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Localized Structural Health Monitoring Using
Energy-Efficient Wireless Sensor Networks

Qing Ling, Zhi Tian, Senior Member, IEEE, Yuejun Yin, and Yue Li

Abstract—This paper presents a localized information pro-
cessing approach for long-term, online structural health moni-
toring (SHM) using wireless sensor networks (WSNs). Based on
the embedded AR-ARX method, each sensor independently calcu-
lates a statistical damage-sensitive coefficient using the measured
acceleration data during each monitoring period. A nonlinear pro-
gramming formulation is developed to identify damage presence,
localize damage position, and quantify damage severity from the
damage-sensitive coefficients in the whole sensing field. By limiting
each sensor to exchange information among its neighboring sen-
sors only, a localized near-optimal algorithm is proposed to reduce
communication costs, thus alleviating the channel interference
and prolonging the network lifetime. Simulation results on a steel
frame structure prove the effectiveness of the proposed algorithm.

Index Terms—Localized information processing, structure
health monitoring (SHM), wireless sensor networks (WSNs).

I. INTRODUCTION

S TRUCTURAL HEALTH MONITORING (SHM) refers to
the process of damage detection for civil, aerospace and

mechanical engineering systems [1]. Here, the damage is de-
fined as changes to the material or geometric properties of these
systems due to either internal factors such as aging, or exterior
forces such as natural disasters. During its normal operation,
an SHM system periodically updates the health condition of a
structure for low-power, long-term monitoring, whereas during
extreme events such as earthquakes, SHM is used for real-time
rapid structural condition screening [2]. Through acquisition
and interpretation of critical structural response data, SHM aims
for structural condition assessment at four levels: (1) identifica-
tion of anomalies and damages in a structure; (2) localization of
damage; (3) quantification of damage severity; (4) prediction of
the remaining service life of the structure [3].

Traditionally, an SHM system collects the measured output
from sensors installed in the structure and processes the data
in a fusion center [4]. To reliably transmit the measurements,
SHM systems often employ coaxial cables for communications
between sensors and a fusion center. However, the installation
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of coaxial wires is both expensive and labor-intensive. For ex-
ample, the cost of installing 350 sensing channels on the Tsing
Ma suspension bridge in Hong Kong is estimated to have ex-
ceeded million [5].

Recent development in micro-fabrication and wireless com-
munication technologies enables the replacement of coaxial
wires by wireless sensors that are both affordable and easy to
deploy [6]–[8]. The sensing and communication capabilities
of wireless sensor networks (WSNs) lead to fundamentally
new sensing architectures capable of monitoring large spatially
distributed phenomena. Accompanied with the unprecedented
data collection opportunities for SHM offered by large-scale
WSNs, new challenges have also emerged due to two main
constraints of network resources: communication bandwidth
and battery power. In a large network, extensive communica-
tion between wireless sensors and the fusion center results in
strong interference and hence packet loss. More importantly,
communication is the main source of energy consumption for
sensor nodes, thus decides the network lifetime.

To meet the rigid bandwidth requirements and extend the
network lifetime, this paper develops a localized solution to
long-term, online SHM. In a decentralized fashion, each sensor
only exchanges information among its neighboring nodes to al-
leviate communication costs. Meanwhile, localized information
processing is carried out at each sensor to make SHM decisions
autonomously at reduced computational costs. Upon detecting
damage, the refined damage information can be transmitted to
a central console to help repair the structure. Since damage is
generally scarce in a structure, information transmission from
sensors to the central console is limited. On the contrary, fre-
quent and extensive multihop data exchange between sensors
and a fusion center is required in previous works [9], [10]. In
addition to alleviating the channel interference and extending
the network life time via limiting multihop data exchange, the
localized SHM algorithm improves the network robustness with
localized decision-making.

While the proposed localized communication and informa-
tion processing framework can be coupled with a variety of
damage detection methodologies, we take the AR-ARX method
[2] as an example to demonstrate a distributed WSN for SHM
at the following levels: identification of damage, localization of
damage, and quantification of damage severity. In the AR-ARX
method [2], the damage pattern of a structure is recognized
through computing a statistical damage-sensitive coefficient
from the measured acceleration data under ambient vibration
during each monitoring period. Both theoretical and empirical
analysis indicate that the damage-sensitive coefficient can be
modeled by three contributing components: damage effect at
the location of the sensor, damage effects of the neighboring
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area and an additive random noise. Based on this modeling,
damages can be identified by comparing statistics between
baseline and online measurements, which is conventionally
done in a centralized manner [2]. In contrast, this paper for-
mulates a localized damage pattern recognition problem. Main
contributions of this work are the following.

1) We develop a localized data processing algorithm for
SHM that considerably saves communication resources
without degrading the damage detection accuracy. In-
formation propagation across the decentralized large
network is accomplished through a judiciously designed
random gossip-like protocol, which ensures network-wide
monitoring at scalable complexity and energy costs. This
advantage is particularly critical to extending the lifetime
of large-scale networks.

2) Taking an optimization approach, we propose a new
0-norm minimization formulation for estimation of the
damage field. The damage severity coefficients of the
entire sensing field are collected into a vector , where
each element is a non-negative scalar representing the
damage severity at the position of sensor . The spatial
correlation of damage severity is modeled by a set of
basis functions , which represents the influence of
the damage occurred at sensor on the output of sensor
. Since damage sources arise in a sparse manner across

the large network field, we can treat the damage severity
vector as a sparse vector with only a small number of
nonzero elements. Recognition of this important sparsity
property allows us to develop novel SHM solutions that
capitalize on recent advances in compressed sampling and
sparse signal recovery [11].

3) We derive efficient algorithms to recover the damage
severity vector in a localized manner. The nonlinear
0-norm minimization problem is relaxed to a 1-norm
linear programming problem, which can be efficiently
solved to save computational costs. More importantly, the
1-norm linear programming formulation directly leads to
an approximated localized minimization problem, which
reduces the communication costs of an otherwise central-
ized implementation. Each sensor has its own objective
function and constraints, and cooperates with others by
low-cost local broadcasting. An iterative localized opti-
mization framework is derived to attain fast convergence
to a globally near-optimal solution.

The rest of this paper is organized as follows. In Section II, a
literature survey is provided. The AR-ARX method is described
in Section III. Section IV discusses the 0-norm, 1-norm and lo-
calized minimization formulations, and proposes an iterative lo-
calized optimization algorithm. Simulation results are provided
in Section V to verify the effectiveness of the localized SHM
algorithm. Section VI summarizes this paper along with future
work.

II. RELATED WORKS

In this section, several damage identification algorithms are
briefly discussed. Then we discuss the realization of online
SHM based on different network infrastructure of WSNs.

A. Damage Identification Algorithms

Most of the current SHM algorithms are based on a simplified
multiple-degree-of-freedom and time-invariant structure model
to identify damage:

(1)

where , and are mass, damping and stiffness matrices;
and are acceleration, velocity and displacement

vectors; and is the force vector. Damage of the structure
may result in variation in the mass, damping and stiffness
matrices. Hence, through periodically identifying the system
matrices of the operational (undamaged or damaged) state and
comparing them with those of the initial (undamaged) state, the
structural health condition can be monitored online.

Excitation of a structure is generally ambient vibration and it
is difficult to measure the input force vector [12]. Recently
the use of known active excitation has been explored for SHM,
such as piezoelectric transducers (PZTs) [13]. However, without
loss of generality, we focus on the case that the input is
unknown.

One category of the structural damage identification methods
is to observe frequency changes of measured data. However,
damage itself is basically a local phenomenon while modal fre-
quencies reflect the global property of the structure. Therefore,
frequency shift has low sensitivity to damage and it is difficult
to localize the position of damage [3].

The NExT-ERA method [14] uses the natural excitation tech-
nique (NExT) [12] and the eigensystem realization algorithm
(ERA) [15] to identify modal parameters, and a least squares
optimization to estimate the stiffness matrix. By comparing the
stiffness matrices of the undamaged and damaged states, loca-
tion and severity of damage are identified. However, this ap-
proach requires a reference output signal, which is used to com-
pute the correlation function with each output signal, hence in-
applicable to localized realization.

The extended DLV method [16] is based on determination of
a special set of load vectors, named as damage locating vectors
(DLVs). The DLVs have the property that when they are applied
to the structure as static forces at the sensor locations, no stress
is produced in the damaged elements. Denote the flexibility ma-
trices before and after damage as and , respectively, this
property leads to , where the matrix contains
the DLVs. Each DLV is then applied to an undamaged analytical
model of the structure. The stress in each structure element is
calculated and a normalized cumulative stress is obtained. If an
element has nearly zero normalized cumulative stress, then this
element is a possible candidate of damage. To identify the flex-
ibility matrices, which are the inverse of the stiffness matrices,
the NExT and ERA methods can be employed when measurable
input signals are available. When the external excitation is am-
bient, the mass perturbation method can be applied to calculate
the flexibility matrices [17].

Different from identifying modal parameters in the
NExT-ERA method and the extended DLV method, the
AR-ARX method classifies the damaged pattern via comparing
the statistics between baseline measurements and current
measurements [2]. The idea is that if there is damage in the
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Fig. 1. Four categories of network infrastructures: centralized, distributed, hierarchical, and localized. (a) Centralized infrastructure. (b) Distributed infrastructure.
(c) Hierarchical infrastructure. (d) Localized infrastructure.

structure, the auto-regressive (AR) and autoregressive with
exogenous input (ARX) models previously identified using the
undamaged time history data are unable to reproduce the newly
obtained time series measured from the damaged structure.
Furthermore, measurement points near to the actual damage
locations will have relatively large predictive residual errors.

Various other damage detection algorithms have been pro-
posed in SHM, for example, wavelet analysis [18], adaptive
extended Kalman filter [19] and Hilbert–Huang transformation
[20]. For detailed review of vibration-based damage identifica-
tion methods, readers are referred to [3] and [7].

B. Online SHM Based on WSNs

Online SHM based on WSNs has emerged in recent years as
a promising technique to monitor the health condition of struc-
tures. A wireless sensor is equipped with sensing, communica-
tion and computation units. The communication unit enables the
sensor to transmit information without using expensive coaxial
wires. The computation unit is able to process raw data and
make decisions. Extensive surveys of SHM based on WSNs can
be found in [4], [5], [7].

There are four categories of network infrastructures ac-
cording to the way of data processing and information trans-
mitting, as shown in Fig. 1.

1) Centralized infrastructure: Sensors send back raw mea-
surement data to a processing center. The processing center
identifies damage from the raw data.

2) Distributed infrastructure: Sensors send back refined data,
which is extracted from the raw data, to a fusion center. The
fusion center fuses the refined data and makes decisions on
structural health condition.

3) Hierarchical infrastructure: Sensors are divided into sev-
eral clusters. Within a cluster, sensors exchange informa-
tion with a cluster head. Cluster heads may exchange infor-
mation, make decisions and feedback decisions to a central
console.

4) Localized infrastructure: Each sensor exchanges informa-
tion only with its neighboring sensors, and makes decision
autonomously. If one sensor identifies a damage, it informs
to a central console via multihop communications.

A WSN has limited bandwidth and battery energy. The cen-
tralized infrastructure is subject to high packet loss and energy
consumption, since a large amount of measurements are gen-
erated in each sampling period. The distributed infrastructure,
though still using centralized data fusion, is able to save the
bandwidth and energy resources through preprocessing the raw
data and transmitting only refined data. However, in a large-
scale WSN, one-hop communication between sensors and the
fusion center is generally impossible, while multihop commu-
nication aggravates the burden on bandwidth and energy con-
sumption. In the hierarchical infrastructure, each sensor is lim-
ited to exchange information with a cluster head, and the cluster
head is in charge of high-level communications. However, it is
difficult to predefine clusters in a large-scale WSN. Further-
more, failure of a cluster head leads to the malfunction of a
whole cluster of sensors. Hence, to improve the scalability and
robustness, it is expected to apply a localized infrastructure,
in which each sensor exchanges information among its neigh-
boring sensors and makes decision autonomously.

A distributed online SHM framework has been discussed in
[10], in which each sensor distributively applying the AR-ARX
method and communicates with a fusion center. In [9], the ex-
tended DLV method is used in each cluster; the cluster heads ex-
change damage information, make final decisions, and commu-
nicate to a central console. However, study of online SHM based
on localized infrastructure is still in its beginning stage. In this
paper, we focus on the online SHM in a localized manner based
on the AR-ARX method, aiming at improving the scalability
and robustness of a WSN under the constraints of bandwidth
and energy consumption. The proposed localized information
processing approach can be applied to other damage identifica-
tion methods as well.

III. AR-ARX METHOD

The AR-ARX method is basically a statistic pattern recogni-
tion approach which is composed of a modeling stage where the
structure is undamaged, and a decision-making stage where the
damage state is unknown [2], [10]. The basic idea is to identify
damages via comparing the statistics between baseline measure-
ments and current measurements.
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A. AR and ARX Models

Let be the time-series response of a structure at a
specific sensor location. Assuming the response to be stationary,
an AR model is used to fit the measurement data

(2)

The response of the structure at sample time , as denoted by ,
is a function of previous observations of the system response,
plus a residual error term . Weights on the previous observa-
tions of are denoted by coefficients .

Assume the residual error of the AR model is influenced by
an unknown excitation input to the system. As a result, an ARX
model is chosen to model the relationship between the residual
errors and the measured response of the system

(3)

Coefficients on past measurements and the residual errors of the
AR model are and , respectively. The residual of the
ARX model is a damage sensitive feature being used to iden-
tify the existence of damage in the structure. It is worth noting
that the selection of model orders may influence the accuracy of
the AR-ARX method [2].

In the modeling stage, i.e., the structure is known to be un-
damaged, the AR and ARX models are constructed under var-
ious ambient vibration levels. The coefficients of models, i.e.,

and , and the standard variances of the resid-
uals, i.e., , are stored in the database of each sensor,
denoted as and .

B. Statistical Pattern Recognition

In the decision-making stage, an AR model is fitted based on
the response of the structure in an unknown state (damage or
undamaged). The coefficients of the fitted AR model are com-
pared to the database of AR-ARX model pairs previously cal-
culated for the undamaged structure. A match is determined by
minimizing the Euclidian distance of the newly derived AR
model and the database AR model coefficients, and , re-
spectively. The Euclidian distance is defined as

(4)

If no structural damage is experienced and the operational con-
ditions of the two models are close to one another, the selected
AR model from the database will closely approximate the mea-
sured response. If a damage has been sustained by the structure,
even the closest AR model of the database will not approximate
the measured structural response well.

The measured response of the structure in the unknown
state, and the residual errors of the fitted AR model, are sub-
stituted into the database ARX model to determine the residual
error of the ARX model

(5)

Fig. 2. Two-dimensional model of a steel frame structure with 12 stories and 9
bays. Gaussian random white noises are imposed to the foundation to simulate
ambient vibrations.

The residual errors of the ARX model are the damage sen-
sitive feature.

Here, we briefly discuss the statistics of the residual errors.
Define the ratio of the variance of the residual errors to that in
the database as

(6)

Here, and are variances of the residual errors.
Suppose the models are accurate and the ambient excitations are
Gaussian random variables with zero means. Hence, the residual
errors are also Gaussian variables with zero means. If the struc-
ture is undamaged, i.e., the system models remain the same, and
the noise level keeps invariant, then follows F-distribution, and
the degree-of-freedom is equal to the length of the measured
data. If the structure is damaged, i.e., coefficients of the system
models change, variance of the residual errors increases because
of model mismatch. From this angle of view, is a damage-sen-
sitive coefficient.

C. Damage-Sensitive Coefficient

Assume a large-scale WSN is deployed in a sensing area. In
the modeling stage, each sensor builds up a database for the
measured responses. In the decision-making stage, sensors peri-
odically perform monitoring tasks, firstly collecting batches of
data and secondly generate damage-sensitive coefficients. It is
of interest to study the spatial distribution of the damage-sensi-
tive coefficients in the sensing area.

We consider a steel frame structure with 12 stories and 9 bays,
simplified as a two-dimensional model, as illustrated in Fig. 2.
Sensors are deployed in the joint points from the 2nd floor to
the 13th floor, composing a grid network of 120 sensors in a
two-dimensional sensing area. Gaussian random white noises
are imposed to the foundation to simulate ambient vibrations. In
each monitoring period of both modeling and decision-making
stages, 1000 data points are sampled to generate the AR and
ARX models. We introduce damages by reducing the stiffness of
one or several columns. For example, if we reduce the stiffness
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Fig. 3. Spatial distribution of the damage-sensitive coefficients after intro-
ducing damage to the column between sensors (6,5) and (7,5).

of the column between sensors (6,5) (located on the 6th floor,
5th bay) and (7,5) (located on the 7th floor, 5th bay), these two
sensors should report damages.

Fig. 3 shows a set of typical simulation results, from which
we have following observations.

1) The damage-sensitive coefficient computed by each sensor
is the superposition of a damaged state and an undamaged
state. The undamaged state is a random variable with F-dis-
tribution, as discussed above.

2) The damaged state is also composed of two parts: damage
effect of the current measurement point and damage effect
of neighboring measurement points. Damage in one point
results in a peak value in the corresponding point, while
leads to attenuated effects on neighboring points. The ef-
fect decreases as the distance increases.

These two observations stimulate us to consider the damage
identification problem in a localized pattern recognition frame-
work. The damage-sensitive coefficients are the superposition
of a series of basis functions and a random noise field. The ob-
jective of the localized SHM is hence to automatically and au-
tonomously estimate the shape of the basis functions and filter
out the random noises for the sensors, via only using local in-
formation exchange among neighboring sensors.

IV. LOCALIZED SHM ALGORITHM

In this section, we formulate the damage identification
problem as a centralized nonlinear optimization problem and
relax it to a centralized linear program. A localized algorithm
is proposed to solve the linear program.

A. Problem Formulation

In a WSN, sensor reports a damage-sensitive coefficient
as defined in (6). From the discussions in the previous section,

is the summation of a damage-related term and a random
variable with F-distribution

(7)

Here, is decided by the cumulative effects of the damaged
points. Let be the set of sensors, without loss of generality,
can be written as

(8)

where represents the severity of the damage point , defined
as severity coefficient, and the normalized basis function
represents the effect of damage on point . Based on the anal-
ysis above, the measurement increases when a damage oc-
curs somewhere, hence, and . Furthermore,
a sensor near to the damage source is more influenced than a
sensor far from the damage source, thus we can normalize
as when and when .

The random variable is under F-distribution with de-
gree-of-freedom , where is nearly the number of
sampling points. When is large, the probability density
function of is almost symmetric with . For any given
confidence coefficient, there is a threshold for the random
variable to pass the hypothesis testing with .

Our novel idea hinges on a key observation that damage is
generally scarce in a structure, namely, the severity vector

is sparse. The sparsity of can be measured by its
0-norm . Hence, we have the following 0-norm minimiza-
tion formulation :

(9)

The problem has linear constraints and a nonlinear ob-
jective function. Hence, we relax it to a 1-norm minimization
formulation

(10)

is a standard linear programming problem, which can be
easily solved in a centralized way. The relaxation to 1-norm in
(10) still induces sparsity, while the conditions for its equiva-
lence to the 0-norm solution has been investigated in the com-
pressed sensing literature [11].

B. Choice of Basis Functions

Choice of the basis function relies on the under-
standing to the interrelationship between point and point in
the sensing field. Generally speaking, the interrelationship is
complicated and unavailable in a prior. However, simulation
results in Section III-C suggest that the following two basis
functions are good approximation to practical cases. The first
basis function is a Delta shape

(11)

which means that a damage in one point does not influence its
neighboring points. Applying the Delta shape basis function in

, it leads to the trivial solution based on the threshold
if and if . The corresponding

is feasible unless for some .
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The second basis function is an isotropic Gaussian shape

(12)

where is the distance between and and is the impact
coefficient of . The isotropic Gaussian-shaped basis function
assumes isotropic influence of a damage point, which is adopted
for analytical convenience but still able to approximate practical
cases. Substituting the isotropic Gaussian shape, is infea-
sible in two cases: 1) for some and 2) the mea-
surement in the damage point is very large while the measure-
ment in its neighboring point is near to 1. The first case reflects
interdependence of the threshold and the noise level; and the
second case reflects the matching ability of the basis function to
the measured data.

C. Localized Solution Based on Random Gossip

Centralized solutions to the linear programming problem
are mature, but do not fit for the distributed nature of WSNs. It
is preferred to design localized algorithms, in which each sensor
communicates with its neighboring sensors and make decisions
autonomously. To this end, we assign the objective function and
constraints in to individual sensors. For each sensor , the
optimization subproblem is

(13)

Here, is the neighboring sensor set of . Hence, each sub-
problem is a simple linear programming problem and only uses
information from the neighboring sensors of . Solution to (13)
is or null if

.
Let us consider to update as

. Suppose that the neighboring set of
each sensor is large enough, namely, the difference between

and is small enough. Then,
if is feasible, iteratively applying the above-mentioned
updating rule will approximately reach the optimal solution
to . When is infeasible, the iterative updating rule still
converges to a fixed point.

Starting from the localized formulation (13), we have the fol-
lowing localized solution to .
Step 1: Each sensor holds a predefined common threshold

, and sets the initial decision .
Step 2: Sensor randomly wakes up and sends requests to

its neighboring sensors in . Upon receiving the
request, each sensor sends its current de-
cision and the basis function value to .

Step 3: Sensor updates its decision with
.

Step 4: Repeat steps 2 and 3 until reach the maximum opti-
mization time.

The proposed localized algorithm shares similarity with the
random gossip method [21] which has successful applications

Fig. 4. Procedures of the localized SHM algorithm.

in consensus problems. Effectiveness of the localized solution
is validated in the following numerical simulations.

Procedures of the whole localized SHM algorithm, which is
composed of a modeling stage and a decision-making stage, is
schematically depicted in Fig. 4.

V. SIMULATION RESULTS

In this section, we provide extensive simulation results to il-
lustrate the effectiveness of the proposed localized online SHM
algorithm based on a two-dimensional structure model.

A. General Settings

We adopt the general simulation settings as in Section III-C.
A grid network of 120 sensors is deployed in the joint points
of a steel frame structure with 12 stories and 9 bays. The width
of a bay is 24 feet and the height of a floor is 14 feet. Ambient
vibrations are imposed to the foundation with Gaussian white
noises. Response of the structure is analyzed by the finite-ele-
ment program OpenSees [22]. In each monitoring period of both
modeling and decision-making stages, 1000 acceleration output
data points are sampled to generate the AR and ARX models.
The order of the AR model is set as 30 and the orders of the
ARX model are set as 5 and 5. Damage patterns are introduced
by reducing the stiffness of one or several columns.
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Fig. 5. Convergence property of the Localized algorithm with respect to the
total number of radio transmissions for all 120 sensors.

Here, we compare the performance of three algorithms.
1) Threshold: The centralized 1-norm minimization algo-

rithm of (10) with a Delta-shaped basis function. To
avoid the potential infeasibility problem we simply use a
threshold to identify damages thus it can be implemented
in both centralized and localized ways.

2) Centralized: The centralized 1-norm minimization algo-
rithm of (10) with an isotropic Gaussian-shaped basis func-
tion and , namely, the height of a floor.

3) Localized: The localized solution to (13) with an isotropic
Gaussian shape basis function and . Transmission
range of each sensor is slightly larger than 24 feet, that is,
each sensor is able to communicate with four neighboring
sensors. Initial decision variable is 0 in each sensor .

Throughout the simulations the threshold is set as .
We adopt two performance criteria: false-negative rate (ne-

glecting a damage when it occurs) and false-positive rate (re-
porting a damage when it does not exist).

B. Single-Damage Pattern

We firstly consider a single-damage pattern, in which the cen-
tralized algorithm is feasible, to illustrate the convergence rate
of the Localized algorithm. The data has been shown in Fig. 3,
with stiffness reduction as 57% in a single column between (6,5)
and (7,5). The Threshold algorithm identifies the damages in
points (6,5) and (7,5). The Centralized algorithm also identi-
fies the damages, and provides the relative severity coefficients
as 0.0354 in (6,5) and 0.0081 in (7,5). For the Localized algo-
rithm, convergence rate is depicted in Fig. 5. For asynchronous
random gossip, there is only one radio transmission per iteration
for the entire network of 120 sensors. It is shown that both of the
severity coefficients converge to the solutions of the Centralized
algorithm after 360 iterations, which indicates that each sensor
only needs to wake up and transmit locally for three times on
average.

We secondly still consider the single-damage pattern dis-
cussed above with four more data sets. Damage identification
results are shown in Table I. The Centralized algorithm is some-
times infeasible, as we have discussed above. The Threshold
algorithm tends to generate some false-positive alarms. The
Localized algorithm reduces the false-positive alarms by con-
sidering the effect of the damage in its neighboring area.

TABLE I
PERFORMANCE OF THE THREE ALGORITHMS FOR A SINGLE-DAMAGE PATTERN

TABLE II
PERFORMANCE OF THE THREE ALGORITHMS FOR A

MULTIPLE-DAMAGE PATTERN

C. Multiple-Damage Pattern

Consider damage of the column beneath the sensor (1,1) and
damage of the column between sensors (6,5) and (7,5), both with
stiffness reduction as 57%. Table II provides simulation results
on 4 sets of data, in which each data set represents a random
realization of the damage model and contains 1000 sampling
points. The Centralized algorithm greatly suffers from the infea-
sibility problem, while the Threshold algorithm generates many
false-positive alarms. On the contrary, the Localized algorithm
both tackles the infeasibility problem and reduces the false-pos-
itive alarms.

D. Damage Severity

Now, we discuss the ability of the localized SHM algorithm to
evaluate damage severity. By setting stiffness reduction as dif-
ferent levels, relative severity coefficients are shown in Fig. 6.
For each sensor point, the severity coefficient increases as the
stiffness reduction increases, therefore the proposed algorithm
is able to not only localize damage position but also quantify
damage severity. It should be noted that the severity coefficient
of point (6,5) is always larger than that of point (7,5). This
common phenomenon in the AR-ARX method indicates that
damage in a column has larger effect on the upper part of a struc-
ture than that on the lower part.

Authorized licensed use limited to: Michigan Technological University. Downloaded on June 03,2010 at 20:47:12 UTC from IEEE Xplore.  Restrictions apply. 



LING et al.: LOCALIZED SHM USING ENERGY-EFFICIENT WIRELESS SENSOR NETWORKS 1603

Fig. 6. Sensitivity of the Localized algorithm to stiffness reduction.

Fig. 7. Robustness of the Localized algorithm to sensor failure.

E. Network Robustness

In practical applications, WSNs are often subject to sensor
failure. For the hierarchical network structure, failure of
a cluster head may lead to malfunction of all sensors in
the cluster. With localized information exchange and deci-
sion-making, network robustness is substantially improved
in the localized network structure. To evaluate network ro-
bustness, we adopt the same single-damage pattern settings in
Section V-B. A random portion of sensors are set to be in failure
state. The false-negative rate, as shown in Fig. 7, is proportional
to the probability of node failure for both damage point (6,5)
and (7,5). The localized algorithm utilizes the intrinsic sparsity
of damages, hence achieves high robustness of the network.

VI. CONCLUSION

In a wireless sensor network setup, this paper discusses the
online structural health monitoring problem on three levels:
identification of damage, localization of damage and quan-
tification of damage severity. The AR-ARX method, which
classifies the damaged pattern via comparing the statistics
between baseline measurements and current measurements, is
applied as the embedded damage identification approach. After
damage identification, sensors generate a map of damage-sen-
sitive coefficients, which are composed of damage information
and random noises. Assuming the shape of the damage infor-
mation based on theoretical and empirical analysis, we develop
a centralized 0-norm minimization formulation, and relax it to

a centralized 1-norm linear programming problem. An iterative
localized optimization framework, which shares similarity
with the random gossip algorithm, is proposed to achieve fast
convergence to a near-optimal solution.

By using a larger set of basis functions in combination with
optimized function parameters, we will be able to depict more
complicated sensing maps and identify diverse types of dam-
ages. Starting from this point, the localized SHM algorithm is
applicable to a much broader area of localized curve-fitting, lo-
calized pattern recognition and localized learning.
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