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Abstract—Internet of Things (IoT) is featured with its seam-
less connectivity of billions of smart devices, which offer different
functionalities and serve various personalized tasks. To meet the
task-specific requirements such as latency and privacy, the fog
computing emerges to extend cloud computing services to the
edge of the Internet backbone. This paper deals with online fog
computing emerging in IoT, where the goal is to balance compu-
tation and communication at fog networks on-the-fly to minimize
service latency. Due to heterogeneous devices and human partic-
ipation in IoT, the online decisions here need to flexibly adapt to
the temporally unpredictable user demands and availability of fog
resources. By generalizing the classic online convex optimization
(OCO) framework, the low-latency fog computing task is first
formulated as an OCO problem involving both time-varying loss
functions and time-varying constraints. These constraints are
revealed after making decisions, and allow instantaneous vio-
lations yet they must be satisfied in the long term. Tailored for
heterogeneous tasks in IoT, a “thing-adaptive” online saddle-
point (TAOSP) scheme is developed, which automatically adjusts
the stepsize to offer desirable task-specific learning rates. It is
established that without prior knowledge of the time-varying
parameters, TAOSP simultaneously yields near-optimality and
feasibility, provided that the best dynamic solutions vary slowly
over time. Numerical tests corroborate that our novel approach
outperforms the state-of-the-art in minimizing network latency.

Index Terms—Heterogeneous tasks, Internet of Things (IoT),
mobile edge computing, online learning, saddle-point method.

I. INTRODUCTION

INTERNET-OF-THINGS (IoT) envisions an intelligent
network infrastructure offering task-specific services, such

as those in smart home, healthcare, and smart cities [2]–[7].
One of the critical challenges in IoT is the pronounced
heterogeneity due to a large number of devices and
tasks.
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Device Heterogeneity: The computational and commu-
nication capacities of each device differ due to differ-
ences in hardware (e.g., CPU frequency), communication
protocol (e.g., ZigBee and WiFi), and energy availability
(e.g., battery level).

Task Heterogeneity: The tasks carried out on various
devices can be considerably diverse, e.g., motion sensors
monitor human behavior in a smart home [8], and cameras
are responsible for recognizing vehicle plates in a parking
garage.

All types of heterogeneity will lead to major differences in
computation and communication latency of serving IoT tasks
among individual IoT devices. Together with other unique
features of IoT including latency-sensitive, and unpredictable
dynamics due to human-in-the-loop, it all calls for innovations
in network design and management for IoT [9].

To ensure desired user experience, IoT tasks nowadays are
supported by a promising architecture termed fog that dis-
tributes computation, communication, and storage closer to
the end IoT users, along the cloud-to-things continuum [10].
Regarding network design, network formation, and protocols
to integrate cloud resources into the mobile fog networks have
been extensively studied [11], [12]. From the fog management
perspective, joint communication and computation approaches
have been developed in [13] and [14]; latency-constrained
extensions have been considered in [15]–[17]; and resource-
aware quality-of-service management in [18]. However, the
approaches in [13]–[18] are mainly for static offline settings,
and their online variants have not been explored. Tailored
for dynamic fog networks with time-varying user demands,
a Lyapunov optimization-based approach is presented in [19],
an MDP-based approach is advocated in [20], and an online
approach with competitive ratio guarantee is reported in [21];
see [22] for a recent survey on related topics. Nevertheless,
the assumption of stationarity1 that is essential in stochastic
optimization may not hold in practice due to human participa-
tion, and the precise information within a given time window
leveraged in competitive analysis is also often unavailable.
Therefore, online fog network management, which is robust
to nonstationary dynamics and suitable for heterogenous IoT
tasks, remains an uncharted territory [12], [22].

Targeting an efficient solution for the unique features
present in IoT setups, we will employ online convex

1In this context, stationarity means that the time-varying quantities related
to fog computing are drawn from a fixed probability distribution.
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optimization (OCO), which is an emerging methodology for
sequential tasks especially when the sequence of convex costs
varies in an unknown and possibly adversarial manner [23].
Aiming to empower traditional fog management policies, most
available OCO works benchmark algorithms with a static
regret, which measures the difference of costs (also known
as losses) between the online solution and the best static solu-
tion in hindsight [24], [25]. However, static regret is not a
comprehensive performance metric in dynamic settings such
as those encountered with fog computing in IoT [9].

Recent works extend the analysis of static to that of
dynamic regret [26], [27], but they deal with time-invariant
constraints that cannot be violated instantaneously. The long-
term effect of such instantaneous violations was also studied
in [28] and [29], where the focus is on static regret and time-
invariant constraints. Unfortunately, the fog computing setups
considered here require flexible adaptation of online deci-
sions to the dynamic IoT user demands, and the availability
of resources. In a generic network optimization setting, algo-
rithms for OCO with time-varying constraints have been devel-
oped [30], [31], but they are not suitable for the heterogeneous
IoT settings.

To account for the heterogeneous nature of IoT applica-
tions, and to meet their stringent latency requirements, this
paper broadens the scope of OCO to the regime with time-
varying objectives and constraints, and introduces a “thing-
adaptive” online learning algorithm, which allows task-specific
learning-rates and provides guarantees on optimality and
feasibility.

Relative to prior art, the main contributions are as follows.
1) We formulate the fog computation offloading task

emerging in IoT applications as a constrained OCO
problem. The resultant online learning task general-
izes the OCO framework with only adversarial costs
in [23], [24], [26], and [27] to account also for possibly
adversarial constraints (Sections II and III).

2) We develop a “thing-adaptive” online saddle-point
(TAOSP) algorithm for this novel OCO setting, which
incorporates an adaptive matrix stepsize to automatically
adjust task-specific learning rates (one per coordinate
or thing), and yields simultaneously sublinear dynamic
regret and fit, provided that the best dynamic solutions
vary slowly over time (Section IV).

3) We apply our novel TAOSP algorithm to fog comput-
ing, and compare it with popular alternatives that rely on
stochastic gradient [32], and task-agnostic schemes [30].
Simulations demonstrate marked performance gain of
TAOSP (Section V).

Notation: (·)� stands for vector and matrix transposition,
and ‖x‖ denotes the �2-norm of a vector x. Inequalities for
vectors x > 0, and the projection [a]+ := max{a, 0} are
entry-wise.

II. ONLINE FOG COMPUTATION OFFLOADING

In this section, we introduce the time-varying fog computing
setup, and formulate its computation offloading problem for
low-latency IoT service provisioning.

Fig. 1. Diagram for online fog computation offloading: the edges represent
IoT devices in the edge layer, the fog clusters contain locally connected fog
nodes, and the cloud center is the data center in the cloud layer.

A. Fog Computing Setup

Consider IoT tasks supported by a fog network with an edge
layer, a fog layer, and a cloud layer [10], [21]. The edge layer
contains heterogeneous low-power IoT sensors (e.g., wearable
watches and temperature sensors). Due to their low-power
design, IoT sensors have minimal on-device computational
capability, and frequently offload their collected data to the
nearby fog nodes (e.g., smartphones and high-tech routers)
at the fog layer for further processing [33]. The communi-
cations between edges and fog nodes are typically through
low-throughput but energy-efficient wireless connection, such
as Bluetooth or ZigBee [12]. The fog layer consists of N nodes
in the set N := {1, . . . , N} with moderate processing capabil-
ity. Part of the workload at the fog is collaboratively processed
by the processors in smartphones or high-tech routers (also
known as fog servers) to meet the stringent latency require-
ment; while the rest is offloaded to the remote data center
in the cloud layer via high-throughput wireless or wireline
connection [12]. In a related context, the fog nodes are also
referred to IoT gateways, which bridge the wireless sensor
networks with the Internet backbone [34].

Per time slot t, each fog node n collects streaming data
requests dn

t from all its nearby sensors. Once receiving dn
t , the

nth fog node has to make a decision over three options.
1) Offloading an amount χn

t to the remote cloud center.
2) Offloading an amount xnk

t to its nearby fog node k for
collaborative computing.

3) Processing an amount xnn
t using the in-situ fog servers,

subject to the availability of computational resources.
The optimization variable xt consists of the cloud offload-

ing, local offloading, and local processing amounts, namely,
xt := [χ1

t , . . . , χN
t , x11

t , . . . , xNN
t ]� (see also Fig. 1).

Assuming that each fog node has a local data queue to
buffer unserved workloads, the instantaneously served work-
load (offloading plus processing) per node is not necessarily
equal to the data arrival rate. Instead, a long-term constraint
is imposed to ensure that the cumulative amount of served
workloads is no less than the arrived amount at node n over
a given time period of T slots; that is,

T∑

t=1

gn
t (xt) ≤ 0, ∀n (1a)
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gn
t (xt) := dn

t +
∑

k∈N in
n

xkn
t −

∑

k∈N out
n

xnk
t − χn

t − xnn
t (1b)

where N in
n and N out

n represent the sets of fog nodes with
in-coming links to node n, and those with out-going links
from node n, respectively. The offloading limit of the com-
munication link from fog node n to the remote cloud is χ̄n,
the maximum offloading capacity of link n-to-k is x̄nk, and
the computation capability of fog node n is x̄nn. Due to dif-
ferent communication protocols and diverse processing cores
used, the magnitudes of elements in {χ̄n, x̄nk, x̄nn} can vary
considerably. Nevertheless, with x̄ collecting all the afore-
mentioned known bounds, the feasible set is expressed as
X :={0≤xt ≤ x̄}.

Also worth mentioning is that it can further incorporate
other considerations in different settings as follows.

1) When the computing resources at the fog nodes are
virtualized by means of virtual machines (VMs), only
fog nodes with common VMs can perform collabo-
rative computing [12]; and while only the offloading
amount at each fog node was bounded by x̄nk, the total
received amount for collaborative computing can be also
constrained.

2) When the fog network serves heterogeneous tasks such
as those in a smart building [35], the local offloading for
collaborative computing can appear only between two
fog nodes serving the same IoT task. For those fog nodes
capable of performing multiple tasks, we can virtually
split them into multiple single-task fog nodes.

Clearly, corresponding to all these practical considerations
is a more involved polyhedral feasible set X .

B. Toward Low-Latency Fog Computing

The figure of merit in deciphering the optimum xt is the
network delay of the online edge processing and offloading
decisions. Specifically, as the computation delay is usually
negligible for data centers with thousands of high-performance
servers, the latency for cloud offloading amount χn

t is mainly
due to the communication delay, which is modeled as a time-
varying convex function cn

t (χ
n
t ) depending on the congestion

level of the network during slot t. Likewise, the communi-
cation delay of the local offloading decision xnk

t from node
n to a nearby node k is denoted by cnk

t (xnk
t ), and its magni-

tude is much lower than that of cloud offloading. In addition,
latency of the edge processing amount xnn

t comes from the
computational delay due to its limited computation capability.
The computational delay is represented as a time-varying func-
tion hn

t (x
nn
t ) capturing dynamics during the edge computing

processes.
The overall performance of decision xt is considered next.
Aggregate Delay: Per slot t, the aggregate network delay

ft(xt) includes the computational delay at all fog nodes plus
the communication delay at all links, namely,

ft(xt) :=
∑

n∈N

(
cn

t (χ
n
t ) +

∑

k∈N out
n

cnk
t (xnk

t )

︸ ︷︷ ︸
communication

+ hn
t

(
xnn

t

)
︸ ︷︷ ︸

computation

)
. (2)

Note that through proper parallelization, communication, and
computation tasks sometimes can be executed in parallel, and
the actual delay experienced by users may depend on the
level of such parallelization. As a result, the aggregate delay
cannot accurately reflect the performance that directly affects
user experience [21] in such cases, and the maximum delay
discussed next is an alternative performance metric.

Maximum Delay: Per slot t, the worst-case network delay
ft(xt) is the maximum of computational delay and the com-
munication delay at all fog nodes, namely,

ft(xt) :=
∑

n∈N
max

k∈N out
n

{
cn

t

(
χn

t

)
, cnk

t

(
xnk

t

)

︸ ︷︷ ︸
communication

, hn
t

(
xnn

t

)
︸ ︷︷ ︸

computation

}
. (3)

Alternatively, aggregate maximum delay can be also consid-
ered, which is the sum of the computation delay plus the
maximum communication delay over all offloading links at
each fog node.

Aiming to minimize the network delay (in either aggregate
or worst-case sense) while serving all the IoT workloads in the
long term, the optimal offloading strategy in this fog network
is the solution of the following optimization problem:

min
{xt∈X ,∀t}

T∑

t=1

ft(xt) s.t.
T∑

t=1

gn
t (xt)s ≤ 0 ∀n. (4)

For the optimization in (4), if the objective and the con-
straint functions are known ahead of the time and the horizon
T is not prohibitively large, the fog computing decisions can
be found by utilizing any off-the-shelf convex optimization
solver. Not to mention the potentially high complexity of the
offline solver, the crux is that communication and compu-
tation delays as well as user demands are usually unknown
before allocating resources due to the unpredictable routing,
network congestion, device malfunctions, and nowadays mali-
cious attacks in IoT [2]. This motivates a fully causal setting,
where the network delay ft(xt) and the data requests {dn

t }
within slot t are not known when making the offloading and
computing decision xt, but are revealed at the end of slot t
after deciding xt.

Remark 1: For formulation, three remarks are in order.
1) While the communication delay is assumed to be a con-

vex function of the offloaded amount of data, it can
be nonconvex in general. Dealing with nonconvex delay
functions is also of interest, and is in our future agenda.

2) The considered model only incorporates three network
layers, but it can be readily extended to multilayer struc-
tures, where several intermediate fog layers are deployed
between the IoT devices and the remote data centers.

3) Although (2) or (3) only captures the network delay
effect, other relevant factors can be also incorpo-
rated in our OCO setting, e.g., throughput and energy
consumption [12].

III. ONLINE CONVEX OPTIMIZATION FOR

FOG COMPUTING

In this section, we will formulate the fog computation
offloading task as a constrained OCO problem, and provide
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Fig. 2. Diagram of OCO with time-varying constraints.

pertinent performance metrics to evaluate algorithms in this
setting.

A. OCO With Time-Varying Constraints

Targeting a customized solution to the challenging fog com-
puting task (4), our idea is to leverage OCO tools to design
algorithms with provable performance guarantees. However,
most available OCO works do not allow instantaneous vio-
lations of constraints, which is not applicable to the fog
computing setup. This prompts us to broaden the applicabil-
ity of the classical OCO setting [23], [24] to the regime with
dynamic regret and time-varying constraints.

To model the task, consider the fog computing problem as
a repeated game between a learner and nature, as it appears in
OCO [23]. With I denoting the dimension of xt, the learner A
selects an action xt from a known and fixed convex set X ⊆ R

I

per slot t, and then nature reveals not only a loss function
ft(·) : R

I → R but also a time-varying constraint function
gt(x) ≤ 0, where gt(·) : R

I → R
I . Different from the known

and fixed set X , the constraint gt(x) ≤ 0 can vary arbitrarily
from slot to slot. Moreover, the fact that it is revealed after the
learner A performs her/his decision makes it impossible to be
satisfied at every time slot; see the setting in Fig. 2. Therefore,
a more realistic goal in this context is to find a sequence of
online solutions {xt ∈ X } that minimizes the aggregate loss,
and ensures that the constraints {gt(xt) ≤ 0} are satisfied in
the long term on average. Furthermore, the fact that ft and gt

are revealed after the learner makes decisions, also accounts
for possibly adversarial scenarios in IoT, e.g., malicious fog
nodes and communication links present to strategically impede
computation and communication [36].

Generalizing the OCO framework [23], [24] to accom-
modate such varying constraints, we consider the following
problem:

min
{xt∈X ,∀t}

T∑

t=1

ft(xt) s.t.
T∑

t=1

gt(xt) ≤ 0. (5)

Clearly, with gt(xt) specified by (1) and ft(xt) as in (2) or (3),
the problem (5) captures and further generalizes the fog com-
puting problem in Section II. Taking a step further, the novel
OCO framework can be also applied to tasks ranging from
power control in wireless communication [32], to geographical
load balancing in cloud networks [37].

Before our efficient algorithm development for
thing-adaptive learning tasks and performance analysis
to be carried out in Section IV, we first introduce suitable
optimality and feasibility metrics.

B. Optimality and Feasibility Metrics

With regard to performance of online decisions, static regret
is commonly adopted by OCO schemes to measure the differ-
ence between the aggregate loss of an OCO algorithm and that
of the best fixed solution in hindsight [23], [24]. Generalizing
the static regret to accommodate time-varying constraints
in (5), we have Regs

T :=∑T
t=1 ft(xt) −∑T

t=1 ft(x∗), where the
best static solution is x∗ ∈ arg minx∈X

∑T
t=1 ft(x), s.t. gt(x) ≤

0, ∀t. Though widely used in different OCO context, the static
regret relies on a rather coarse benchmark, which may be less
useful in dynamic settings. Quantitatively, the gap between
the best static and the best dynamic solutions in terms of the
aggregate loss can be as large as O(T) [26].

In response to the quest for appropriate benchmarks in the
dynamic IoT setup with constraints, two metrics are consid-
ered: 1) dynamic regret and 2) dynamic fit. The notion of
dynamic regret offers a competitive performance measure of
online algorithms, given by

Regd
T :=

T∑

t=1

ft(xt) −
T∑

t=1

ft
(
x∗

t

)
(6)

where the benchmark is now formed via a sequence of
the best dynamic solutions {x∗

t } for the instantaneous cost
minimization problem subject to the instantaneous constraint,
namely,

x∗
t ∈ arg min

x∈X
ft(x) s.t. gt(x) ≤ 0. (7)

Clearly, the dynamic regret is always larger than the static
regret, that is, Regs

T ≤ Regd
T , since

∑T
t=1 ft(x∗) is always no

smaller than
∑T

t=1 ft(x∗
t ) given the definitions of x∗ and x∗

t .
Hence, a sublinear dynamic regret implies a sublinear static
regret, but not vice versa.

Regarding feasibility of decisions generated by an OCO
algorithm, the dynamic fit is introduced to measure the
accumulated violations of constraints, that is,

FitdT :=
∥∥∥∥∥∥

[
T∑

t=1

gt(xt)

]+∥∥∥∥∥∥
. (8)

Note that the long-term constraint considered here implicitly
assumes that the instantaneous constraint violations can be
compensated by the later strictly feasible decisions, and thus
allows adaptation of fog offloading and computation decisions
to the unknown dynamics of IoT user demands.

With the optimality and feasibility metrics in hand, an ideal
online algorithm will be the one that achieves both sublinear
dynamic regret and sublinear dynamic fit. A sublinear dynamic
regret implies “no-regret” relative to the clairvoyant dynamic
solution on the long-term average; i.e., limT→∞ Regd

T/T = 0;
a sublinear dynamic fit indicates that the online strategy is also
feasible on average; i.e., limT→∞ FitdT/T = 0. However, the
sublinear performance is not achievable if the nature is allowed
to behave arbitrarily at each and every slot, even when con-
straints are time-invariant [26]. Instead, we are after an online
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strategy that generates a sequence {xt}T
t=1 ensuring sublinear

dynamic regret and fit, under the regularity condition on the
nature’s behavior.

IV. THING-ADAPTIVE SADDLE-POINT METHOD

In this section, a TAOSP method is developed, and its
performance and feasibility are analyzed.

A. Algorithm Development

Consider now the per-slot problem (7), which contains
the current objective ft(x), the current constraint gt(x) ≤ 0,
and a time-invariant feasible set X . With λ ∈ R

I+ denot-
ing the Lagrange multiplier associated with the time-varying
constraint, the online regularized Lagrangian of (7) is given by

Lt(x,λ) := ft(x) + λ�gt(x) − θ

2
‖λ‖2 (9)

where x ∈ X remains implicit, and θ > 0 is a preselected
constant scaling the �2-norm that regularizes the constraint
violations. The regularizer is tantamount to penalizing the
constraint violations in the primal domain; namely,

max
λ≥0

λ�gt(x) − θ

2
‖λ‖2 = 1

2θ

∥∥∥
[
gt(x)

]+∥∥∥
2
. (10)

Based on Lt in (9), we will develop a novel TAOSP approach,
which takes a task-specific gradient descent step in the pri-
mal domain followed by a dual ascent step per iteration.
Specifically, given the primal iterate xt and the dual iterate
λt at slot t, the next decision xt+1 is generated by

xt+1 ∈ arg min
x∈X

∇�
x Lt(xt,λt)(x − xt) + 1

2η
‖x − xt‖2

H
1
2
t

(11)

where ∇xLt(xt,λt) = ∇ft(xt) + ∇�gt(xt)λt is the gradient of
Lt(x,λt) with respect to x at x = xt; η is a predefined constant;
and the diagonal matrix Ht accumulates the diagonal entries
of the outer product of the gradients as

Ht :=δI +
t∑

τ=1

diag
(
∇xLτ (xτ ,λτ )∇�

x Lτ (xτ ,λτ )
)

(12)

where diag(Y) is a diagonal matrix with the same diago-
nal entries of Y, and δ > 0 is a predefined constant. The
minimization (11) admits the closed-form solution [25]

xt+1 = PH
1
2
t

X

(
xt − η H

− 1
2

t ∇xLt(xt,λt)

)
(13)

where PH1/2
t

X (y) := arg minx∈X (x−y)�H1/2
t (x−y). Intuitively,

for the coordinates of xt with large accumulated gradients, the
associated stepsize will be scaled down, and for the ones with
small accumulated gradients, their stepsizes will be enlarged
relative to that of other coordinates.

The dual update takes the online gradient ascent form

λt+1 = [λt + μ∇λLt(xt,λt)]
+ (14)

where μ is a positive stepsize, and ∇λLt(xt,λt) = gt(xt) −
θλt is the gradient of Lt(xt,λ) with respect to λ at λ = λt.
The choice of parameters (θ, δ, η, μ) that guarantees sublinear
performance bounds will be discussed in Section IV-B.

Remark 2: We term (13) and (14) as an adaptive
(or thing-adaptive) online saddle-point approach, because the
primal update (13) can automatically adjust its matrix step-
size according to the steepness of the online Lagrangian along
each direction, which is approximated by the magnitude of
each gradient coordinate corresponding to one thing in IoT
applications. The adaptive matrix stepsize can be regarded as
an inexpensive approximation of the Hessian matrix used in
the online Newton method [24], which has well-documented
performance in, e.g., deep learning tasks [25]. Here, we lever-
age the adaptive matrix stepsize for OCO with long-term
constraints. Using fog computing as a paradigm, we will show
that our TAOSP algorithm markedly improves performance
when the underlying IoT tasks are heterogeneous, meaning
that the resultant gradients have distinct orders of magnitude
over different coordinates.

B. Dynamic Regret and Fit Analysis

Before formally analyzing the dynamic regret and fit for
TAOSP, we make the following assumptions.

A1: For every t, the functions ft(x) and gt(x) are convex.
A2: Functions ft(x) and gt(x) have bounded gradients; i.e.,

max{|∇ ift(x)|, ‖∇ igt(x)‖∞} ≤ Gi,∀x ∈ X , where ∇ ift(x) and
∇ igt(x) are with respect to the ith entry of x, and

∑I
i=1Gi =G.

A3: The radius of the convex feasible set X is bounded;
i.e., ‖x − y‖ ≤ R, ∀x, y ∈ X .

Regarding these assumptions, A1 and A2 require the con-
vexity and Lipschitz continuity of the objective and con-
straint functions, while A3 restricts the feasible set to be
bounded. Note that A1–A3 are common in OCO with
constraints [24], [28]. Next, we highlight the critical insights
and the key lemmas leading to the final performance bounds,
but defer the detailed derivations to Appendix A.

Under these assumptions, the regularized Lagrangian in (9)
is convex with respect to the primal variable, and concave
with respect to the dual variable, and thus it follows that
[see (46a) and (46b)]:

Lt(xt,λ) − Lt(x,λt) ≤ (xt − x)�∇xLt(xt,λt)

+ (λ − λt)
�∇λLt(xt,λt). (15)

On the other hand, plugging x = x∗
t into (15), and summing

up over t = 1, 2, . . . , T , it turns out that [see (51)–(58)]

Regd
T + 1

2θ

(
FitdT

)2
�

T∑

t=1

(Lt(xt,λ) − Lt
(
x∗

t ,λt
))

(16)

where θ is the regularization coefficient, and “�” means
the inequality “≤” holds under some technical conditions
that will be specified in the following lemmas. Combining
(15) with (16), if we can upper bound the summation in the
RHS of (15) with a proper sublinear order of T , and appropri-
ately choose θ , we can eventually obtain the desired dynamic
regret and fit.

With the insights gained so far, we first derive a set of
bounds on the RHS of (15).
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Lemma 1: Suppose A1–A3 are satisfied, and consider the
TAOSP recursion (13) and (14). For any x ∈ X , it holds that

(xt − x)�∇xLt(xt,λt) ≤ 1

2η
‖x − xt‖2

H
1
2
t

− 1

2η
‖x − xt+1‖2

H
1
2
t

+ η

2
‖∇xLt(xt,λt)‖2

H
− 1

2
t

(17)

where η and Ht are defined in (13). The corresponding bound
for the dual variables is

(λ − λt)
�∇λLt(xt,λt) ≤ 1

2μ
‖λ − λt‖2 − 1

2μ
‖λ − λt+1‖2

+ μ

2
‖∇λLt(xt,λt)‖2. (18)

Proof: See Appendix B.
Lemma 1 reveals that the bounds for the RHS of (15)

depend on the difference of two consecutive distances between
the primal–dual iterates and a pair of fixed points, as well
as the magnitudes of the primal–dual gradients. While the
difference of two consecutive distances can be controlled
by choosing primal and dual stepsizes, the magnitudes of
gradients will be analyzed in the following lemma.

Lemma 2: Under the same conditions as those in Lemma 1,
the gradients with respect to the primal variable can be
bounded by

η

2

T∑

t=1

‖∇xLt(xt,λt)‖2

H
− 1

2
t

≤ η

I∑

i=1

∥∥∇ i
xL1:T(x1:T ,λ1:T)

∥∥

≤ ηG
√

(I + 1)T + ηG
√

(I + 1)
∑T

t=1 ‖λt‖2 (19)

where constant G is defined in A2, and the ith entry
of the stacked gradients is ∇ i

xL1:T(x1:T ,λ1:T) :=
[∇ i

xL1(x1,λ1), . . . ,∇ i
xLT(xT ,λT)]�. In addition, the

magnitude of dual gradients can be bounded by

μ

2

T∑

t=1

‖∇λLt(xt,λt)‖2 ≤ μR2G2T + μθ2
T∑

t=1

‖λt‖2 (20)

where constant R is defined in A3.
Proof: See Appendix C.

Using Lemmas 1 and 2, we can bound the dynamic regret
and dynamic fit as follows.

Theorem 1: Under A1–A3, if we choose the stepsizes η =
R/

√
2, μ = T−(5/8)/(RG), and the parameters δ = O(1) and

θ = RGT−(1/8), and further initialize the dual variable to sat-
isfy ‖λ1‖ = 4

√
(I + 1)T(1/8) with I denoting the number of

constraints, the dynamic regret is bounded by

Regd
T ≤ ε2T

5
8 + ε1V

(
x∗

1:T

)+ ε0 = O
(

T
7
8 V
(
x∗

1:T

))
(21)

where the constants are ε0 = O(T(1/2)), ε1 = O(T(7/8)), and
ε2 = O(T(1/4)); and, V(x∗

1:T) is the accumulated variation of
the per-slot minimizers x∗

t defined as V(x∗
1:T) :=∑T

t=1 ‖x∗
t −

x∗
t−1‖. Accordingly, the dynamic fit of TAOSP is bounded by

FitdT = O
(

max

{
T

15
16 , T

7
8

√
V
(
x∗

1:T

)})
. (22)

Proof: See Appendix D.

Algorithm 1 TAOSP for Mobile-Edge Computation
Offloading

1: Initialize: primal iterates {xnk
0 } and {χn

0 }, dual iterate λ0,
parameter θ , and proper stepsizes η and μ.

2: for t = 1, 2 . . . do
3: fog nodes perform offloading to the cloud and

neighbor edges via (23a)-(23b) and locally process
via (23c).

4: fog nodes observe the aggregate network delay and
ccc workload arrivals from IoT devices to update (23g).

5: end for

Theorem 1 asserts that TAOSP’s dynamic regret and fit
are upper bounded by some constants depending on the time
horizon and the accumulated variation of per-slot minimizers.
Specifically, without a priori knowledge of the accumulated
per-slot minimizer variation, the dynamic regret and fit of
TAOSP are sublinear provided that V(x∗

1:T) = o(T(1/8)). When
the order of V(x∗

1:T) is known a priori, tighter regret and
fit bounds can be effected by adjusting stepsizes accordingly
(see [30]).

Remark 3: TAOSP improves upon the proposed algorithm
in our precursor [30] in terms of fewer assumptions, lower
computational complexity, and task-specific learning rates tai-
lored for heterogeneous IoT setups. The desired algorithmic
merits will be demonstrated next in the fog computing context.

V. ONLINE FOG COMPUTING TESTS

In this section, we tackle the fog computing task within our
novel OCO framework, and present numerical experiments.

A. TAOSP Solver for Fog Computing

TAOSP can be leveraged to solve (4) in an online fash-
ion, with provable performance and feasibility guarantees.
Specifically, the primal update (13) boils down to a sim-
ple closed-form gradient update amenable to decentralized
implementation, which yields the cloud offloading amount as

χn
t =

[
χn

t−1 − η
(

Hχn

t−1

)− 1
2 (∇χn ft−1(xt−1) − λn

t−1

)]χ̄n

0
(23a)

the offloading amount from fog node n to k as

xnk
t =

[
xnk

t−1 − η
(

Hxnk

t−1

)− 1
2
(
∇xnk ft−1(xt−1) − λn

t−1 + λk
t−1

)]x̄nk

0
(23b)

and the local processing decision at edge n as

xnn
t =

[
xnn

t−1 − η
(

Hxnn

t−1

)− 1
2 (∇xnn ft−1(xt−1) − λn

t−1

)]x̄nn

0
(23c)

where the adaptive scaling coefficients are found as

Hχn

t−1 = δ +
t−1∑

τ=1

(∇χn fτ (xτ ) − λn
τ

)2 (23d)
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Fig. 3. Comparison of dynamic regret for fog computing tasks.

and

Hxnn

t−1 = δ +
t−1∑

τ=1

(∇xnn fτ (xτ ) − λn
τ

)2 (23e)

and likewise for

Hxnk

t−1 = δ +
t−1∑

τ=1

(
∇xnk fτ (xτ ) − λn

τ +λk
τ

)2
. (23f)

These coefficients learn the magnitude of each coordinate, and
adjust the learning rates associated with fog nodes on-the-fly.
Depending on the specific delay functions (2) and (3), the
involved gradients in (23a)–(23f) can be readily computed.

The dual variable update (14) at each fog node n reduces to

λn
t =

⎡

⎣(1 − μθ)λn
t−1 + μ

⎛

⎝dn
t−1 +

∑

k∈N in
n

xkn
t−1 −

∑

k∈N out
n

xnk
t−1

− χn
t−1 − xnn

t−1

⎞

⎠

⎤

⎦
+

(23g)

where μ and θ are chosen according to Theorem 1.
Intuitively, to guarantee long-term feasibility, the dual vari-

able increases (increasing penalty) when there is instantaneous
service residual (constraint violation), and decreases when
over-serving occurs in the mobile-edge computing systems.
TAOSP for online fog computing tasks is summarized in
Algorithm 1.

B. Numerical Experiments

Consider the fog computing task in (4) with N = 20 fog
nodes, and one cloud center. For both the aggregate delay
function (2) and the maximum delay function (3), we con-
sider their summands as follows. The communication delay
of cloud offloading is cn

t (χ
n
t ) := pn

t (χ
n
t )2 + qn

t χ
n
t (μs), where

pn
t = sin(π t/50)+vn

t with vn
t uniformly distributed over [1, 3],

and qn
t uniformly distributed over [1, 10]; the communication

delay of local offloading is cnk
t (xnk

t ) := lnkxnk
t (μs), and the

local computation delay function is hn
t (x

nn
t ) := lnn(xnn

t )2 (μs),
where the coefficients {lnk} are generated as follows. With the
local communication limits x̄nk = 10, n ∈ [1, 5]

⋃
[11, 20]

Fig. 4. Comparison of dynamic fit for fog computing tasks.

and x̄nk = 100, n ∈ [6, 10] as well as the fog computation
limits x̄nn = 100, n ∈ [1, 5]

⋃
[11, 20] and x̄nn = 1000, n ∈

[6, 10], we set the delay coefficients as lnk = 50/x̄nk and
lnn = 50/x̄nn. These choices of coefficients ensure that the
per-unit local offloading or computation delay is inversely pro-
portional to the communication link or the fog server capacity.
In addition, the edge-cloud offloading limits {χ̄n} are uni-
formly distributed over [100, 200], and the data arrival rate
dn

t is generated according to dn
t = sin(π t/50) + νn

t , with νn
t

uniformly distributed over [45, 55]. Here the scales of pn
t , qn

t ,
and dn

t vary, mimicking the heterogeneity of IoT, while their
periods follow the periodic patterns of human activities in IoT.

1) Benchmarks: TAOSP is benchmarked by the nonadap-
tive MOSP method in [30] with a fixed primal stepsize α, and
the popular stochastic dual gradient approach in [32] and [37].
Since the stochastic gradient updates require noncausal knowl-
edge of ft(x) and {dn

t ,∀n} to decide xt, we modify them
in this OCO setting by using the information at slot t − 1
instead. We refer to this method as online dual gradient
(ODG). The parameters of all compared methods are tuned for
the best performance. Simulated tests were averaged over 50
Monte Carlo realizations.

2) Dynamic Regret and Fit in Basic Setup: With the goal
of minimizing the aggregate delay in (2), the dynamic regret
[see (6)] is first compared for TAOSP, ODG, and MOSP under
different stepsizes in Fig. 3. In this fog computing test, the
regret is the difference between the delay of TAOSP and the
minimal achievable delay [see (7)], and it is accumulated
over hundreds of iterations and over all fog nodes. Clearly,
the regret of TAOSP grows much slower than that of ODG.
Although under different stepsizes the regret of MOSP has a
growing rate similar to that of TAOSP, a constant gap can be
still observed between their regrets. Regarding the dynamic
fit [see (8)], Fig. 4 demonstrates that MOSP with larger step-
size η exhibits lower fit than that of ODG, and similar to the
dynamic fit of TAOSP. In such a case however, TAOSP still
enjoys lower regret than that of MOSP (see Fig. 3), thanks
to its flexibility of using adaptive matrix stepsizes. Evidently,
TAOSP performs the best in this simulated setting since it has
a much smaller regret on minimizing network delay while its
dynamic fit is smaller than that of ODG, and similar to that
of MOSP with larger stepsizes.
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Fig. 5. Dynamic regret under two malicious fog nodes.

Fig. 6. Dynamic regret under three malicious fog nodes.

Fig. 7. Time-average maximum delay.

3) Effect of Cyber Attacks: The performance of TAOSP is
further tested in the presence of cyber attacks, in which case
malicious communication links strategically impede offloading
from fog nodes and the cloud center, and lead to unexpected
communication delays. In the first test, the unexpected com-
munication delays are simulated by perturbing the coefficients
in cn

t (χ
n
t ) to be p5

t = 1500 for t mod 100 = 1, and p10
t = 500

for t mod 50 = 1, causing the dynamic regret shown in Fig. 5.
Clearly, the performance gain of TAOSP is already observable.
When more malicious communication links are involved, e.g.,
p15

t = 1500 for t mod 150 = 1, the performance gain of
TAOSP becomes more pronounced; see Fig. 6. The curvatures
of dynamic fit in these two cases are almost the same as that

Fig. 8. Dynamic fit under maximum delay criterion.

Fig. 9. Time-average maximum delay in time-varying networks.

Fig. 10. Dynamic fit under maximum delay criterion in time-varying
networks.

in Fig. 4, and thus they are omitted. The desired performance
comes from its matrix learning rate that mitigates the effect
of cyber attacks at one fog node on the other fog nodes.

4) Maximum Delay Criterion: TAOSP is further tested
using the maximum delay criterion defined in (3); see the
regret and fit in Figs. 7 and 8 for a static fog network, and in
Figs. 9 and 10 for a time-varying one. For the time-varying
fog network, the offloading limits between fog nodes switch
between cases 1 and 2 in Fig. 11 at every other slot. Note
that under this nonsmooth objective (3), OGD suffers from
significantly high computational complexity due to the lack
of a closed-form update, and thus it is not simulated here.
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(a) (b)

Fig. 11. Offloading limits {x̄nk} among nearby fog nodes, where different
color represents the different limit. (a) Case 1: fog nodes 1–10 belong to
the same fog cluster and nodes 11–20 belong to the other one. (b) Case 2:
nodes 1–15 belong to the same fog cluster and nodes 16–20 belong to the
other one.

Aligned with its performance in previous experiments, Fig. 7
shows that the maximum delay of TAOSP is also lower than
that of MOSP in most cases, and similar to MOSP with best
tuned stepsize α = 0.5/

√
T . However, Fig. 8 demonstrates

that the dynamic fit of MOSP with the small stepsize is much
larger than that of TAOSP in this setting. The performance gap
between TAOSP and MOSP with small stepsize can be also
observed in Figs. 9 and 10 with a time-varying fog network.
It is clearly shown that TAOSP can still achieve competitive
performance under the maximum delay criterion, in both static
and varying networks.

VI. CONCLUSION

Fog computation offloading has been formulated as an
online learning task with both adversarial costs and con-
straints. Different from existing OCO works, the focus is on a
broader setting where part of the constraints is revealed after
taking actions, they can be tolerable to instantaneous viola-
tions, but have to be satisfied on average. Accounting for the
extreme heterogeneity of IoT applications, a thing-adaptive
saddle-point approach termed TAOSP was introduced to learn
the optimal fog-computing actions with task-specific learning
rates. It has been shown that TAOSP simultaneously yields
sublinear dynamic regret and fit, provided that the dynamic
solutions vary slowly over time. The novel TAOSP algorithm
and its dynamic regret analysis endow the fog computing tasks
with efficient online implementation, as well as guaranteed IoT
user experience in nonstationary dynamic environments.

To overcome the limitations of TAOSP, several future direc-
tions can be pursued. While the current model assumes that
the relation between the amount of transmitted data versus the
needed computation is uniform among all the tasks, its gener-
alization to the task-specific case is of great importance. Such
a generalization requires incorporating multiple long-term
constraints, e.g., (1) per task and per node. Dealing with non-
convex delay functions is also in our future research agenda.

APPENDIX A

SUPPORTING LEMMAS

We first establish some key lemmas and propositions, and
then present the proofs of Lemmas 1–2 and Theorem 1.

Lemma 3: For the TAOSP recursion (13) and (14), the
differential squared Mahalanobis distance can be bounded by
∥∥x∗

t − xt
∥∥2

H
1
2
t

− ∥∥xt − x∗
t−1

∥∥2

H
1
2
t

≤ 2Rσmax

(
H

1
2
t

)∥∥x∗
t − x∗

t−1

∥∥

(24)

where R is defined in A3, and σmax(H
(1/2)
t ) is the

maximum eigenvalue of H(1/2)
t . The following distance is then

bounded by:
∥∥x∗

t − xt+1
∥∥2

H
1
2
t+1

− ∥∥x∗
t − xt+1

∥∥2

H
1
2
t

≤ R2tr

(
H

1
2
t+1 − H

1
2
t

)
.

(25)

Proof: For the first part of the lemma, it follows that:
∥∥x∗

t − xt
∥∥2

H
1
2
t

− ∥∥xt − x∗
t−1

∥∥2

H
1
2
t

= (x∗
t − xt + x∗

t−1 − xt
)�H

1
2
t (x∗

t − x∗
t−1)

(a)≤ ‖x∗
t − xt + x∗

t−1 − xt‖ · ‖H
1
2
t (x∗

t − x∗
t−1)‖

(b)≤ 2Rσmax(H
1
2
t )
∥∥x∗

t − x∗
t−1

∥∥ (26)

which (a) follows from Cauchy–Schwartz inequality, and (b)
uses the definitions of R, and σmax(H

(1/2)
t ).

For the second part of the lemma, we have that
∥∥x∗
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2
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)
(27)

which completes the proof as maxt≤T ‖x∗
t −xt+1‖∞ ≤ R.

Lemma 4: For the TAOSP recursion (13) and (14), the
accumulated squared Mahalanobis distance can be bounded by

T∑

t=1

(∥∥x∗
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where the constants G and R are defined in A2 and A3.
Proof: Adding and substracting ‖xt − x∗
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t
into the

targeted term ‖x∗
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, we have that

∥∥x∗
t − xt

∥∥2

H
1
2
t

− ∥∥x∗
t − xt+1

∥∥2

H
1
2
t

= ∥∥x∗
t − xt

∥∥2

H
1
2
t

− ∥∥xt − x∗
t−1

∥∥2

H
1
2
t

+ ∥∥xt − x∗
t−1

∥∥2

H
1
2
t

− ∥∥x∗
t − xt+1

∥∥2

H
1
2
t

(a)≤ 2Rσmax(H
1
2
t )
∥∥x∗

t − x∗
t−1

∥∥+ ∥∥xt − x∗
t−1

∥∥2

H
1
2
t

− ∥∥x∗
t − xt+1

∥∥2

H
1
2
t

(29)



CHEN et al.: HETEROGENEOUS ONLINE LEARNING FOR “THING-ADAPTIVE” FOG COMPUTING IN IoT 4337

where inequality (a) comes from (24) in Lemma 3, R is
defined in A3, and σmax(H

(1/2)
t ) is the maximum eigenvalue

of H(1/2)
t .

Summing up (29) over t = 1, 2, . . . , T , we have that
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where (b) holds since σmax(H
(1/2)
t ) is nondecreasing due to the

matrix update (12), and V(x∗
1:T) is defined in Theorem 1; and

(c) uses (25) in Lemma 3, H1 = δI, and the definition of R.
Using (19) to further expand the RHS of (30), it follows

that:
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from which we complete the proof.
Proposition 1: If we choose μ = cμT−(5/8) and θ =

cθ T−(1/8) with constants cμ > 0 and cθ > 0, for a sufficiently
large T , there exists cλ > (2c0/cθ ) such that for ρ ≥ cλT(1/8),
it holds that (

μθ2 − θ

2

)
ρ2 + c0ρ ≤ 0 (32)

where c0 > 0 is a given constant.
Proof: Since ρ > 0, it suffices to show (μθ2 − (θ/2))ρ +

c0 ≤ 0. Choosing μ = cμT−(5/8) and θ = cθ T−(1/8), we have(
μθ2 − θ

2

)
ρ + c0 =

(
cμc2

θ T− 7
8 − cθ

2
T− 1

8

)
ρ + c0 (33a)

(a)≤
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θ T− 7

8 − cθ

2
T− 1

8

)
cλT

1
8 + c0

(b)≤ 0

(33b)

where (a) holds whenever T > (2cμcθ )
(4/3) so that

cμc2
θ T−(7/8) − (cθ /2)T−(1/8) < 0 and (33a) is nonincreasing

with respect to ρ ≥ cλT(1/8); and (b) holds when cλ > 2c0/cθ

and T satisfies that

T ≥ max
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⎨
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θ
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) 4
3
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4
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⎫
⎬

⎭ = O(1) (34)

from which the proof is complete.

Proposition 2: For the recursion (13) and (14), if the dual
variable is initialized by ‖λ1‖ = O(T(1/8)) and the stepsize
is chosen as μ = (1/RG)T−(5/8), the maximum eigenvalue of
the diagonal matrix H(1/2)

t can be bounded by σmax(H
(1/2)
t ) ≤

σ(H) := O(T(7/8)).
Proof: The ith entry of the diagonal matrix Ht is given by
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where (a) uses (a1 + · · · + an)
2 ≤ n(a2

1 + · · · + a2
n) and the

Lipschitz condition in (A2).
From (35), it follows that σmax(H
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t ) ≤ maxi(Hii
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since Hii
t is nondecreasing over t, and we have:
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) 1
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= O
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(36)

where we simply used G2
i ≤ G2, and ‖λ̄‖ := maxt ‖λt‖.

For λt+1 = [λt + μgt(xt) − μθλt]+, since μθλt ≥ 0, it
can be shown using induction that the sequence {‖λt‖} is
upper bounded by the sequence {‖λ̂t‖} generated by the recur-
sion λ̂t+1 = [λ̂t + μgt(xt)]+ with λ̂1 = λ1, which gives
rise to

‖λ̄‖ ≤ ‖λ̂T − λ̂T−1‖ + . . . + ‖λ̂2 − λ1‖ + ‖λ1‖

≤
T−1∑

t=1

μ‖gt(xt)‖ + ‖λ1‖
(b)≤ TμRG + ‖λ1‖

= T
3
8 + cλT

1
8 = O

(
T

3
8

)
(37)

where (b) uses the definitions of G and R in A2 and A3, and
in (c), the parameters are chosen as μ = [1/(RG)]T−(5/8)

and ‖λ1‖ = cλT(1/8). Plugging (37) into (36), the proof is
then complete.

Note that while the order of ‖λ1‖ in Proposition 2 is
not unique to ensure σ(H) = o(T), the bound derived
in (52) ensures that it can neither be too big nor too
small.

APPENDIX B

PROOF OF LEMMA 1

Recall that the iterate xt+1 is the optimal solution to the
problem (11), thus the optimality condition implies that [38]

(x − xt+1)
�
(

η∇xLt(xt,λt) + H
1
2
t (xt+1 − xt)

)
≥ 0 ∀x ∈ X .

(38)
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With (38) in hand, we can thus upper bound the following:

η(xt − x)�∇xLt(xt,λt)

= η(xt+1 − x)�∇xLt(xt,λt) + η(xt − xt+1)
�∇xLt(xt,λt)

= (x − xt+1)
�
(

H
1
2
t (xt − xt+1) − η∇xLt(xt,λt)

)

+ (x − xt+1)
�H

1
2
t (xt+1 − xt) + η(xt − xt+1)

�∇xLt(xt,λt)

(a)≤ (x − xt+1)
�H

1
2
t (xt+1 − xt) + η(xt − xt+1)

�∇xLt(xt,λt)

(39)

where (a) follows from (38). We can further expand the first
term in the RHS of (39) by

(x − xt+1)
�H

1
2
t (xt+1 − xt) = 1

2
‖x − xt‖2

H
1
2
t

− 1

2
‖xt+1 − xt‖2

H
1
2
t

− 1

2
‖x − xt+1‖2

H
1
2
t

. (40)

For the second term in the RHS of (39), we have

η(xt − xt+1)
�∇xLt(xt,λt)

(b)≤ η‖xt − xt+1‖
H

1
2
t

‖∇xLt(xt,λt)‖
H

− 1
2

t

(c)≤ 1

2
‖xt − xt+1‖2

H
1
2
t

+ η2

2
‖∇xLt(xt,λt)‖2

H
− 1

2
t

(41)

where (b) uses the Cauchy–Schwartz inequality, and (c) is due
to Young’s inequality.

Plugging (40) and (41) into (39) leads to (17), which
completes the first part of the proof.

Likewise, using the dual update (14), we have

‖λ − λt+1‖2 = ∥∥λ − [λt + μ∇λLt(xt,λt)]
+∥∥2

(d)≤ ‖λ − λt‖2 − 2μ(λ − λt)
�∇λLt(xt,λt)

+ μ2‖∇λLt(xt,λt)‖2 (42)

where (d) uses the nonexpansive property of the projection
operator, and we can conclude (18) by rearranging terms.

APPENDIX C

PROOF OF LEMMA 2

Using the result in [25, Lemma 4], it follows that:

η

2

T∑

t=1

‖∇xLt(xt,λt)‖2

H
− 1

2
t

≤ η

I∑

i=1

‖∇ i
xL1:T(x1:T ,λ1:T)‖.

(43)

Therefore, the gradient with respect to primal variable can be
bounded by

η

2

T∑

t=1

‖∇xLt(xt,λt)‖2

H
− 1

2
t

≤ η

I∑

i=1

‖∇ i
xL1:T (x1:T , λ1:T )‖

≤ η

I∑

i=1

√
∑T

t=1

(
∇ i

xft(xt) +∑I
j=1 λ

j
t∇ i

xgj
t(xt)

)2

(a)≤ η

I∑

i=1

√
∑T

t=1(I + 1)

((∇ i
xft(xt)

)2 +∑I
j=1

(
λ

j
t∇ i

xgj
t(xt)

)2
)

≤ η

I∑

i=1

√
∑T

t=1(I + 1)

(
G2

i +∑I
j=1

(
λ

j
t

)2
G2

i

)

(b)≤ η

I∑

i=1

Gi

√
(I + 1)T + η

I∑

i=1

Gi

√
(I + 1)

∑T
t=1 ‖λt‖2

≤ ηG
√

(I + 1)T + ηG
√

(I + 1)
∑T

t=1 ‖λt‖2 (44)

where (a) uses the inequality (a1+. . .+an)
2 ≤ n(a2

1+. . .+a2
n),

(b) follows from ‖λt‖2 =∑I
j=1(λ

j
t)

2 and
√

a1 + a2 ≤ √
a1 +√

a2, and the constant is defined as G :=∑I
i=1 Gi. And for the

online gradient of Lagrangian with respect to dual variable is

μ

2

T∑

t=1

‖∇λLt(xt,λt)‖2 ≤ μ

2

T∑

t=1

I∑

i=1

(
gi

t(xt) − θλi
t

)2

(c)≤ μ

T∑

t=1

I∑

i=1

((
gi

t(xt)
)2 + (θλi

t

)2)

≤ μR2G2T + μθ2
T∑

t=1

‖λt‖2 (45)

where (c) again uses the inequality (a1 + a2)
2 ≤ 2(a2

1 + a2
2).

APPENDIX D
PROOF OF THEOREM 1

Given λt, the convexity of Lt(x,λt) implies

Lt(xt,λt) − Lt(x,λt) ≤ (xt − x)�∇xLt(xt,λt) (46a)

and likewise, the concavity of Lt(xt,λ) with respect to λ

leads to

Lt(xt,λ) − Lt(xt,λt) ≤ (λ − λt)
�∇λLt(xt,λt). (46b)

Combining (46a) and (46b) leads to (15).
Plugging (17) and (18) in Lemma 1 into (15), and setting

x = x∗
t defined in (7), we arrive at

Lt(xt,λ) − Lt
(
x∗

t ,λt
) ≤ 1

2η

(∥∥x∗
t − xt

∥∥2

H
1
2
t

− ∥∥x∗
t − xt+1

∥∥2

H
1
2
t

)

+ η

2
‖∇xLt(xt,λt)‖2

H
− 1

2
t

+ 1

2μ

(
‖λ − λt‖2 − ‖λ − λt+1‖2

)

+ μ

2
‖∇λLt(xt,λt)‖2. (47)

Summing up (47) over t = 1, 2, . . . , T , we find
T∑

t=1

Lt(xt,λ) − Lt
(
x∗

t ,λt
)

(a)≤ 1

2η

T∑

t=1

(∥∥x∗
t − xt

∥∥2

H
1
2
t

− ∥∥x∗
t − xt+1

∥∥2

H
1
2
t

)

+ 1

2μ
‖λ − λ1‖2 + μ

2

T∑

t=1

‖∇λLt(xt,λt)‖2

+ η

2

T∑

t=1

‖∇xLt(xt,λt)‖
H

− 1
2

t

(48)

where (a) uses the non-negativity of ‖λ − λT+1‖2.
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Note that the three terms in the RHS of (48) have been
bounded in Lemmas 1, 2, and 4, respectively. Hence, simply
plugging (19), (20), and (28) into (48), we arrive at

T∑

t=1

(Lt(xt,λ) − Lt
(
x∗

t ,λt
))

≤ R

η
σmax

(
H

1
2
T

)
V
(
x∗

1:T

)+ μR2G2T + δR2

2η

+
(

R2

2η
+ η

)
G
√

(I + 1)
∑T

t=1 ‖λt‖2 + μθ2
T∑

t=1

‖λt‖2

+
(

R2

2η
+ η

)
G
√

(I + 1)T + 1

2μ
‖λ‖2 + 1

2μ
‖λ1‖2

(49)

where we used that [1/(2μ)]‖λ − λ1‖2 ≤ [1/(2μ)]‖λ‖2 +
[1/(2μ)]‖λ1‖2.

On the other hand, also note that the definition of the online
Lagrangian in (9) gives rise to

T∑

t=1

(Lt(xt,λ) − Lt
(
x∗

t ,λt
)) =

T∑

t=1

(
ft(xt) − ft

(
x∗

t

))

+
T∑

t=1

λ�gt(xt) −
T∑

t=1

λ�
t gt(x∗

t ) − θT

2
‖λ‖2 +

T∑

t=1

θ

2
‖λt‖2

(b)≥
T∑

t=1

(
ft(xt) − ft

(
x∗

t

))+
T∑

t=1

λ�gt(xt) − θT

2
‖λ‖2

+
T∑

t=1

θ

2
‖λt‖2 (50)

where (b) follows since the minimizer x∗
t defined in (7) is a

feasible solution, i.e., gt(x∗
t ) ≤ 0 thus

∑T
t=1 λ�

t gt(x∗
t ) ≤ 0.

Combining (49) and (50), we have

T∑

t=1

(
ft(xt) − ft

(
x∗

t

))+
T∑

t=1

λ�gt(xt) −
(

θT

2
+ 1

2μ

)
‖λ‖2

≤ R

η
σmax(H

1
2
T )V(x∗

1:T) + μR2G2T + δR2

2η

+
(

μθ2 − θ

2

) T∑

t=1

‖λt‖2

+
(

R2

2η
+ η

)
G
√

(I + 1)
∑T

t=1 ‖λt‖2

+
(

R2

2η
+ η

)
G
√

(I + 1)T + ‖λ1‖2

2μ
. (51)

By selecting η = R/
√

2, μ = [1/(RG)]T−(5/8), and
θ = RGT−(1/8), and initializing λ1 such that ‖λ1‖ =
4
√

(I + 1)T(1/8), one can easily verify that the conditions in

Proposition 1 are satisfied with ρ =
√∑T

t=1 ‖λt‖2 ≥ ‖λ1‖,
which implies that

(
μθ2 − θ

2

) T∑

t=1

‖λt‖2 +
(

R2

2η
+ η

)
G
√

(I + 1)
∑T

t=1 ‖λt‖2 ≤ 0

together with (51) leading to

T∑

t=1

(
ft(xt) − ft

(
x∗

t

))+
T∑

t=1

λ�gt(xt) −
(

T
7
8 + T

5
8

)RG

2
‖λ‖2

≤ √
2σmax

(
H

1
2
T

)
V
(
x∗

1:T

)+ δR√
2

+ RG

2
‖λ1‖2T

5
8

+ RGT
3
8 + √

2RG
√

(I + 1)T
(c)≤ √

2σ(H)V
(
x∗

1:T

)+ RG

2
‖λ1‖2T

5
8 + ε0 (52)

where (c) uses Proposition 2, and the constant ε0 is defined as
ε0 := [(δR)/

√
2] + RGT(3/8) + √

2RG
√

(I + 1)T = O(
√

T).
Notice that the RHS of (51) is irrelevant to the choice of λ,

thus we can maximize its LHS over λ, given by

T∑

t=1

λ�gt(xt) −
(

T
7
8 + T

5
8

)RG

2
‖λ‖2. (53)

Using λ = [(
∑T

t=1 gt(xt))/((T7/8+T5/8)RG)] in the RHS
of (52), it follows that:

T∑

t=1

(
ft(xt)−ft

(
x∗

t

))+
T∑

t=1

λ�gt(xt)−
(

T
7
8 +T

5
8

)RG

2
‖λ‖2

=
T∑

t=1

(
ft(xt)−ft

(
x∗

t

))+ ‖∑T
t=1 gt(xt)‖2

2
(
T7/8+T5/8

)
RG

(d)≤ √
2σ(H)V

(
x∗

1:T

)+ RG

2
‖λ1‖2T

5
8 + ε0 (54)

where (d) follows from the LHS of (52).
To obtain the dynamic regret bound defined in (6), observe

that ‖∑T
t=1 gt(xt)‖2 ≥ 0, then it follows from (54) that:

Regd
T ≤ √

2σ(H)V
(
x∗

1:T

)+ RG

2
‖λ1‖2T

5
8 + ε0 (55)

where σ(H) = O(T(7/8)), ‖λ1‖2 = O(T(1/4)), and ε0 =
O(T∗(1/2)). With short-hand notations ε1 := √

2σ(H) =
O(T(7/8)) and ε2 := [(RG)/2]‖λ1‖2 = O(T(1/4)), we can
rewrite (55) as

Regd
T ≤ ε2T

5
8 + ε1V

(
x∗

1:T

)+ ε0 = O
(

T
7
8 V
(
x∗

1:T

))
. (56)

On the other hand, the mean-value theorem implies that
there exists x̂ such that ft(xt) − ft(x∗

t ) = (xt − x∗
t )

�∇ft(x̂) ≥
−‖xt − x∗

t ‖‖∇ft(x̂)‖ ≥ −RG. Therefore, we have

‖∑T
t=1 gt(xt)‖2

2
(
T7/8 + T5/8

)
RG

≤ ε2T
5
8 + ε1V

(
x∗

1:T

)+ ε0 + RGT. (57)

Rearranging terms in (57), we can conclude that
∥∥∥∥∥

T∑

t=1

gt(xt)

∥∥∥∥∥ ≤ 2
√

RGT
7
16

√
ε2T

5
8 + ε1V

(
x∗

1:T

)+ ε0 + RGT

= O
(

max

{
T

15
16 , T

7
8

√
V
(
x∗

1:T

)})
(58)

from which the proof is complete.
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