi

k+1 − x j
k+1

)
.

We compare the three decentralized online learning algorithms on a network of
n = 30 agents where 174 arcs out of 870 possible ones are randomly chosen to be
connected. As a baseline result, we also use Libsvm to run centralized batch learning.
The performance metric is error rate, which is defined as the rate of wrong classifica-
tions on the testing samples using an arbitrary instantaneous classifier. Fig. 5 shows
error rates of the three decentralized online learning algorithms and the centralized
Libsvm. oDMhas the best performance and is close to the centralized Libsvm. The two
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Fig. 4 Performance of oDM on the least squares problem with different network size n: (a) Average Loss;
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Fig. 5 Error rates of the decentralized online learning algorithms and the centralized Libsvm on the
classification problem
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other decentralized algorithms, DOGD and DAOL, demonstrate similar error rates,
which are slightly worse than that of oDM.

6 Conclusion

This paper considers the machine learning application where the samples are not
only online temporally but also decentralized in spatially. The decentralized online
setting requires agents to incorporate new samples with current solutions, as well
as cooperate with neighboring agents for network-wide consensus. We proposed the
oDM to solve this problem; therein the alternating direction method of multipliers
(ADMM) plays two roles, i.e., making the algorithm decentralized and enabling online
computation. We define the regret bound for the decentralized online learning prob-
lem, and prove O(

√
T ) and O(log T ) regret bounds for oDM when the instantaneous

local cost functions are convex and strongly convex, respectively. Numerical experi-
ments on decentralized online least squares and classification problems demonstrate
the effectiveness of the proposed algorithm.

Appendix 1: Proof of Proposition 3.1

Proof Multiplying the two sides of the λ-update (3.4) by AT (or BT) and adding it to
the x-update (3.2) (or the z-update (3.3)), (3.2)–(3.4) can be re-organized as

∂ fk(xk+1) + ATλk+1 + ρk+1ATB(zk − zk+1) + ηk+1(xk+1 − xk) 	 0, (7.1)

BTλk+1 = 0, (7.2)

λk+1 − λk − ρk+1(Axk+1 + Bzk+1) = 0. (7.3)

Recalling λ = [β; γ ] and B = [−Imp;−Imp], we have βk+1 = −γk+1 from (7.2).
Utilizing this fact and the definitions Eo = As − Ad, Eu = As + Ad, A = [As; Ad]
and B = [−Imp;−Imp], (7.1) becomes

∂ fk(xk+1) + ET
o βk+1 − ρk+1ET

u (zk − zk+1) + ηk+1(xk+1 − xk) 	 0. (7.4)

If we initialize β1 = −γ1 such that βk = −γk holds for all times k, then (7.3) can be
separated into two equations

βk+1 − βk − ρk+1(Asxk+1 − zk+1) = 0, (7.5)

−βk+1 + βk − ρk+1(Adxk+1 − zk+1) = 0. (7.6)

Subtracting (7.6) from (7.5) yields

βk+1 − βk − ρk+1

2
Eoxk+1 = 0, (7.7)
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since Eo = As− Ad. On the other hand, summing up (7.6) and (7.5) yields 1
2 Euxk+1−

zk+1 = 0 since Eu = As + Ad; we further initialize 1
2 Eux1 = z1 such that for all

times k, it holds
1

2
Euxk − zk = 0. (7.8)

Substituting (7.8) into (7.4), we have

∂ fk(xk+1) + ET
o βk+1 + ρk+1

2
ET
u Euxk+1 − ρk+1

2
ET
u Euxk + ηk+1(xk+1 − xk) 	 0.

(7.9)

Defining a new multiplier αk = ET
o βk , from (7.7) and the definition Lo = 1

2 ET
o Eo,

we have (3.5). Replacing the term ET
o βk+1 = αk+1 by αk + ρk+1Loxk+1 as shown in

(3.5), as well as using the definition Lu = 1
2 ET

u Eu and the equality 2D = Lo + Lu,
we can simplify (7.9) as (3.6).

Appendix 2: Proof of Lemma 4.2

Proof Recall the definition of R j
G, we have

R j
G =

T∑

k=1

n∑

i=1

(
f i
k (x j

k ) − f i
k (x∗)

)

=
T∑

k=1

n∑

i=1

(
f i
k (xi

k) − f i
k (x∗)

)
+

T∑

k=1

n∑

i=1

(
f i
k (x j

k ) − f i
k (xi

k)
)

. (8.1)

In (8.1), the first summation is the definition of the nominal regret RN. The second
summation, which describes the discrepancy of the local cost function values, is no
greater than the discrepancy of the local estimates plus the upper bound of the subgra-
dients. Considering that f i

k is convex and using Young’s inequality, since ρk , n, and
σ are positive, it holds

f i
k (x j

k ) − f i
k (xi

k) � 〈∂ f i
k (x j

k ), x j
k − xi

k〉
� ρk

2nσ

∥∥∥x j
k − xi

k

∥∥∥
2 + nσ

2ρk

∥∥∥∂ f i
k (x j

k )

∥∥∥
2
. (8.2)

Under Assumption 4.1 we know that ‖∂ f i
k ‖ � L f ; hence (8.2) becomes

f i
k (x j

k ) − f i
k (xi

k) � ρk

2nσ

∥∥∥x j
k − xi

k

∥∥∥
2 + nσ L2

f

2ρk
. (8.3)

Substituting (8.3) into (8.1),

R j
G � RN +

T∑

k=1

ρk

2nσ

n∑

i=1

∥∥∥x j
k − xi

k

∥∥∥
2 + n2σ L2

f

2

T∑

k=1

1

ρk
. (8.4)
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Further using the definition RG = max j R j
G yields the upper bound of the global

regret RG in (4.1).

Appendix 3: Proof of Lemma 4.3

Proof According to the definition of the vectors xk and zk as well as the matrices A
and B

‖Axk + Bzk‖2 =
∑

(i, j)∈A

(
‖xi

k − zi j
k ‖2 + ‖x j

k − zi j
k ‖2

)
. (9.1)

Therefore, we can interpret ‖Axk + Bzk‖2 by the summation of ‖xi
k − x j

k ‖2 over all
arcs (i, j)

‖Axk + Bzk‖2 � 1

2

∑

(i, j)∈A

∥∥∥
(

xi
k − zi j

k

)
−

(
x j

k − zi j
k

)∥∥∥
2

= 1

2

∑

(i, j)∈A

∥∥∥xi
k − x j

k

∥∥∥
2
. (9.2)

Consider a shortest path i = v0 ↔ v1 ↔ · · · ↔ vσi j −1 ↔ vσi j = j between i
and j ; for any integer � ∈ [0, σi j − 1], (v�, v�+1) ∈ A. Notice that the network is
bidirectionally connected such both (i, j) and ( j, i) belong to A, we have

1

2

∑

(i, j)∈A

∥∥∥xi
k − x j

k

∥∥∥
2

�
∥∥xv0

k − xv1
k

∥∥2 + · · · +
∥∥∥x

vσi j −1

k − x
vσi j
k

∥∥∥
2
. (9.3)

Observe that the right-hand side of (9.3) has a lower bound

∥∥xv0
k − xv1

k

∥∥2 + · · · +
∥∥∥x

vσi j −1

k − x
vσi j
k

∥∥∥
2

� 1

σi j

∥∥∥
(
xv0

k − xv1
k

) + · · · +
(

x
vσi j −1

k − x
vσi j
k

)∥∥∥
2

= 1

σi j
‖xi

k − x j
k ‖2. (9.4)

Combining (9.2), (9.3), and (9.4) completes the proof.

Appendix 4: Proof of Lemma 4.4

Proof From (7.2), for all times k, it holds BTλk+1 = 0. With the initialization λ1 = 0
for all times k, we know that BTλk = 0, which implies that

〈λk+1 − λk, Bzk − Bzk+1〉 = 0. (10.1)
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Substituting the λ-update λk+1 − λk = ρk+1(Axk+1 + Bzk+1) in (3.4) into (10.1)
yields

ρk+1〈Axk+1 + Bzk+1, Bzk − Bzk+1〉 = 0, (10.2)

or equivalently

ρk+1

2

{
‖Axk+1 + Bzk‖2 − ‖Axk+1 + Bzk+1‖2 − ‖Bzk − Bzk+1‖2

}
= 0. (10.3)

Since ρk+1 > 0, (10.3) implies that ‖Axk+1 + Bzk‖2 − ‖Axk+1 + Bzk+1‖2 � 0,
which completes the proof.

Appendix 5: Proof of Lemma 4.5

Proof From (4.1) in Lemma 4.2 under the initialization x1 = 0

RG � RN +
T∑

k=1

ρk

2nσ
max

j

n∑

i=1

∥∥∥x j
k − xi

k

∥∥∥
2 + n2σ L2

f

2

T∑

k=1

1

ρk

� RN +
T∑

k=1

ρk+1

2nσ
max

j

n∑

i=1

∥∥∥x j
k+1 − xi

k+1

∥∥∥
2 + n2σ L2

f

2

T∑

k=1

1

ρk
. (11.1)

Combining the two inequalities, (4.2) in Lemma 4.3 and (4.3) in Lemma 4.4,
‖xi

k+1 − x j
k+1‖2 � σi j‖Axk+1 + Bzk+1‖2 � σi j‖Axk+1 + Bzk‖2. Therefore, (11.1)

boils down to

RG � RN +
T∑

k=1

ρk+1

2nσ
max

j

n∑

i=1

σi j‖Axk+1 + Bzk‖2 + n2σ L2
f

2

T∑

k=1

1

ρk
. (11.2)

According to the definition of the network diameter σ = maxi, j σi j , we have (4.4).

Appendix 6: Proof of Theorem 4.6

Proof According to Lemma 4.5, the global regretRG is no greater than the summation
of three components: the nominal regretRN, the accumulated constraint violation, and
the accumulated inverse of stepsize. In the proof, we first establish an O(

√
T ) bound

for the summation of the first two components, and then establish an O(
√

T ) bound
for the last component.

Recalling that fk(x) := ∑n
i=1 f i

k (xi ), xk = [x1k ; x2k ; · · · ; xn
k ], and x∗ = [x̃∗; x̃∗;

· · · ; x̃∗], we can rewrite the instantaneous nominal regret at time k as

n∑

i=1

(
f i
k (xi

k) − f i
k (x̃∗)

)
= fk(xk) − fk(x∗)

= ( fk(xk) − fk(xk+1)) + (
fk(xk+1) − fk(x∗)

)
. (12.1)
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Below we consider fk(xk) − fk(xk+1) and fk(xk+1) − fk(x∗) respectively.
Since the local cost functions f i

k are convex, the aggregated cost function fk is also
convex. Therefore, it holds

fk(xk) − fk(xk+1) � 〈∂ fk(xk), xk − xk+1〉. (12.2)

ApplyingYoung’s inequality to the right-hand side of (12.2), for any finite and positive
ηk+1, we have

fk(xk) − fk(xk+1) � 1

2ηk+1
‖∂ fk(xk)‖2 + ηk+1

2
‖xk − xk+1‖2. (12.3)

On the other hand, the convexity of fk implies that

fk(xk+1) − fk(x∗) � 〈∂ fk(xk+1), xk+1 − x∗〉. (12.4)

Substituting the expression of fk(xk+1) in (7.1) into (12.4) and utilizing the equality
Ax∗ + Bz∗ = 0 yield

fk(xk+1) − fk(x∗) � 〈−ATλk+1 − ρk+1AT(Bzk − Bzk+1)

− ηk+1(xk+1 − xk), xk+1 − x∗〉
= −〈λk+1, Axk+1 − Ax∗〉 − ρk+1〈Bzk − Bzk+1, Axk+1 − Ax∗〉

− ηk+1〈xk+1 − xk, xk+1 − x∗〉
= −〈λk+1, Axk+1 + Bz∗〉 − ρk+1〈Bzk − Bzk+1, Axk+1 + Bz∗〉

− ηk+1〈xk+1 − xk, xk+1 − x∗〉. (12.5)

Now reorganize the three terms in the right-hand side of (12.5). For the first term
observing that BTλk+1 = 0 as shown in (7.2), we can replace z∗ by zk+1 that does not
change the value. Further using the equality λk+1 − λk − ρk+1(Axk+1 + Bzk+1) = 0
as shown in (7.3), we have

−〈λk+1, Axk+1 + Bz∗〉 = − 〈λk+1, Axk+1 + Bzk+1〉
= 1

2ρk+1

{
‖λk‖2 − ‖λk+1‖2

}
− ρk+1

2
‖Axk+1 + Bzk+1‖2.

(12.6)
For the second term, we have

−ρk+1〈Bzk − Bzk+1, Axk+1 + Bz∗〉
= ρk+1

2

{
‖Bz∗ − Bzk‖2 − ‖Bz∗ − Bzk+1‖2 − ‖Axk+1 + Bzk‖2

+‖Axk+1 + Bzk+1‖2
}

. (12.7)
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For the third term, we have

−ηk+1〈xk+1−xk, xk+1−x∗〉= ηk+1

2

{
‖x∗−xk‖2 − ‖x∗ − xk+1‖2 − ‖xk+1 − xk‖2

}
.

(12.8)
Substituting (12.6)–(12.8) into (12.5) yields

fk(xk+1) − fk(x∗)

� 1

2ρk+1

{
‖λk‖2 − ‖λk+1‖2

}
+ ρk+1

2

{
‖Bz∗ − Bzk‖2 − ‖Bz∗ − Bzk+1‖2

−‖Axk+1+Bzk‖2
}
+ ηk+1

2

{
‖x∗ − xk‖2 − ‖x∗ − xk+1‖2 − ‖xk+1 − xk‖2

}
.

(12.9)

Combining (12.3) and (12.9), we obtain an upper bound for fk(xk) − fk(x∗) that
is

fk(xk) − fk(x∗)

� 1

2ρk+1

{
‖λk‖2 − ‖λk+1‖2

}
+ ρk+1

2

{
‖Bz∗ − Bzk‖2 − ‖Bz∗ − Bzk+1‖2

− ‖Axk+1+Bzk‖2
}
+ ηk+1

2

{
‖x∗ − xk‖2−‖x∗ − xk+1‖2

}
+ 1

2ηk+1
‖∂ fk(xk)‖2,

(12.10)

which immediately yields

fk(xk) − fk(x∗) + ρk+1

2
‖Axk+1 + Bzk‖2

� 1

2ρk+1

{
‖λk‖2 − ‖λk+1‖2

}
+ ρk+1

2

{
‖Bz∗ − Bzk‖2 − ‖Bz∗ − Bzk+1‖2

}

+ ηk+1

2

{
‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

}
+ 1

2ηk+1
‖∂ fk(xk)‖2. (12.11)

Notice that summing up the left-hand side of (12.11) from k = 1 to k = T leads to
the nominal regretRN plus the accumulated constraint violation; see the definition of
RN and (4.4) in Lemma 4.5. Since ρk+1 and ηk+1 are both constants here, we have

RN +
T∑

k=1

ρk+1

2
‖Axk+1 + Bzk‖2

� 1

2ρk+1

{
‖λ1‖2 − ‖λT +1‖2

}
+ ρk+1

2

{
‖Bz∗ − Bz1‖2 − ‖Bz∗ − BzT +1‖2

}

+ηk+1

2

{
‖x∗ − x1‖2 − ‖x∗ − xT +1‖2

}
+ 1

2ηk+1

T∑

k=1

‖∂ fk(xk)‖2
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� 1

2ρk+1
‖λ1‖2+ ρk+1

2
‖Bz∗ − Bz1‖2 + ηk+1

2
‖x∗ − x1‖2

+ 1

2ηk+1

T∑

k=1

‖∂ fk(xk)‖2. (12.12)

Observing that ‖x∗‖ � √
nDx̃ and ‖Bz∗‖ �

√
2m Dx̃ , ||∂ fk || � √

nL f , ρk+1 =
c1n

√
T , ηk+1 = (L f /Dx̃ )

√
T , and the algorithm is initialized by x1 = 0, z1 = 0, and

λ1 = 0, (12.12) boils down to

RN +
T∑

k=1

ρk+1

2
‖Axk+1 + Bzk‖2 � ρk+1m D2

x̃ + ηk+1
nD2

x̃

2
+ 1

ηk+1

nL2
f T

2

=
(

c1nm D2
x̃ + nL f Dx̃

)√
T .

(12.13)

Second we consider the accumulated inverse of stepsize. Since ρk = c1n
√

T , we
have

n2σ L2
f

2

T∑

k=1

1

ρk
= nσ L2

f

2c1

√
T . (12.14)

Substituting (12.13) and (12.14) into (4.4), we obtain the O(
√

T ) bound of the
global regret RG in (4.5).

Appendix 7: Proof of Theorem 4.7

Proof Similar to the proof of Theorem 4.6, we first establish an O(log T ) bound for
the summation of the nominal regret RN and the accumulated constraint violation,
and then establish an O(log T ) bound for the accumulated inverse of stepsize.

Consider the summation of the nominal regretRN and the accumulated constraint
violation. Since the local cost functions f i

k are μ-strongly convex, the aggregated cost
function fk is also μ-strongly convex. Therefore, we have

fk(xk+1) − fk(x∗) � 〈∂ fk(xk+1), xk+1 − x∗〉 − μ

2
‖x∗ − xk+1‖2, (13.1)

whichmodifies (12.4) by subtracting a quadratic term μ
2 ‖x∗−xk+1‖2 at the right-hand

side. Similar to the proof of Theorem 4.6 through (12.1) to (12.11), we have

fk(xk) − fk(x∗) + ρk+1

2
‖Axk+1 + Bzk‖2

� 1

2ρk+1

{
‖λk‖2 − ‖λk+1‖2

}
+ ρk+1

2

{
‖Bz∗ − Bzk‖2 − ‖Bz∗ − Bzk+1‖2

}
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+ ηk+1

2

{
‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

}
− μ

2
‖x∗ − xk+1‖2

+ 1

2ηk+1
‖∂ fk(xk)‖2. (13.2)

Therefore, summing up from k = 1 to k = T yields

RN +
T∑

k=1

ρk+1

2
‖Axk+1 + Bzk‖2

�
T∑

k=1

1

2ρk+1

{
‖λk‖2 − ‖λk+1‖2

}

+
T∑

k=1

ρk+1

2

{
‖Bz∗ − Bzk‖2 − ‖Bz∗ − Bzk+1‖2

}

+
T∑

k=1

ηk+1

2

{
‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

}
−

T∑

k=1

μ

2
‖x∗ − xk+1‖2

+
T∑

k=1

1

2ηk+1
‖∂ fk(xk)‖2. (13.3)

Below we find upper bounds for the right-hand side terms in (13.3). First observe
that ρk is non-decreasing and λ1 = 0 by initialization

T∑

k=1

1

2ρk+1

{
‖λk‖2 − ‖λk+1‖2

}
� 1

2ρ2
‖λ1‖2 = 0. (13.4)

Second observe that B = [−Imp;−Imp], we have

‖z∗ − zk+1‖2 = 1

2
‖Bz∗ − Bzk+1‖2. (13.5)

Then for any constant c2 > 0, it holds

T∑

k=1

ρk+1

2

{
‖Bz∗ − Bzk‖2 − ‖Bz∗ − Bzk+1‖2

}
−

T∑

k=1

c2‖z∗ − zk+1‖2

=
T∑

k=1

ρk+1

2

{
‖Bz∗ − Bzk‖2 − ‖Bz∗ − Bzk+1‖2

}
−

T∑

k=1

c2
2

‖Bz∗ − Bzk+1‖2

= ρ2

2
‖Bz∗ − Bz1‖2 +

T∑

k=2

ρk+1 − ρk − c2
2

‖Bz∗ − Bzk‖2. (13.6)
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Third observe that 1
2 Euxk − zk = 0 in (7.8) and 1

2 Eux∗ − z∗ = 0 by definition. Using
the fact that the maximum singular value of Eu is

√
2Γu, we have

‖z∗ − zk+1‖2 = ‖1
2

Eu(x∗ − xk+1)‖2 � Γu

2
‖x∗ − xk+1‖2. (13.7)

Then for any constant c2 > 0, it holds

T∑

k=1

ηk+1

2

{
‖x∗−xk‖2−‖x∗−xk+1‖2

}
−

T∑

k=1

μ

2
‖x∗ − xk+1‖2

+
T∑

k=1

c2‖z∗ − zk+1‖2

�
T∑

k=1

ηk+1

2

{
‖x∗ − xk‖2 − ‖x∗ − xk+1‖2

}
−

T∑

k=1

μ − c2Γu

2
‖x∗ − xk+1‖2

= η2

2
‖x∗ − x1‖2 +

T∑

k=2

ηk+1 − ηk − μ + c2Γu

2
‖x∗ − xk‖2. (13.8)

Summing up (13.4), (13.6), and (13.8) and substituting into the right-hand side of
(13.3), we have

RN +
T∑

k=1

ρk+1

2
‖Axk+1 + Bzk‖2

� ρ2

2
‖Bz∗ − Bz1‖2 +

T∑

k=2

ρk+1 − ρk − c2
2

‖Bz∗ − Bzk‖2

+ η2

2
‖x∗ − x1‖2 +

T∑

k=2

ηk+1 − ηk − μ + c2Γu

2
‖x∗ − xk‖2

+
T∑

k=1

1

2ηk+1
‖∂ fk(xk)‖2, (13.9)

which holds for any constant c2 > 0. Letting ρk = c2k and ηk = (μ− c2Γu)k, we are
able to eliminate the summations over ‖Bz∗ − Bzk‖2 and ‖x∗ − xk‖2.

Specifically we set c2 = μ
2Γu

such that ρk = μ
2Γu

k and ηk = μ
2 k. Since z1 = 0

and x1 = 0 by definition, ‖x∗‖ � Dx , ‖Bz∗‖ �
√
2m Dx√

n
, and ||∂ fk || � √

nL f by
hypothesis, we obtain an upper bound for the right-hand side of (13.9) as
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RN +
T∑

k=1

ρk+1

2
‖Axk+1 + Bzk‖2 � μm

Γun
D2

x + μ

2
D2

x +
T∑

k=1

nL2
f

μ(k + 1)

� 2m + Γun

2Γun
μD2

x + nL2
f

μ
(log T +1). (13.10)

To obtain the inequality, we use the fact
∑T

k=1
1

k+1 �
∫ T

k=0
1

k+1dk = log(T + 1) �
log T + 1.

Consider the accumulated inverse of stepsize. Since ρk = μ
2Γu

k, we have

n2σ L2
f

2

T∑

k=1

1

ρk
= Γun2σ L2

f

μ

T∑

k=1

1

k
�

Γun2σ L2
f

μ
(log T + 1) . (13.11)

To obtain the inequality we use the fact
∑T

k=1
1
k = ∑T −1

k=1
1

k+1 + 1 �
∫ T −1

k=0
1

k+1dk +
1 = log T + 1.

Substituting (13.10) and (13.11) into (4.4), we obtain the O(log T ) bound of the
global regret RG in (4.6).
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