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Abstract In this paper, we propose a decentralized algorithm to solve the low-rank
matrix completion problem and analyze its privacy-preserving property. Suppose that
we want to recover a low-rank matrix D = [Dy, Dy, --- , Dy ] from a subset of its
entries. In a network composed of L agents, each agent i observes some entries of
D;. We factorize the unknown matrix D as the product of a public matrix X which
is common to all agents and a private matrix ¥ = [Y7, Y2, ---, Y] of which Y; is
held by agent i only. Each agent i updates Y; and its local estimate of X, denoted
by X, in an alternating manner. Through exchanging information with neighbors,
all the agents move toward a consensus on the estimates X(;). Once the consensus
is (nearly) reached throughout the network, each agent i recovers D; = X(;)Y;, thus
D is recovered. In this progress, communication through the network may disclose
sensitive information about the data matrices D; to a malicious agent. We prove that
in the proposed algorithm, D-LMaFit, if the network topology is well designed, the
malicious agent is unable to reconstruct the sensitive information from others.

Keywords Decentralized algorithm - Matrix completion - Privacy-preserving

Mathematics Subject Classification 49R99 - 90C90

1 Introduction

Completing a low-rank (or approximately low-rank) matrix from an incomplete set
of its entries has been a hot research topic in recent years [5,6,25]. This problemarises
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in various applications, such as collaborative filtering [1], system identification [19],
internet traffic analysis [36], sensor localization [22], video processing [17], and phase
retrieval [7], to name a few.

This paper considers decentralized matrix completion, in which a network of agents
collaborate to complete a low-rank matrix that is the collection of multiple local
data matrices. To be specific, each agent observes some entries of its own local data
matrix and exchanges information with its neighbors to complete the unobserved ones
[18,21]. Particularly, we focus on designing a privacy-preserving decentralized matrix
completion algorithm such that a malicious agent in the network is unable to recover
local data matrices of other agents through neighboring information exchange. This
privacy-preserving property is critical to protecting sensitive data that come from mul-
tiple sources (for example, medical data of hospitals, selling data of merchants), yet
utilizing the data to jointly accomplish a matrix completion task.

1.1 Our Contributions

This paper develops a decentralized matrix completion algorithm D-LMaFit and
analyzes its privacy-preserving property.

D-LMaFit is motivated by LMaFit, a centralized nonconvex matrix factorization
approach [32]. In D-LMaFit, each agent factorizes its local data matrix, which is to
be completed, to the product of a public matrix and a private matrix, and updates
them in an alternating fashion. The private matrix is kept locally, while the public
matrix is shared with its neighbors. The public matrices, which are computed from
the private matrices, are expected to reach a consensus eventually. We propose a
dynamic average consensus scheme to achieve such a consensus, which is, according
to numerical experiments, close to the value of the public matrix in the centralized case.

We establish the privacy-preserving property of D-LMaFit, in the sense that a mali-
cious agent is unable to recover the local data matrices of some interested agents
through observing the exchanged public matrices from its neighbors. With particular
note, strict privacy preservation is hard to prove, as the malicious agent may be able
to recover the local data matrices by utilizing their special structures. We prove weak
privacy preservation, in the sense that the malicious agent is unable to invert a dynamic
linear system whose inputs are the private matrices of the interested agents and outputs
are the public matrices of the malicious agent and its neighbors. The analysis shows that
privacy of an agent cannot be preserved, if and only if the agent and its neighbors belong
to a set that contains the malicious agent and its neighbors. This theoretical result pro-
vides a guideline to adjust network topology for the sake of privacy preservation.

1.2 Related Work

Some existing algorithms solve the matrix completion problem based on nuclear-
norm minimization, which is a convex program and tends to yield a low-rank matrix
[4,12,20]. In light of the fact that the matrix to complete can be (approximately)
decomposed as the product of two lower dimensional matrices, [15,32] consider a
matrix factorization formulation that is nonconvex. The convex approach guarantees
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global convergence to the optimal solution but needs singular value decompositions,
which are expensive on large-scale matrices. The nonconvex approach is subject to
the existence of local minima, though [15] also guarantees global convergence to the
optimal solution given that the initial iterate is good enough. The nonconvex approach
often has satisfactory recovery performance, and the computation cost is lower than
that of the convex approach as it avoids singular value decompositions [32].

Most of the existing matrix completion algorithms are centralized, i.e., a fusion
center collects the observed entries of the data matrix and recovers the rest. However,
network applications prefer decentralized computing, in which a network of geograph-
ically distributed agents separately collect data and collaboratively accomplish an
optimization task [13,29]. The decentralized computing scheme is advantageous over
the centralized one as the agents do not need to transmit raw data to the fusion center,
which often relies on costly multi-hop communication. More importantly, decentral-
ized computing helps preserve data privacy since an agent no longer shares its raw
data with either the fusion center or other agents. For matrix completion, each agent
completes its own data matrix locally, only with the aid of necessary information
exchange with its neighbors. This property is particularly of interest in collaborative
filtering of sensitive data, such as medical or economic data.

Traditional network computing relies on cryptographical tools to preserve data
privacy, including multi-party computation [ 14,28], randomization [9], and data aggre-
gation [27]. The cryptographical techniques are well studied but expensive and fail to
utilize the problem structures in network optimization. The privacy-preserving prop-
erty of D-LMaFit is similar to that of the decentralized autonomous online learning
(DAOL) algorithm [35]. In DAOL, a network of decentralized agents collaboratively
performs online learning through exchanging neighboring iterates and descending on
instantaneous local cost functions. The agents expect to prevent leaking local gra-
dients, which may be sensitive, to others, through exchanging neighboring iterates.
The privacy-preserving abilities of D-LMaFit and DAOL are not cryptographical but
topology-dependent.

Notations Throughout the paper, for a matrix D, denote rank (D) as its rank, ||D||, as
its nuclear norm, and ||D||g as its Frobenius norm.

2 Problem Statement

Consider a bidirectionally connected network composed of L agents. There is an
undirected edge between two agents if they can communicate with each other through
one hop. Represent the network by (V, £) where V is the set of agents and £ is the set
of undirected edges. For agent i, denote the set of its neighbors by \; £ {j|(i, j) € &}.
For a group of agents Z, denote the set of their neighbors by N7 £ {jli € Z,j ¢
Z,3,j) e}

The goal of the network is to collaboratively complete a low-rank matrix in a
decentralized fashion. To be specific, agent i observes some entries from a local data
matrix D; € RV*Pi and the set of observed coordinates is £2;. The whole data matrix
isD=[Di,Dy, - ,Dr] € RV*P where P = ZiLzl P;. Denoting dj,, as the entry at
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192 A.-Y. Lin, Q. Ling

the nth row and the pth column of D and £2 £ UiL=1 £2; as the collection of observed
coordinates, dy, is known for (n, p) € 2 C {(n,p) : 1 <n < N,1 < p < P}
otherwise dy,, needs completion for (n, p) ¢ £2. The data matrix D is with rank no
more than K or can be well approximated by a matrix with rank no more than K,
where K < min(N, P).

The matrix completion task is decentralized in the sense that there is no central con-
troller to collect all local observations {d,,, |(n, p) € §2} and perform computation in a
centralized manner. Instead, we develop a decentralized matrix completion algorithm,
in which agents communicate and collaborate with their neighbors to accomplish the
task. This decentralized computation scheme helps preserve data privacy. We expect
that each agent i is able to protect its local data matrix D;, whose entries are either
known (those in £2;) or to be estimated (those not in §2;), from a malicious agent in
the network.

3 Centralized Matrix Completion
3.1 Matrix Factorization Formulation

We begin from a matrix factorization formulation of the matrix completion problem.
Observe that a matrix Z € RY*® with rank no more than K can be factorized as
Z = XY, where X € RV*K and Y € RX*P This fact motivates the following matrix
factorization formulation

. 1 2
min 5|/ XY — Z||5,
XYz 2 F (3.1)
S.t. zZyp =dpp, V(n,p) €82,

where Z € RV*P is an auxiliary matrix [32]. After solving (3.1), either XY or Z can
be adopted as an estimate of the incomplete data matrix D.

There is an obvious difference between finding the lowest rank matrix D, often
done by minimizing ||D||, instead of rank(D) and finding a factorization with rank
up to K like (3.1). The latter needs a rank K a priori or to dynamically update a rank
estimate. This is a disadvantage but in applications such as internet traffic analysis
[36] and sensor localization [22], K is known either theoretically or empirically. More
importantly, as we will see in Sect. 4, the factorization approach enables efficient
matrix completion in a decentralized network. It is advantageous over the nuclear-
norm approach since the latter needs decentralized singular value decompositions,
which are computationally expensive and even intractable in decentralized computing.

3.2 Centralized Algorithm: LMakFit
We review a centralized algorithm, developed in [32] and named as LMaFit, which

is based on nonlinear Gauss—Seidel iterations applied to (3.1). At time k, LMaFit
generates iterates

@ Springer



Decentralized and Privacy-Preserving Low-Rank Matrix Completion 193

sk _ gk (yk)T (yk (yk)T)T, (3.2)
yeH = ((XkJrl)TXkJrl)T (XkH)TZk’ (.3)

Zh+l = xk+lyk+l o po (D _Xk+1Yk+1) ’ (3.4)

where T stands for Moore-Penrose pseudo-inverse and P, denotes projection onto the
set 2.1f (n,m) € £2, (3.4) yields zX1! = d,; otherwise, if (n, m) ¢ 2 2541 equals
to the entry at the nth row and the mth column of X*+1y*+1,

Because only the product XY, rather than individual X and Y, is needed for the sake
of matrix completion, one can simplify the algorithm as shown in Lemma 3.1.

Lemma 3.1 Replacing the updating rule (3.2) by
k1 k(yk\"
Xt =ezb (V) e>o, (3.3)

does not change the sequences {X*Y*} and {Z*}.

LMaFit starts from initial estimates Y° and Z° and iteratively updates (3.5), (3.3),
and (3.4). Convergence of the iterations (3.5), (3.3), and (3.4) is established in [32]
and given in Lemma 3.2.

Lemma 3.2 Let {Xk, Yk, Zk} be a sequence generated by the iterations (3.5), (3.3),
and (3.4). Assume that { Poc(X¥Y*)} is bounded where $2¢ denotes the set of unob-
served coordinates, i.e., the complementary set of §2. Then any accumulation point of
(XK, YK, Z*} is a stationary point of (3.1).

3.3 Challenge in Decentralized Implementation

Next we discuss the challenge of implementing LMaFit in a decentralized network.
Recall that the whole data matrix is D = [Dj1, D3, ---, Dr] and agent i only has
access to the coordinate set £2; of the data matrix D;. Therefore, (3.4) suggests that
Z must be segmented to [Z,Zp,---,Z] where Z; € RV*Fi is held by agent i.
Similarly, to implement (3.3), Y is also split to different groups of columns such that
Y = [Y1,Y,---, Y] and ¥; € REXFi is held by agent i. However, X cannot be
segmented and distributed to the agents since (3.5) contains the summation of Z; (¥;)T
over all agents i.

To conclude, a naive implementation of LMaFit in a decentralized network gener-
ates iterates
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194 A.-Y. Lin, Q. Ling

L
T
X = e 3z (vh) (3.6)
i=1
k1 e\T okt (vhen\T ke
yhH = (x )X (x )z,., Vi, 3.7)
ZkH = xkHyktl 4 py (Di—Xk“Yl.k“), vi. (3.8)

Observe that agent i is in charge of the updates of Yl.k+1 and Zl.k“, as shown in
(3.7) and (3.8). However, computing (3.7) and (3.8) relies on a common Xkt whose
value is determined by the summation of locally available terms Zl.k(Yl.k )T, as shown
in (3.6). Therefore, such an implementation requires information aggregation of the
whole network and is hence not decentralized. In Sect. 4, we shall propose a novel

decentralized algorithm to address this issue.

4 Decentralized Matrix Completion

4.1 Dynamic Average Consensus

According to the discussion in Sect. 3.3, a decentralized implementation of LMaFit
depends on an efficient approach to solve (3.6). Observe that if choosing ¢ = (1/L),
(3.6) turns to

L

1 T

xk+1 z zzlk (Yik) ’
i=1

which is the well-known average consensus problem [8,24]. Given that each agent
holds a local term Zl.k(Yik)T at time k, the average consensus problem requires to
average all local terms over the network. This can be done by introducing an iterative
subroutine that mixes the local terms. This approach is costly, however, because the
network needs a large amount of iterations to reach an exact consensus on the averaged
value, and such an iterative subroutine must be run at every time.

A key observation in this paper is that exact average consensus at every time is
not necessary. Instead, a properly designed dynamic average consensus step, which
inexactly calculates the average of the local terms, enables an efficient decentralized
implementation of LMaFit. Specifically, suppose that agent i has calculated the values
of Yl.k and Z{‘ at time k. We let the agents run a single mixing step, which is not

. T . .
necessarily able to reach the exact average (1/L) Zle Zl.k (Yl.k) . This process is
termed as dynamic average consensus since the local variables Y l.k and Zl.k are changing,
and the network is trying to dynamically track the true average of the local terms

Z{‘ (YZ‘)T. It Yl.k and Zl.k gradually reach their steady-state values, successful dynamic
tracking is possible, as we can observe from numerical experiments in Sect. 6.

We perform dynamic average consensus as follows. Define X(;) as the local copy
of X at agent i and initialize it as Xg.). At time k = 0, agent i updates its local copy

X (11 ) through

@ Springer



Decentralized and Privacy-Preserving Low-Rank Matrix Completion 195

L

T
1 0 0 0 0
Xy = D wiiX(y —a (Xa) -z (Yi ) ) : .1

j=1

and at time k > 0, the iteration becomes
L L
k+1 _ vk vk ~ k-1
XG =Xy + 2 wiXGy = DX
j=1 j=1

T T
—u (x{j) —x5 -zt (Yl.k) + 7! (Yl.k_l) ) . (4.2)

In the updates (4.1) and (4.2), @ > 0 is a constant stepsize, while w;; and w;; are
entries at the ith row and the jth column of two mixing matrices W € RE*L and
W e RLXL, respectively. We impose the following assumptions on W and W for
decentralized implementation.

Assumption 4.1 (Mixing matrices) Consider a connected network G = {V, £} con-
sisting of a set of agents VY = {1,2,---, L} and a set of undirected edges £. The
mixing matrices W, W € REXL satisfy

1. Ifi #j ang(i, jl ¢ &, then w;; = @ij = 0; otherwise w;; > 0, w;; > 0.
2. W=wI,w=wT

3. null{W — W} = span{1}, null{/ — W} 2 span{1}.

4. W>Oand%>W¢W.

The dynamic average consensus updates (4.1) and (4.2) are motivated by EXTRA,
a first-order algorithm that solves decentralized static optimization problems [30].
If for all agents i and for all times k > 0, Zik(Yik)T = Zio (Yio)T are constant, then

(4.1) and (4.2) guarantee that for every agent i, X{‘i) converges to the exact average

(1/L) ZiLzl Zl.0 (YIQ)T. Here, the updates are adapted to reach a dynamic average con-
sensus.

Assumptions on the mixing matrices W and W are also the same as those in EXTRA
[30]. Observe that the static average consensus algorithms [8,24] and the decentralized
subgradient method [23] choose the mixing matrix W in the same way; that is, W
satisfies Part 1 and Part 2 of Assumption 4.1, which has an eigenvalue 1 and all others
within (—1, 1). Typical choices of W include the Laplacian-based constant edge weight
matrix [33], the Metropolis constant edge weight matrix [2,34], and the symmetric
fastest distributed linear averaging (FDLA) matrix [33]. After choosing W, a simple
choice of W is W = (1/2)({ <1 + W) that satisfies Assumption 4.1.

We briefly summarize existing works on dynamic average consensus. When com-
munication among the agents is continuous, proportional and proportional-integral
algorithms are able to track the dynamic average of decentralized inputs [11,31].
The requirement of continuous communication is relaxed in [16] through an event-
triggered mechanism, and [37] considers a discrete-time communication model. In the
decentralized matrix completion algorithm in [18], the alternating direction method of
multipliers is adopted for dynamic average consensus. However, the existence of both
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196 A.-Y. Lin, Q. Ling

primal and dual variables brings difficulties to its analysis. Considering the page limit
and the focus of this paper, we leave detailed discussion on this issue as our future work.
Algorithm 1: D-LMaFit

Step 1: Initialization. Each agent i initializes its local variables Zi0 as
Pg,(D;) and Yi0 as a random matrix, respectively.

Step 2: Update of X(;). At time k, agent i updates Xé;’l If £ =0, the
update is [cf. (4.1)]

1 _ L .. y0 0 0,yO\T
Xl = Ty wiX(, — o (X§) = 200D)7).

and if k > 0, the update is [cf. (4.2)]

k+1 k L k L ~ k—1
Xy =X + 2= wigX(y) — 2252 wi X

T
k k—1 k (yvk\T k—1 k—1
o (X(i)—X(i) — Zk(rHT + 7 (Yi ))

Step 3: Update of Y; and Z;. At time k, agent i updates YZ‘H and Z;‘H
from [cf. (3.7) and (3.8)]

T T
k+1 _ k+1\T yvk+1 k+1 k
Y= <(X<i> ) X ) (X<i> ) Z;,

k+1 k+1yk+1 k+1yk+1
2 = XY+ po, (D - x (YR,

4.2 Decentralized Algorithm

Summarizing the discussion in Sects. 3.3 and 4.1, we propose a decentralized
matrix completion algorithm that replaces the exact average consensus step (3.6) by the
dynamic average consensus step (4.1) or (4.2), which keeps the naturally decentralized
updates (3.7) and (3.8). We outline the algorithm, named as D-LMaFit, in Algorithm 1.

We interpret D-LMaFit as a combination of dynamic average consensus on public
information and autonomous local update on private information. The low-rank matrix

factorization XY = X[Y1, Ys, - -+, Y] can be viewed as the product of a public matrix
X and a collection of private matrices Y;, i = 1,2, --- , L. The approximation of XY,
denoted by Z = [Z1,Z,,--- ,Z.], is also a collection of private matrices Z;. In D-

LMaFit, agent i updates its local copy of the public matrix X, denoted by X(;), from
private matrices ¥; and Z;. After calculating X(;), ¥; and Z; can be obtained locally.

With particular note, the proposed decentralized algorithm is different than a dis-
tributed or parallel algorithm [26], as the latter needs a fusion center to coordinate
the agents, while the former relies on autonomous collaboration.

5 Topology-Dependent Privacy Preservation
5.1 Malicious Agent

Suppose that a malicious agent M attempts to recover the local data matrices of some
other agents through limited information exchange during the optimization process.
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We focus on the case that there is only one malicious agent for simplicity; indeed,
multiple malicious agents can be treated as a single super agent and our analysis still
holds. We define the behavior and the goal of the malicious agent M as follows.

Assumption 5.1 (The malicious agent M)

1. The malicious agent M is passive, in the sense that it follows the decentralized
matrix completion algorithm and does not provide false values of the public matrix
X(m) to any other agents.

2. The malicious agent M is interested in recovering the local data matrices D; of a
set of agents i € Z. This is equivalent to recovering either the private matrices Y;
or the auxiliary matrices Z;, Vi € 7.

Part 1 of Assumption 5.1 indicates that the malicious agent M does not perturb the
optimization process; otherwise, it may be able to obtain more information through
sending out properly designed values of X (. This is reasonable since a malicious
agent or a person hijacking the agent often wants to conceal its identity. Part 2 of
Assumption 5.1 means that the malicious agent M attempts to obtain D; via recovering
Z; or Y;, Vi € Z. Observe that Z; is a completion of D;. Similarly, if the private matrix
Y; is known and all the agents have reached consensus on the public matrix X, then
X(m)Y; is also a completion of D;. With particular note, we omit the time index here.
Indeed, the malicious agent M is interested in the values of Z{‘ and Xé‘M) Yl.k when k is
large enough; at that time, these values are hopefully close to D;.

Remark 5.2 In the analysis below, we discuss protecting the values of Z; Yl.T, other
than those of Z; or Y I.T, as the optimization process naturally encodes Z; Y I.T in a series
of linear equations. We argue that even M knows Z; Yl.T, it does not necessarily know
either Z; or YiT . Suppose that in the idealized case, all local copies of the public
matrix, including X, converge to the true value. By Z; = X()Y;, knowing Z; Y I.T
is equivalent to knowing X7)Y; YI.T. In this case, M may be able to calculate Y,~Yl.T;
however, finding Y; and Z;, similarly, is still ambiguous.

Remark 5.3 We also assume that the malicious agent M is aware of the values of
the mixing matrices W and W. Note that in the existing decentralized algorithms that
generate the mixing matrices [2,8,23,24,30,33,34], the malicious agent M may be
able to know some values of their entries, but not necessarily all of them. Hence, the
privacy-preserving property of D-LMaFit is stronger than that analyzed in this section.

5.2 Invertibility of Linear Time-Invariant System

Observe (4.1) and (4.2). During the optimization process, the malicious agent M is
able to obtain a series of public matrices X ;) fromitself and its neighbors, j € MUN.
These public matrices encode the series of values of Z; Yl.T, in whichi € Z and 7 is
the set of interested agents. Hence, preserving privacy of the agents in Z boils down to
the following question: Is the malicious agent M able to solve such a series of linear
equations to find Z; Y. l.T, i € 72 This question is equivalent to analyzing the invertibility
of a linear time-invariant system, as we shall discuss below.
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We define the linear time-invariant system as follows. Define

T
X{l) aZj (Y{()T
ph— | X0 | e mEV*K, of = aZy (Y5)" | ¢ RLNXK |

Xz azf (vf)"
and

- phtl .
Pk:|: Pk i|€R2LNXK7 Qk:[Qk-‘rl_Qk] GRLNXK,

Further, define

| A=) vy W@ Inxn @linxin — W ® Iyxn 2LNX2LN
A= eR ,
ILNxLN OLNxLN

and

1
B = | lLNxLN |  p2LN<aLN.
OLNxLN

Using these definitions, the recursion (4.2) can be represented by

P = AP* + BOF. (5.1

The malicious agent M observes some blocks in pkt1 (namely Xé‘ij'z and ng'l,

~ T
Vi € Ny UM) and attempts to recover some blocks in Qk (namely otZl.k‘H (Y lk +1) —

aZl.k (Yl.k ) , Vi € T) in (5.1). Rewrite this as a linear time-invariant system

- = 52
vk = CP*. 62

_ {ﬁk“ — AP* + B7Ok + B1. Ok,
In (5.2), @é € RIEINXK gelects those row blocks in O belonging to the interested

agents in Z, and By € RZENXITIN gelects the corresponding column blocks in B.
Similarly, é% € RE-IZDNXK gelects those row blocks in QF not belonging to the
interested agents in Z, and Bzc € R*LN X(L=IZDN gelects the corresponding column
blocks in B. In the observation equation vk — CcPk ,Ce R2(Nu+DNX2LN geands for
a selection matrix that selects those row blocks in P¥, which belong to agent M and
its neighbors, to construct the observation matrix V¥ € R2(Nul+DNxK

In the linear time-invariant system (5.2), the input sequences are {@%} and {@%},
the state sequence is {ﬁk }, and the output sequence is {\7" }. We are interested in the
subsystem from {@%} to {Vk }, which is invertible if one can solve the values of @§

from the observations V¥ and a series of linear equations [3]. Hence, analyzing the
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privacy preservation property of D-LMaFit boils down to investigating the invertibility
of the system (5.2). With particular note, in a practical network, the malicious agent
M may utilize the special structures of QkI to enable reconstruction, other than simply
solve the linear equations. For example, each block of Q% is known as the difference
between two matrices, which are possibly low-rank. Hence, the privacy preservation
property discussed here is in a weak sense.

5.3 Preliminaries

Our analysis uses the concept of z-transfer matrix of the system S defined in (5.2).
Without loss of generality, let N = K = 1 such that Pk , QkI QkI( and V¥ are all
vectors other than matrices. As the system S is linear, our analysis still holds for the
matrix case.

Denote the z-transfer matrix from Q% to V¥ as T7(z) = C(zhrnxain — A)~'Br,
that from @% to VK as T1c(z) = C(zlhrnyx2rn — A)~'Bze, and that from @k to VK
as T(z) = C(zhrnx2in — A) ' B. We have that

rank (7'(z)) = rank ([ T7(2), Tz (2) ]) -

Observe that the elements of 7(z), T7(z), and T7c(z) are rational functions, and
the matrix rank is defined over the rational expression field [3].

The rank of a transfer matrix is related to the topology of a virtual network, as
shown in [10]. To be specific, let each input, state, and output of a linear system be a
node in the virtual network. There exists a directed edge from one node to another, if
the source node determines the value of the destination node in the state-space model.
Consider the transfer matrix from a group of input nodes to a group of output nodes.
Its rank equals to the maximum number of disjoint paths from the input nodes to the
output nodes [10].

Applying this result to the system (5.2), we can see that the topology of the virtual
network is determined by that of the underlying communication graph (V, £) since
the state matrix A is constructed from (V, £). This way, we connect the ranks of 7'(z)
and 77(z) with the network topology. Here are two conclusions that are useful in
the analysis below: (i) rank(7 (z)) equals to the maximum number of vertex disjoint
paths from all the agents in the network to M U Nyy; (ii) rank (T7¢(z)) equals to the
maximum number of vertex disjoint paths from the agents in Z¢ to M U Ny,.

5.4 Main Results

We give our main theorem below.

Theorem 5.4 Consider a subsystem of S in (5.2), where the input is @% and the output
is VK. The subsystem is invertible if and only if T U N7 € M U Ny.

Proof Part I: Proof of sufficiency. Proof of sufficiency is straightforward. Observe that
if ZUNT € M UNy,, the malicious agent M has full knowledge of those row blocks,
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which correspond to Z, of the linear equation Pt = AP* 4 BO*. To see so, recall
that M has access to the corresponding blocks of Ptlas T belongs to its neighbor
set. On the other hand, because of the special structure of A, the corresponding blocks
of APF are only determined by those blocks of Pk belonging to the agents in Z U N7,
which are known by M as Z U N7 € M U Ny,. Therefore, the malicious agent M is
able to calculate of Q§ directly. Below we prove necessity.

Part II: Proof of necessity. The proof of necessity is similar to that of Theorem 7
n [35]. However, our system is essentially second order while the one in [35] is
first order, which makes the proof different. To be concrete, relations between the
underlying communication graph and the virtual graphs constructed from the systems
are different.

Step 1: A necessary rank condition for invertibility. First, we show that to determine
a unique sequence of inputs @% from the observations V¥, we must have

rank (7' (z)) — rank (T7<(2)) = |Z]. 5.3)

Apparently, the difference of the two ranks is at most |Z|. Now we prove it must be
|Z| by contradiction. If the difference of the two ranks is less than |Z|, there exists at
least one column of 77(z), denoted by T%(Z), which is linearly dependent on the other
columns of T'(z). Then we can find a vector é(z) whose ith element is nonzero and
satisfies T (z) é(z) = 0, wherei € 7. In other words, no matter how the input sequence
corresponding to the ith element of 0(z) varies, the output is zero. Therefore, we are
unable to determine a unique sequence of inputs QI from the observations V¥ if (5.3)
does not hold.

Step 2: T being a subset of M UNy;. Second, according to [10], rank (7 (z)) equals
to the maximum number of vertex disjoint paths from all the agents in the network to
M UNy. Because M U Ny is a subset of all the agents, rank (T (z)) must be |Nps| + 1.
Therefore, (5.3) can be rewritten as

[Nyl + 1 =rank (Tz7c(2)) + |Z]. (5.4)

Splitting the set M U Ny, into two sets, M U Ny — Z and {M U Ny} N T, we have
that
Nul+1=|MUNy —Z|+ |{MUNy}NI|. (5.5)

If Z is not contained in M U Ay, then it holds |{M U Ny} N Z| < |Z|. Furthermore,
from [10], rank (77¢(z)) equals to the maximum number of vertex disjoint paths from
the agents in Z¢ to M U Ny;. Since M U Ny — T is a subset of M U Ny, we have
IM UNy —Z| < rank (T7¢(z)). Thus, (5.5) implies [Ny | + 1 < rank (Tz<(2)) + |Z|
that contradicts with (5.4). Therefore, Z must be a subset of M U Nyy.

Step 3: N7 being a subset of M U Ny;. Third, if N7 is not contained in M U Ny,
then we have |[M U Ny — I| < rank (Tz¢(z)). As we have already known that 7
is contained in M U Ny, we have |{M U Ny} N Z| = |Z|. Again, (5.5) implies
|[NMum| + 1 < rank (Tze(z)) + |Z| that contradicts with (5.4). Therefore, A’z must also
be a subset of M U Ny This completes the proof.
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We illustrate Theorem 5.4 with two examples. In Fig. 1, the set of interested agents
is Z = {1, 2, 3, 4}, and its neighbor set is N7 = {5, 7, M}; the neighbor set of M is
Ny = {1,3,4,7}. According to Theorem 5.4, M is unable to recover the sensitive
information of all agents in Z. Indeed, the privacy of 1, 2, and 3 is guaranteed, but it
is not the case for 4 because 4 is only connected to M. If M adds neighbors, 2 and 5,
as shown in Fig. 2, then the neighbor set of M is Ny = {1,2, 3,4, 5, 7}. In this case,
the malicious agent M is able to recover the sensitive information of all the agents in
7. Therefore, Theorem 5.4 provides us a guideline of designing network topology to
protect data privacy.

Remark 5.5 Recall that invertibility means solving @§ from a set of linear equations
without using any prior knowledge. However, @§ has its own structure. Consider
OF that contains @kz, OF = [QFF! — O] and the ith row block of O is aZ¥ (YT,
a factorization of two private matrices Zl.k and Yl.k. If otZik(Yik)T is low-rank, which
means that K < min(N, P;), the malicious agent may use this prior knowledge to
obtain guesses of them. We leave privacy preservation under this circumstance as an
open question to future research.

Fig. 1 An illustrative example:
the malicious agent M is unable
to recover the sensitive
information of agents 1, 2, and 3
in Z, while it is able to recover
that of agent 4

Fig. 2 An illustrative example:

the malicious agent M is able to
recover the sensitive information
of all agents in Z
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6 Numerical Experiments

In the numerical experiments, we assume that in the graph only 20% of the edges
are bi-directional connected. A noise-free data matrix D of rank K is generated by
D = UDiag(d)VT, where the entries of U € RV*K d € RX, and V e RP*K are
i.i.d sampled from the standard normal distribution. Each of the L agents holds P /L
columns of D. The subset §2 contains randomly chosen 100 x p remaining entries
need completion. We set the simulation parameters L = 50, N = 200, P = 2000,
and K = 4.

We compare two algorithms in the numerical experiments: the centralized LMaFit
and the decentralized D-LMaFit. In D-LMaFit, the weight matrix W is generated from
the FDLA rule and W = (1+ W) /2. Performance of the algorithms is measured by the
relative error: ||D — XY ||g/||D||r. In D-LMaFit, we get XY by collecting the products
XY ie, XY =[XuYr, -, XYLl

We compare LMaFit and D-LMaFit with different stepsizes « in Fig. 3. The decen-
tralized algorithm is able to converge to the same solution as that of the centralized
one, even though the inexact average consensus step introduces errors. The decen-
tralized algorithm is slower than its centralized counterpart; this is reasonable since
information diffusion throughout the whole network requires more time. The stepsize
« is a critical parameter of the decentralized algorithms. Figure 3 shows that, as long
as o is chosen within a proper range, D-LMaFit still reaches the same accuracy of
recovery, though the convergence speed is different. From Fig. 3, « = 0.4 gives the
fastest convergence, while ¢ = 0.1 gives the slowest. If « is too large, say o = 0.6,
D-LMaFit converges to a wrong solution.

In the second set of experiments, we show the impact of the different sampling
ratios p = 0.2, 0.3, 0.4. For each p, we hand-tune the stepsize « to its best value in D-
LMaFit. In Fig. 4, when the sampling ratio p is high, both centralized and decentralized
algorithms are able to provide accurate recover. When p is small, their performance
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- - 824,
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210 m b A*‘ |
e \ ® *
g L] SRR
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Fig. 3 Performance of D-LMaFit for different stepsizes «; here p = 0.4
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Fig. 4 Performance of D-LMaFit and RD-LMaFit for different sampling ratios p

degrades and convergence takes longer time. D-LMaFit suffers more from less samples
than its centralized counterpart, because each agent has less information at its hand
and relies more on the cooperation of the whole network.

7 Conclusion

In this paper, we propose a decentralized privacy-preserving algorithm, D-LMaFit,
to solve the matrix completion problem. The main idea is to factorize the data matrices
such that the updates boil down to alternating minimization over a public matrix and
multiple private matrices. To enable efficient decentralized implementation, we let
each agent have a local copy of the public matrix and force the local copies to reach
a consensus through a dynamic average consensus scheme. We prove the sufficient
and necessary condition under which a malicious agent is able to recover the local
data matrices of some interested ones. The condition is determined only by network
topology; thus, it provides a guideline of designing a privacy-preserving network.
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