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Abstract

This paper considers the collaborative resource allocation problem over a hybrid cloud

center and edge server network, an emerging infrastructure for efficient Internet services.

The cloud center acts as a pool of inexhaustible computation and storage powers. The

edge servers often have limited computation and storage powers but are able to provide

quick responses to service requests from end users. Upon receiving service requests, edge

servers assign them to themselves, their neighboring edge servers, as well as the cloud

center, aiming at minimizing the overall network cost.

This paper first establishes an optimization model for this problem. Second, in light

of the separable structure of the optimization model, we utilize the alternating direction

method of multipliers (ADMM) to develop a fully collaborative resource allocation algo-

rithm. The edge servers and the cloud center autonomously collaborate to compute their

local optimization variables and prices of network resources, and reach an optimal solution.

Numerical experiments demonstrate the effectiveness of the hybrid network infrastructure

as well as the proposed algorithm.

Mathematics subject classification: 90C25, 90C30.

Key words: Network resource allocation, Distributed network optimization, Cloud center,

edge server.

1. Introduction

The fast development of communication and networking technologies in the past decades

has brought unprecedented prosperity of Internet services, which has significantly shaped our

daily lives, created new business models, and accelerated the process of globalization. The core

of Internet services is to allocate network resources to meet the service requests so as to maxi-

mize the network-wide utility. The resources include network bandwidth, computation power,

storage power, etc. Upon the requests such as searching for keywords, asking for recommending

restaurants and watching online movies, the service providers allocate the network resources,

aiming at minimizing the overall cost of network resources and maximize the quality of service
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for the Internet users. These two objectives can be unified to a framework of maximizing the

network-wide utility.

This paper focuses on the collaborative resource allocation problem over a hybrid cloud

center and edge server network, an emerging infrastructure for efficient Internet services. The

network has a cloud center that acts as a pool of computation and storage powers, as well as

multiple edge servers that directly interact with end users; see Fig. 1 for an illustration. The

cloud center, though may be a collection of geographically distributed components, can be ab-

stracted as a single node in the network. It has inexhaustible computation and storage powers

while the communication costs between the cloud center and the edge servers are considerable.

The edge servers often have limited computation and storage powers. However, they are able

to provide quick responses to service requests. If the quality of service given by an edge server

to its end users is unsatisfactory, it can forward a fraction of the received service requests to

the cloud center though this brings extra communication cost and latency. The edge server

can also forward the service requests to neighboring edge servers who have available computa-

tion and storage powers. By “neighbors” we mean that two edge servers between whom the

communication cost and the latency are relatively small.

Fig. 1. Infrastructure of a hybrid cloud center and edge server network.

This novel network infrastructure takes advantages of both cloud computing that fits for

computation- and storage-intensive applications [1] and edge computing (also known as fog

computing) that provides fast response [2, 3], and hence brings elastic network services to

the end users. We will give several illustrative examples about its applications in Section 2.

However, this hybrid infrastructure leads to challenges in modeling and solving the collaborative

network resource allocation problem. This paper aims at addressing these two issues. To be

specific, our contributions are two-fold.

(i) We establish a collaborative resource allocation model for the hybrid cloud center and

edge server network. We define the costs of the network resources, such as computation

and storage on the cloud center and the edge servers as well as communication over the

links, and formulate a network cost minimization (or equivalently, utility maximization)

problem.

(ii) We develop a fully autonomous resource allocation algorithm so that the cloud center
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and the edge servers cooperate to reach an optimal assignment of the network resources.

We utilize the separable problem structure and adopt the alternating direction method of

multipliers (ADMM) to decompose the decision process to the cloud center and the edge

servers.

Notice that due to the hybrid network infrastructure, the proposed model and algorithm

include many classical network resource allocation models and algorithms as special cases or

variants [4–8]. They range from flow optimization over a computer network [9] to consensus

optimization over a decentralized network [10–13], coordination of a master-slave network [14],

resource allocation within a data center [15, 16], and demand response in smart grids [17, 18],

to name a few. We will demonstrate their connections in Section 2.

This paper is organized as follows. Section 2 establishes a collaborative resource allocation

model for the hybrid cloud center and edge server network, gives several illustrative examples

about its applications, and demonstrates the connection between the proposed and existing

models. Section 3 proposes a fully autonomous resource allocation algorithm where the cloud

center and the edge servers cooperate to reach an optimal assignment of the network resources.

The algorithm development is based on ADMM, which utilizes the separable problem structure

and decomposes the decision process to the cloud center and the edge servers. Section 4 provides

numerical experiments to demonstrate the advantages of the hybrid cloud center and edge

server network infrastructure as well as the effectiveness of the proposed collaborative resource

allocation algorithm. Section 5 concludes the paper and discusses future research directions.

2. Problem Statement

This section gives a collaborative resource allocation model for the hybrid cloud center and

edge server network, followed by several illustrative examples about its applications. The model

rooted in the hybrid network infrastructure covers many classical network resource allocation

models as special cases or variants as we will explain.

2.1. Network Resource Allocation Model

As illustrated in Fig. 1, the hybrid network consists of several entities: the cloud center,

the edge servers, and the communication links between them. We model the cloud center as

a node whose label is 0, though in practice it is often composed of geographically distributed

components. The edge servers are nodes labelled from 1 to L. Every edge server i is able to

communicate with the cloud center, and the communication channel is denoted by an undirected

link (0, i). Notice that the communication costs over these links are generally very high. Two

edge servers i and j having an undirected communication link (i, j) in between means that the

corresponding communication cost over the link is small enough. These two edge servers are

called as neighbors. The set of neighbors of edge server i is denoted as Ni. We do not allow non-

neighboring edge servers to communicate with each other since this brings extra management

cost.

The network resources include network bandwidth that is attached to the communication

links, as well as computation and storage powers that are attached to the nodes (both the cloud

center and the edge servers). These resources are allocated to handle service requests from end

users. We assume that there are P classes of service requests whose amounts can be quantified.



424 H.F. HUANG, Q. LING, W. SHI AND J.L WANG

For simplicity we can assume that P = 1, namely, there is only one class of service request. We

give detailed explanations of the settings as follows.

(i) Edge server i receives service request from several end users, whose amount is denoted by

a nonnegative vector si ∈ RP
+. The p-th element si(p) stands for the amount of the p-th

class of service request. Edge server i can assign this amount to itself and other nodes

(its neighboring edge servers and the cloud center). Denote sii, sij , and si0, all ∈ RP
+, as

the amount assigned to itself, its neighboring edge servers j ∈ Ni, and the cloud center,

respectively. To satisfy the service request we must have
∑

j∈Ni∪i∪0 sij = si. Notice that

if two edge servers i and j are not neighbors, then by assumption they cannot assign

requests to each other. Therefore, sij = 0 if j /∈ Ni ∪ i ∪ 0.

(ii) The cloud center and the edge servers need to spend computation and storage resources

to handle the amount of service requests assigned by themselves and/or other nodes. If

service request sij is assigned to node j by node i, node j spends a certain amount of

resource to process it, which leads to the computation/storage cost determined by sij .

(iii) When node j receives service request sij assigned by node i, the two nodes may need to

transmit data (for example, data to process or to store). When node j finishes processing,

it returns the final result to node i because the latter is the user interface of the corre-

sponding service request. Both transmissions incur the communication cost determined

by sij over link (i, j).

In the network resource allocation problem, the goal is to minimize the summed costs of the

resources given that the service requests are satisfied. If edge server i spends a total amount

of resource
∑

j∈Ni∪i sji to process its assigned service requests, we define the cost occurred at

node i as fi(
∑

j∈Ni∪i sji). For every neighboring edge server i, the cost occurred over link (i, j)

for edge server j processing the service request sij is defined as gij(sij). Similarly if the cloud

center, which is labelled as node 0, spends a total amount of resource
∑L

j=1 sj0 to process its

assigned service requests, we define the cost occurred at the cloud server as f0(
∑L

j=1 sj0). For

every edge server i, the cost occurred over link (0, i) for the cloud center processing the service

request si0 is defined as gi0(si0). Notice that in practice the computation and storage costs

at the cloud center are much less than those at an edge server, while the communication cost

between the cloud center and an edge server is much larger than that between two neighboring

edge servers. This prior knowledge will be reflected in the design of the cost functions f0,

fi, i = 1, · · · , L, gi0, i = 1, · · · , L, and gij , j ∈ Ni, i = 1, · · · , L.

Based on the discussions above, we formulate the collaborative resource allocation problem

over a hybrid cloud center and edge server network as follows.

min
{sij}

f0

(

L
∑

j=1

sj0

)

+

L
∑

i=1

fi

(

∑

j∈Ni∪i

sji

)

+

L
∑

i=1

∑

j∈Ni∪0

gij(sij), (2.1)

s.t. si =
∑

j∈Ni∪i∪0

sij , ∀i = 1, · · · , L,

sij ≥ 0, ∀j ∈ Ni ∪ i ∪ 0, ∀i = 1, · · · , L.

The objective function (2.1) is the summed cost of the nodes and the links. The first line of

the constraints means satisfaction of the user requests, and the second line of the constraints
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requires that all the assigned amount of requests are nonnegative. The goal of collaborative

resource allocation is to find the optimal values of sij , j ∈ Ni ∪ i∪ 0, i = 1, 2, · · · , L by solving

(2.1). An illustration of service requests, task assignments, and cost functions is given by Fig.

2, where the network contains one cloud center and three edge servers.

Fig. 2. Illustration of service requests, task assignments, and cost functions.

2.2. Examples of Applications

Below we give several illustrative examples for the network resource allocation model (2.1).

Distributed surveillance video processing. Suppose that L cameras are deployed in

a large monitoring area. These cameras take videos from which we can identify terrorists,

discover hazardous events, etc. The video processing task can be roughly done on-site by the

cameras, but with a low accuracy since they only have limited computation powers. Thus,

the task can be decomposed so that other nearby cameras are able to contribute their idle

computation powers or we allow a cloud center to do fine processing in an offline manner. In

this example, the cameras work as edge servers and the service requests are to process the

taken videos. The edge server and the cloud center have computation powers as their resources;

their costs are determined by the utilized computation powers. The costs of the resources

of the communication links are represented by latencies due to offline video processing. The

combination of these two costs constitutes the network-wide objective.

Distributed online stream media service. We consider the problem of providing online

steam media service to a city. The city is divided into L districts, each having an edge server

to receive service requests from end users inside the corresponding district. An edge server

stores some popular stream media contents (movies, songs, etc). When end users request these

contents, the edge server is able to provide fast and high-quality service. However, the storage

power of the edge server is limited. If by chance end users ask for some other contents, the edge

server has to forward these service requests to neighboring edge servers or a cloud center. The

edge servers and the cloud center have storage powers as their resources, which determine the

costs of the nodes. The costs of the resources of the communication links are quantified by the

qualities of services (for example, latencies).
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2.3. Connections with Existing Models

The network resource allocation model (2.1) for the hybrid cloud center and edge server

network include many existing models as special cases or variants. The hybrid network infras-

tructure enables collaboration among the decentralized edge servers, as well as collaboration

between the edge servers and the cloud center. This generalizes most existing works that allow

either collaboration among decentralized nodes, or collaboration between distributed nodes and

a fusion center.

Coordination of a master-slave network. A master-slave network is composed of L

distributed slave nodes and one centralized master node [14]. Slave node i has its local cost vi
determined by its local argument yi. The master node also has its cost v0 that is determined

by all the local arguments y1, y2, · · · , yL. The goal is to minimize the summed costs of all the

slave nodes and the master node. The problem can be formulated as

min
{yi}

L
∑

i=1

vi(yi) + v0(y1, y2, · · · , yL). (2.2)

Compared with (2.1), (2.2) does not allow collaboration among the slave nodes and is hence a

simplified model.

Resource allocation within a data center. Suppose that a data center having L facilities

serves N users [15, 16]. The amount of service given by facility i to user j is denoted by a

nonnegative variable sij . Every facility i has a local cost fi(
∑N

j=1 sij), while every user j also

has a local cost gj(s1j , s2j , · · · , sLj). The problem formulation is

min
{sij}

L
∑

i=1

fi(

N
∑

j=1

sij) +

N
∑

j=1

gj(s1j , s2j , · · · , sLj), (2.3)

s.t. sij ≥ 0, ∀j = 1, · · · , N, ∀i = 1, · · · , L.

If we remove the cloud center and let all the edge servers be neighbors of each other, (2.1)

degenerates to the case that L facilities (edge servers) serve L users (edge servers), namely, the

model of (2.3) with L = N .

3. Algorithm Development

Solving the collaborative resource allocation problem (2.1) is challenging because the opti-

mization variables sij are entangled. First, the requests sj0 assigned by all the edge servers j

to the cloud center are coupled in the term f0(
∑L

j=1 sj0). Second, for every edge server i, the

requests sji assigned to it from all j ∈ Ni ∪ i are coupled in the term fi(
∑

j∈Ni∪i sji). Last,

for every edge server i, the requests sij assigned by it to all j ∈ Ni ∪ i ∪ 0 are coupled in the

constraint si =
∑

j∈Ni∪i∪0 sij .

Existing works on the classical network resource allocation problem rely on the technique of

dual decomposition to handle the entangled variables [4–8]. In the dual domain, the entangled

variables are naturally decoupled, which enables decentralized and autonomous collaboration

of the nodes. However, the dual decomposition algorithm often suffers from slow convergence

speed and sensitivity to algorithm parameters.
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3.1. An ADMM Approach

In this paper, we propose to apply the alternating direction method of multipliers (ADMM),

a powerful primal-dual operator splitting algorithm, to solve (2.1). For a minimization problem

with two blocks of optimization variables, which are coupled with linear constraints, at every

iteration ADMM minimizes the augmented Lagrangian with respect to the two blocks of opti-

mization variables in an alternating direction manner, followed by a dual ascent step to update

the dual variable [19,20]. ADMM has been widely applied in various applications due to its fast

convergence speed and remarkable numerical stability [21,22], particularly in the decentralized

consensus optimization problem [11–13] and the data center resource allocation problem [15].

To solve (2.1) by ADMM, we begin with reformulating (2.1). Recall that for all the edge

servers i = 1, · · · , L, optimization variables sij , j ∈ Ni ∪ i ∪ 0 denote the amount of requests

assigned to themselves, their neighbors and the cloud center. Now we introduce auxiliary

variables rji ∈ RP , such that rji = sij , i = 1, · · · , L, j ∈ Ni ∪ i ∪ 0, to denote the amount of

resources that must be spent to handle the requests. Meanwhile, denote r0 =
∑L

j=1 r0j ∈ RP

as the amount of resource contributed by the cloud center and ri =
∑

j∈Ni∪i rij ∈ RP as that

by every edge server i. This way, (2.1) is equivalent to

min
r0,{ri},{sij},{rij}

f0(r0) +

L
∑

i=1

fi(ri) +

L
∑

i=1

∑

j∈Ni∪0

gij(sij), (3.1)

s.t. rji = sij , ∀j ∈ Ni ∪ i ∪ 0, ∀i = 1, · · · , L,

r0 =

L
∑

j=1

r0j , ri =
∑

j∈Ni∪i

rij , ∀i = 1, 2, · · · , L,

si =
∑

j∈Ni∪i∪0

sij , ∀i = 1, · · · , L,

sij ≥ 0, ∀j ∈ Ni ∪ i ∪ 0, ∀i = 1, · · · , L.

For (3.1), write its augmented Lagrangian as

Lρ(r0, {ri}, {sij}, {rij}, a0, {ai}, {bi}, {cij})

=f0(r0) +

L
∑

i=1

fi(ri) +

L
∑

i=1

∑

j∈Ni∪0

gij(sij) +

L
∑

i=1

∑

j∈Ni∪i∪0

〈cij , rji − sij〉 (3.2)

+
ρ

2

L
∑

i=1

∑

j∈Ni∪i∪0

(rji − sij)
2 + 〈a0, r0 −

L
∑

j=1

r0j〉+
ρ

2

(

r0 −
L
∑

j=1

r0j

)2

+
L
∑

i=1

〈ai, ri −
∑

j∈Ni∪i

rij〉

+
ρ

2

L
∑

i=1

(

ri −
∑

j∈Ni∪i

rij

)2

+

L
∑

i=1

〈bi, si −
∑

j∈Ni∪i∪0

sij〉+
ρ

2

L
∑

i=1

(

si −
∑

j∈Ni∪i∪0

sij

)2

,

subject to sij ≥ 0, ∀j ∈ Ni ∪ i ∪ 0, ∀i = 1, · · · , L. Here cij , a0, ai and bi, all ∈ RP , are the

Lagrange multipliers attached to the constraints

rji = sij , r0 −
L
∑

j=1

r0j , ri −
∑

j∈Ni∪i

rij , si =
∑

j∈Ni∪i∪0

sij ,

respectively. The positive constant ρ is the coefficient of the augmented quadratic terms. We can

choose different coefficients for the augmented quadratic terms, but simply setting them as the
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same is already able to provide us satisfactory numerical performance, as we will demonstrate

in Section 4.

We divide the primal variables into two groups: r0, {ri}, {sij} in the first group and {rij}

in the second group. At time k + 1, ADMM first fixes the primal variables {rij} and the

dual variables a0, {ai}, {bi}, {cij} to minimize the augmented Lagrangian (3.2) with respect to

r0, {ri}, {sij}. Notice that r0, {ri}, {sij} are not coupled, meaning that they can be optimized

separately. For the cloud center, the update of r0 is

rk+1
0 = argmin

r0
f0(r0) +

ρ

2

(

r0 +
ak0
ρ

−
L
∑

j=1

rk0j

)2

. (3.3)

For edge server i, the update of ri is

rk+1
i = argmin

ri
fi(ri) +

ρ

2

(

ri +
aki
ρ

−
∑

j∈Ni∪i

rkij

)2

. (3.4)

For every edge server i, consider its neighboring edge server j if j 6= 0 or the cloud center if

j = 0, the update of sij is

{sk+1
ij } =arg min

{sij≥0}

∑

j∈Ni∪0

gij(sij) +
ρ

2

∑

j∈Ni∪i∪0

(

rkji +
ckij
ρ

− sij

)2

+
ρ

2

(

si +
bki
ρ

−
∑

j∈Ni∪i∪0

sij

)2

. (3.5)

In (3.5), the number of the optimization variables is |Ni|+2 where |Ni| denotes the cardinality

of the set Ni. This fact implies that the optimization problem is not difficult if for every edge

server i the number of its neighbors |Ni| is limited, even though the whole number of the edge

servers L is very large.

Second, ADMM fixes the primal variables r0, {ri}, {sij} and the dual variables a0, {ai},

{bi}, {cij} to minimize the augmented Lagrangian (3.2) with respect to {rij}. For the cloud

center (namely, i = 0), the update of {r0j} is

{rk+1
0j } = arg min

{r0j}

ρ

2

L
∑

i=1

(

r0i +
cki0
ρ

− sk+1
i0

)2

+
ρ

2

(

rk+1
0 +

ak0
ρ

−
L
∑

j=1

r0j

)2

= arg min
{r0j}

ρ

2

L
∑

j=1

(

r0j +
ckj0
ρ

− sk+1
j0

)2

+
ρ

2

(

rk+1
0 +

ak0
ρ

−
L
∑

j=1

r0j

)2

. (3.6)

For all edge servers i and for all j ∈ Ni ∪ i, the update of {rij} is

{rk+1
ij } = arg min

{rij}

ρ

2

L
∑

i=1

∑

j∈Ni∪i

(

rji +
ckij
ρ

− sk+1
ij

)2

+
ρ

2

L
∑

i=1

(

rk+1
i +

aki
ρ

−
∑

j∈Ni∪i

rij

)2

= arg min
{rij}

d
ρ

2

L
∑

i=1

∑

j∈Ni∪i

(

rij +
ckji
ρ

− sk+1
ji

)2

+
ρ

2

L
∑

i=1

(

rk+1
i +

aki
ρ

−
∑

j∈Ni∪i

rij

)2

,
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where the second equality is due to the fact that the network is undirected. Therefore, we can

see that the computation of {rij} can be decomposed to every edge server i. For every edge

server i and for every j ∈ Ni ∪ i, the update of {rij} is

{rk+1
ij } = arg min

{rij}

ρ

2

∑

j∈Ni∪i

(

rij +
ckji
ρ

− sk+1
ji

)2

+
ρ

2

(

rk+1
i +

aki
ρ

−
∑

j∈Ni∪i

rij

)2

. (3.7)

Observe that both (3.6) and (3.7) are simple quadratic programs and have explicit solutions.

Last, ADMM updates the dual variables a0, {ai}, {bi}, {cij} using the latest values of the

primal variables. The cloud center updates a0 by

ak+1
0 = ak0 + ρ

(

rk+1
0 −

L
∑

j=1

rk+1
0j

)

. (3.8)

Edge server i updates ai and bi by

ak+1
i = aki + ρ

(

rk+1
i −

∑

j∈Ni∪i

rk+1
ij

)

, (3.9)

bk+1
i = bki + ρ

(

si −
∑

j∈Ni∪i∪0

sk+1
ij

)

. (3.10)

For every j ∈ Ni ∪ i ∪ 0, edge server i updates cij by

ck+1
ij = ckij + ρ(rk+1

ji − sk+1
ij ). (3.11)

When the cost functions f0, fi and gij (2.1) are convex, which is common in network resource

allocation problems due to the law of diminishing marginal utility, ADMM guarantees global

convergence to the optimal solution [20].

3.2. Algorithm Implementation

The collaborative resource allocation algorithm is summarized as follows. We breakdown

the algorithm into two parts, the one run at the cloud center (see Table I) and the one run at

every edge server i (see Table II).

At time k + 1, the cloud center first updates the total amount of resource r0 by (3.3) using

ak0 and rk0j , ∀j = 1, · · · , L that are locally available. Then from every edge server j, it collects

ckj0 and sk+1
j0 . The service assignments sk+1

j0 are available after all the edge servers j finish

computing the values (see line 3, Table II). The values of ckj0 and sk+1
j0 are used in updating the

amount of resource r0j given to every edge server j by (3.6), as well as updating a0 by (3.8).

The other variables in computing (3.6) and (3.8) are locally available.
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Table I: Collaborative Resource Allocation Algorithm: Run at Cloud Center

1. for k = 0, 1, · · · do

2. Update the total amount of resource r0 by (3.3)

rk+1
0 = argmin

r0
f0(r0) +

ρ

2

(

r0 +
ak0
ρ

−
L
∑

j=1

rk0j

)2

.

3. From every edge server j, collect ckj0 and sk+1
j0 .

4. Update the amount of resource r0j given to every edge server j by (3.6)

{rk+1
0j } = arg min

{r0j}

ρ

2

L
∑

j=1

(

r0j +
ckj0
ρ

− sk+1
j0

)2

+
ρ

2

(

rk+1
0 +

ak0
ρ

−
L
∑

j=1

r0j

)2

.

5. Update a0 by (3.8)

ak+1
0 = ak0 + ρ

(

rk+1
0 −

L
∑

j=1

rk+1
0j

)

.

6. end for

Table II: Collaborative Resource Allocation Algorithm: Run at Edge Server i

1. for k = 0, 1, · · · do

2. Update the total amount of resource ri by (3.4)

rk+1
i = argmin

ri
fi(ri) +

ρ

2
(ri +

aki
ρ

−
∑

j∈Ni∪i

rkij)
2.

3. Update the amount of service assigned to j ∈ Ni ∪ i ∪ 0 by (3.5)

{sk+1
ij } = arg min

{sij≥0}

∑

j∈Ni∪0

gij(sij) +
ρ

2

∑

j∈Ni∪i∪0

(rkji +
ckij
ρ

− sij)
2

+
ρ

2
(si +

bki
ρ

−
∑

j∈Ni∪i∪0

sij)
2.

4. From every j ∈ Ni, collect c
k
ji and sk+1

ji .

5. Update the amount of resource rij given to edge server j ∈ Ni ∪ i by (3.7)

{rk+1
ij } = arg min

{rij}

ρ

2

∑

j∈Ni∪i

(rij +
ckji
ρ

− sk+1
ji )2 +

ρ

2
(rk+1

i +
aki
ρ

−
∑

j∈Ni∪i

rij)
2.

6. From every j ∈ Ni ∪ 0, collect rk+1
ji .

7. Update ai by (3.9)

ak+1
i = aki + ρ(rk+1

i −
∑

j∈Ni∪i

rk+1
ij ).

8. Update bi by (3.10)
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bk+1
i = bki + ρ(si −

∑

j∈Ni∪i∪0

sk+1
ij ).

9. Update cij for every j ∈ Ni ∪ i ∪ 0 by (3.11)

ck+1
ij = ckij + ρ(rk+1

ji − sk+1
ij ).

10. end for

Below we briefly analyze the communication and computation costs of the proposed algo-

rithm. Suppose that exchanging one P -dimensional variable incurs a unit of communication.

At every iteration, the cloud center collects cj0 and sj0 from all edge servers j, and thus has

a communication cost of 2L. Every edge server i collects rji, sji and cji from its neighbors

j ∈ Ni, while collects r0i from the cloud center; the resulting communication cost is 3|Ni|+ 1.

Therefore, the network communication cost per iteration is

2L+

L
∑

i=1

(3|Ni|+ 1) = 3L+ 3

L
∑

i=1

|Ni|.

Given L, a dense network causes large network communication cost per iteration; however, it

often requires a smaller number of iterations to reach a target accuracy.

The computation cost of the algorithm is dominated by calculating r0j given to every edge

server j from (3.6) in the cloud center, as well as calculating the amount of service assigned

to j ∈ Ni ∪ i ∪ 0 from (3.5) and the amount of resource rij given to edge server j ∈ Ni ∪ i

from (3.7), both in every edge server i. The quadratic program (3.6) leads the computation

cost of O(L3). Similarly, the cost of solving (3.7) is O
(

(|Ni|+ 1)3
)

. When the cost function gij
is quadratic, the cost of solving (3.5) is O

(

(|Ni|+ 2)3
)

. Therefore, the computation cost per

iteration is given by

O(L3) +

L
∑

i=1

O
(

(|Ni|+ 1)3 + (|Ni|+ 2)3
)

.

Remark 3.1 (Optimization over An Edge-Only Network). Observe that when we

eliminate the cloud center, the network is only composed of edge servers and no longer hy-

brid. To implement the algorithm in such a network infrastructure, we can simply let every

edge server i run the algorithm in Table II, while setting sij = 0 and rji = 0 for j = 0.

In this case, the communication and computation costs per iteration are 3
∑L

i=1 |Ni| and
∑L

i=1 O
(

(|Ni|+ 1)3 + (|Ni|+ 2)3
)

, respectively.

3.3. Resources, Prices, and Decomposition

The proposed algorithm has an economic explanation. Recall that the nodes (the cloud

center and the edge servers) have resources of computation and/or storage, denoted by the

primal variables ri, i = 0, 1, · · · , L. Node i can assign its resource to node j with an amount of

rij . Here j = 1, · · · , L if i = 0 and j ∈ Ni ∪ i if i 6= 0. Meanwhile, the services carried by the

communication links also cost resources, denoted by another set of primal variables sij where

i = 1, · · · , L and j ∈ Ni ∪ i ∪ 0. With particular note, self-assigned services (denoted by sii)

introduce no communication costs while services assigned to the cloud center (denoted by si0)

require high communication costs.
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For every edge server i, its goal is to satisfy the user request si using the computation/storage

resources of itself, its neighbors and the cloud center, as well as the communication resources

of the attached communication links. Apparently, network-wide optimal resource allocation

requires collaboration of all the nodes. The decomposition technique in this paper enables

autonomous collaboration of the nodes through introducing the dual variables a0, {ai}, {bi},

and {cij}, which stand for prices of the resources.

The dual variable a0 can be explained as the price of the computation/storage resource at

the cloud center. There is a mismatch between the overall resource r0 and the summation of

the assigned resources
∑L

j=1 r0j , showing the scarcity of the computation/storage power and

reflected by the price a0. Similarly, ai stands for the price of the computation/storage resource

at edge server i, evaluated by the gap between the available and assigned resources, denoted

by ri and
∑

j∈Ni∪i rij , respectively. The dual variables bi are the prices of not satisfying the

user requests, which are quantified by the values si−
∑

j∈Ni∪i∪0 sij . Finally, the dual variables

cij show the prices of spending resources rji to satisfy the service requests sij through the

communication links (i, j), i = 1, · · · , L, j ∈ Ni ∪ i ∪ 0.

4. Numerical Experiments

In the numerical experiments, we consider the following three network infrastructures.

(i) Cloud-Only. The edge servers only receive user requests but without any local process-

ing. They simply forward the user requests to the cloud center.

(ii) Edge-Only. The edge servers collaboratively handle user requests without the help of

the cloud center. The resource allocation algorithm is hence a simplified version compared

to the proposed one, as we have discussed in Remark 1 in Section 3.

(iii) Cloud-Edge. The edge servers and the cloud center collaboratively handle user requests

using the proposed algorithm.

For all the three infrastructures, the network contains 20 distributed edge servers. In the

edge-only and the cloud-edge infrastructures, 66 undirected links between neighboring edge

servers out of 190 possible ones are uniformly randomly chosen to be connected. The values of

the user requests si are uniformly randomly generated in the range from 0 to 30.

For simplicity, we assume that there is only one kind of service request, namely, P = 1

such that all the primal and dual variables in (3.2) are scalars. Set the computation/storage

cost of the cloud center as f0(r0) = exp(0.01r0)− 1 while those of the edge servers as fi(ri) =

exp(0.2ri) − 1. The communication cost between two neighboring edge servers i and j is

gij(sij) = exp(0.05sij) − 1, and that between edge server i and the cloud center as gij(si0) =

exp(0.1si0) − 1. Notice that the edge-cloud communication cost is higher than that between

two edge servers. Meanwhile, the computation/storage cost at a cloud center is significantly

smaller than that at an edge server. We define residual as the performance metric, denoting

the normalized difference between the current iterate skij and the optimal primal solution s∗ij of

(2.1), given by
∑L

i=1

∑

j∈Ni∪i∪0 ‖s
k
ij − s∗ij‖

∑L

i=1

∑

j∈Ni∪i∪0 ‖s
∗
ij‖

.
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In the first experiment, we demonstrate the convergence of the proposed algorithm in the

cloud-edge infrastructure in Fig. 3. We vary the algorithm parameter ρ, the ADMM stepsize,

to different values. As we can observe from the result, the proposed collaborative resource allo-

cation algorithm always converges to the optimal solution. The ADMM stepsize ρ determines

the convergence speed of the algorithm. In this experiment, setting ρ as a value between 0.1 and

0.15 achieves the fastest convergence. We also show the performance of the dual decomposition

method, whose stepsize is tuned to the best value of 0.2. Observe that ADMM has much faster

convergence than the dual decomposition method.
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Fig. 3. Performance of the collaborative resource allocation algorithm over a cloud-edge network, with

the algorithm parameter ρ being varied. We also show the dual decomposition algorithm with stepsize

0.2 as a comparison.

In the second experiment, we demonstrate the convergence of the proposed algorithm in

the edge-only infrastructure. We tune the value of ρ as shown in Fig. 4. In this degenerated

setting, the proposed algorithm also demonstrates similar convergence performance as in Fig.

3 and significantly outperforms the dual decomposition method.

In the third experiment, we compare the overall communication costs and the computa-

tion/storage costs of using three network infrastructures, which are given by Table III. Observe

that the cloud-edge infrastructure incurs the smallest overall cost comparing to the edge-only

and cloud-only infrastructures. This makes sense because the latter two are both special cases

of the hybrid edge server and cloud center network, and hence only give suboptimal solutions.

Compared to the edge-only network, the cloud-edge network costs more in cloud computa-

tion/storage and cloud communication. However, it slightly reduces the edge communication

cost, and significantly reduces the edge computation/storage cost because the edge servers are

able to assign those computation- and storage-demanding requests to the cloud center. The

cloud-only network, on the other hand, has no burdens of edge communication and edge com-

putation/storage. However, it requires the edge servers to route all the user requests to the

cloud center, which wastes the computation and storage powers of the edge servers and brings

high cloud computation/storage and cloud communication costs. These results demonstrate

the power of allowing cloud-edge collaboration over such a hybrid network infrastructure and

the effectiveness of the proposed collaborative resource allocation algorithm.
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Fig. 4. Performance of the collaborative resource allocation algorithm over an edge-only network, with

the algorithm parameter ρ being varied. We also show the dual decomposition algorithm with stepsize

0.2 as a comparison.

Table III: Optimal Costs of Three Network Infrastructures

type of cost cloud-edge edge-only cloud-only

edge computation/storage cost 21.1890 283.6466 0

cloud computation/storage cost 6.4117 0 14.1803

edge-edge communication cost 2.1546 4.7165 0

cloud-edge communication cost 37.6300 0 81.2308

overall cost 67.3853 288.3631 95.4111

5. Conclusions

In this paper, we consider a novel network composed of one cloud center and multiple edge

servers, which takes advantages of both cloud computing that fits for computation- and storage-

intensive applications and edge computing (also known as fog computing) that provides fast

response. Through sharing resources among neighboring edge servers and the cloud center,

every edge server is able to bring elastic network services to its end users. We formulate the

collaborative resource allocation problem, whose decomposable structure enables the use of

the alternating direction method of multipliers. The resultant algorithm naturally decomposes

computations onto the cloud center and the edge servers and leads to autonomous collaboration

among these nodes. We discuss the connections between our work and the existing resource

allocation models and algorithms.

One of our future research directions is to reduce the complexities in computing local vari-

ables (see the updates of (3.3), (3.4), and (3.5), all of which require to solve optimization

problems). Another topic of particular interest is to apply the technique of Nesterov’s accel-

eration in this problem so as to expedite the convergence. We will also consider applying the

proposed model and algorithm in practical network service scenarios, for example, distributed

surveillance video processing and distributed online stream media service.
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