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Abstract: We consider a distributed constrained optimisation problem where a group of distributed
agents are interconnected via a cloud center, and collaboratively minimise a network-wide objective
function subject to local and global constraints. This paper devotes to developing efficient distributed
algorithms that fully utilise the computation abilities of the cloud center and the agents, as well as
avoid extensive communications between the cloud center and the agents. We address these issues
by introducing two divide-and-conquer techniques, the alternating direction method of multipliers
(ADMM) and a primal-dual first-order (PDFO) method, which assign the local objective functions
and constraints to the agents while the global ones to the cloud center. Both algorithms are proved to be
convergent to the primal-dual optimal solution. Numerical experiments demonstrate the effectiveness
of the proposed distributed constrained optimisation algorithms.
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1 Introduction

This paper considers a distributed constrained optimisation
problem defined over a cloud-based multi-agent network.
A group of n distributed agents (also called as nodes)
are interconnected via a cloud center, and collaboratively
minimise a network-wide objective function subject to local
and global constraints. To be specific, every agent i has a
local objective function fi(xi) and a local constraint xi ∈ Xi,
where xi ∈ Rpi is a local optimisation variable. The network-
wide objective function is defined as

∑n
i=1 fi(xi) + h(x),

with h(x) being the global objective function depending on
the stacked optimisation variable x , [x1; · · · ;xn] ∈ X ⊆
Rp, X is the Cartesian product of Xi, i = 1, . . . , n and p =∑n

i=1 pi. The network is also subject to m global constraints
on the stacked optimisation variable x, denoted as gj(x) ≤
0, j = 1, . . . ,m. Therefore, the constrained optimisation
problem is in the form of

min
n∑

i=1

fi(xi) + h(x),

s.t. xi ∈ Xi, i = 1, . . . , n,

gj(x) ≤ 0, j = 1, . . . ,m.

(1)

The form of equation (1) appears in a large number of network
applications. For example, every agent can be a robot and
the team of cooperative robots are coordinated via a cloud
center to monitor an interested area. In this setting, the local
optimisation variables xi stand for the positions of the robots.
The local objective functions and constraints determine the
expected positions of the individual robots, while the global
objective functions and constraints determine the relative
orientations of all the robots (Hale and Egerstedt, 2014; Hale
et al., 2015). Network resource allocation of a cloud network
can also be formulated as such a constrained optimisation
problem (Beck et al., 2014; Chen et al., 2017). More examples
include networks of smart portable devices (Armbrust et al.,
2010; Bonomi et al., 2012), smart grids (Giannakis et al., 2013;
Li and Scaglione, 2013), large-scale machine learning systems
(Boyd et al., 2011; Mokhtari et al., 2016), to name a few.

One naive approach to solving equation (1) is letting
the cloud center collect all the local objective functions and

constraints, and find an optimal solution in a centralised
manner. This centralised approach is costly in communication,
inflexible to changes of the network topology and the
optimisation task, and insecure due to the danger of leaking
local information. A favourable choice is designing distributed
algorithms that offload some computation tasks to the agents.
That is, every agent processes its own local objective function
and constraint while the cloud center processes the global
ones; the agents and the cloud center coordinate to guarantee
the optimality of solutions (Tsitsiklis et al., 1986; Bertsekas
and Tsitsiklis, 1997).

Classical divide-and-conquer methods to handle this
problem operate in the primal-dual domain. The dual
decomposition method considers a Lagrangian function that
dualises the inequality constraints and optimises along dual
(sub)gradient ascent directions. Recent works (Hale and
Egerstedt, 2014; Hale et al., 2015) propose dual decomposition
algorithms to solve equation (1). However, at every iteration
they require the cloud center to collect the primal variables
from all the agents, update the dual variables, and send all
the primal and dual variables to all the agents. Therefore,
they incur heavy communication load. In addition, the main
disadvantage of the dual decomposition method is its slow
convergence (Bertsekas, 1999; Chiang et al., 2007). To address
this issue, (Hale et al., 2015) appends Tikhnov regularisation
terms to the dual function so as to improve the convergence
speed. Nevertheless, this approach leads to an inexact solution
that resides in a neighbourhood of the optimum of equation (1).

Another remarkable primal-dual algorithm is the
alternating direction method of multipliers (ADMM) (Gabay
and Mercier, 1976; Eckstein and Bertsekas, 1992). Through
introducing local copies of the optimisation variable in both
the cloud center and the agents, imposing and dualising
consensus constraints on them, and optimising the augmented
Lagrangian in an alternating direction manner, ADMM
demonstrates fast convergence both in practice (Boyd et al.,
2011; Giannakis et al., 2016) and in theory (He and Yuan,
2012; Deng and Yin, 2016; Hong and Luo, 2017; Shi et al.,
2014). Since the alternating optimisations of the primal
variables often involve nontrivial subproblems, solving their
linear or quadratic approximations is able to reduce the
computation costs (Ng and Yuan, 2011; Ling et al., 2015;
Chang et al., 2015; Mokhtari et al., 2016).
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This paper devotes to developing efficient distributed
algorithms that fully utilise the computation abilities of the
cloud center and the agents, as well as avoid extensive
communications between the cloud center and the agents. We
address these issues by introducing two divide-and-conquer
techniques, both of which assign the local objective functions
and constraints to the agents while the global ones to the
cloud center. The first algorithm is based on ADMM and the
second one is a primal-dual first-order (PDFO) method. Both
algorithms naturally yield two layers, the agent layer and the
cloud center layer, which exchange intermediate variables so
as to collaboratively obtain a network-wide optimal solution.
However, the ADMM-based algorithm requires the cloud
center and the agents to solve optimisation subproblems at
every iteration, and hence brings high computation cost.
The PDFO method significantly reduces the iteration-wise
computation cost by replacing the optimisation subproblems
with simple first-order gradient descent and projection
operations.

The rest of the paper is organised as follows.
Section 2 develops the distributed constrained optimisation
algorithm based on ADMM. The PDFO method with lower
iteration-wise computation cost is proposed in Section 3.
Section 4 provides numerical experiments to demonstrate
the effectiveness of the two proposed algorithms. Section 5
concludes the paper and gives future research directions.

2 ADMM-based distributed constrained
optimisation

Section 2.1 solves equation (1) based on ADMM. The resultant
algorithm is outlined in Section 2.2 and implementation
issues are discussed in Section 2.3. Section 2.4 compares the
proposed algorithm with existing works.

2.1 Algorithm development

ADMM solves an optimisation problem in the form

min c(x) + d(y),

s.t. Ax+By = 0,

x ∈ X , y ∈ Y.
(2)

Here c(x) and d(y) are functions of optimisation variables
x and y, respectively; A and B are two matrices; X and Y
are the extra constraint sets on x and y, respectively. The two
variables are entangled in the linear constraintAx+By = 0,
which makes solving equation (2) a difficult task.

ADMM operates on the augmented Lagrangian function
of equation (2), minimises the primal variables x and y
in an alternating manner, and updates the dual variable
corresponding to the linear constraintAx+By = 0with dual
(sub)gradient ascent. The idea of ADMM can be traced back
to the 1970s (Gabay and Mercier, 1976). When the objective

functions c(x) and d(y) as well as the constraint sets X and Y
are convex, convergence of the iterate to the optimal primal-
dual pair is proved in Eckstein and Bertsekas (1992), while
its sublinear convergence rate is established in He and Yuan
(2012). When the objective functions are strongly convex,
ADMM has linear convergence rate (Deng and Yin, 2016;
Hong and Luo, 2017). The fast convergence speed and the
superior numerical stability have made ADMM a popular
choice for a large number of applications in recent years,
particularly for distributed optimisation; readers are referred
to the survey papers (Boyd et al., 2011; Giannakis et al., 2016).

Observe that in equation (1) there is only one group
optimisation variables x = [x1; · · · ;xn]. To apply ADMM to
equation (1), we introduce another group of auxiliary variables
y , [y1; · · · ; yn] ∈ Rp where yi ∈ Rpi for all i. Replacing
x in h(x) and all gj(x) by y and appending a consensus
constraint x = y, we have

min

n∑
i=1

fi(xi) + h(y),

s.t. x− y = 0,

xi ∈ Xi, i = 1, . . . , n,

gj(y) ≤ 0, j = 1, . . . ,m,

(3)

which is equivalent to equation (1). Now equation (3) is in the
form of equation (2) and ADMM is hence applicable.

Define the augmented Lagrangian function that dualises
the linear constraint x− y = 0 as

Lρ(x, y, µ) =
n∑

i=1

fi(xi) + h(y) + ⟨µ, x− y⟩

+
ρ

2
∥x− y∥2,

s.t. xi ∈ Xi, i = 1, . . . , n,

gj(y) ≤ 0, j = 1, . . . ,m,

(4)

where µ ∈ Rp is the Lagrange multiplier and ρ is a positive
constant. At every iteration, ADMM first fixes the primal
variable y and the dual variable µ, and minimises the
augmented Lagrangian function over the primal variable x.
Then it fixes x and µ to minimise the augmented Lagrangian
function over y. Finally, the dual variable µ is updated from
x and y through a dual (sub)gradient step. Therefore, at time
k + 1, the update of the primal variable x is

xk+1 = argmin
n∑

i=1

fi(xi) +
ρ

2
∥x− yk +

µk

ρ
∥2,

s.t. xi ∈ Xi, i = 1, . . . , n.

(5)

Observe that y , [y1; · · · ; yn] ∈ Rp and µ , [µ1; · · · ;µn] ∈
Rp where yi ∈ Rpi and µi ∈ Rpi . Therefore, equation (5) is
separable with respect to all xi. To be specific, the update of
xi is
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xk+1
i = arg min

xi∈Xi

fi(xi) +
ρ

2
∥xi − yki +

µk
i

ρ
∥2. (6)

The update of the auxiliary variable y is

yk+1 = argmin h(y) +
ρ

2
∥y − xk+1 − µk

ρ
∥2,

s.t. gj(y) ≤ 0, j = 1, . . . ,m.

(7)

The update of µ is

µk+1 = µk + ρ(xk+1 − yk+1). (8)

Notice that in this dual (sub)gradient step, the step size is the
same as the positive constant ρ in the augmented Lagrangian
function (4).

In the ADMM updates, equation (8) only involves
simple arithmetic operations. Given that Xi is simple such
that projecting onto it is computationally efficient and fi
is convex, equation (6) can be solved by the projected
(sub)gradient method (Boyd and Vandenberghe, 2004).
However, equation (7) can be nontrivial if the objective
function h(y) and the inequality constraint functions gj(y)
are neither linear nor quadratic. Below we propose to solve
equation (7) with the dual decomposition method (Bertsekas,
1999; Chiang et al., 2007).

By introducing nonnegative Lagrange multipliers νj ∈
R+ to the inequality constraints gj(y) ≤ 0 in equation (7), we
have the Lagrangian function

L(y, ν) = h(y) +
ρ

2
∥y − xk+1 − µk

ρ
∥2 +

m∑
j=1

νjgj(y). (9)

Denote ν , [ν1; · · · ; νm] ∈ Rm
+ as a vector that stacks all

the Lagrange multipliers. Notice that the Lagrangian function
is not augmented, since appending the squares of nonlinear
inequality constraint functions makes the function nonconvex
in the primal variable y. At slot t+ 1 in the inner loop
of time k + 1, the dual decomposition method calculates
y with (sub)gradient descent, followed by the update of ν
from projected (sub)gradient ascent. Denoting yk+1(t+ 1)
and νk+1(t+ 1) as the calculated values of y and µ at slot
t+ 1 in the inner loop of time k + 1, respectively, we have

yk+1(t+ 1)

=yk+1(t)− c∇yk+1(t)L(yk+1(t), νk+1(t)),
(10)

where

∇yk+1(t)L(yk+1(t), νk+1(t)) = ∇h(yk+1(t)) + ρyk+1(t)

− ρxk+1 − µk +
m∑
j=1

νk+1
j (t)∇gj(yk+1(t)).

In equation (10), c is a positive dual decomposition step size.
With a slight abuse of notations, ∇ is the gradient if the

function is differentiable, or a subgradient if the function is
non-differentiable. For the update of ν, we have

νk+1(t+ 1)

=
[
νk+1(t) + c∇νk+1(t)L(yk+1(t+ 1), νk+1(t))

]
+
,

(11)

where [·]+ denotes projection onto the nonnegative orthant.
Due to the separable structure of L(y, ν) with respect to all
νj , for every constraint j the update of equation (11) yields

νk+1
j (t+ 1) =

[
νk+1
j (t) + cgj(y

k+1(t+ 1))
]
+
. (12)

Remark 1: Given that the objective functions and the
constraints in equation (3) – and equivalently in (1) – are
convex, and the subproblems (6) and (7) are accurately solved,
the sequence generated by the ADMM updates (6), (7) and (8)
guarantees to converge to an optimal solution of (3) for any
positive parameter ρ (Eckstein and Bertsekas, 1992; He and
Yuan, 2012). Suppose that equation (6) has been accurately
solved by the projected (sub)gradient method. Therefore,
convergence of the ADMM updates is determined by the
accuracy of solving equation (7). It is known that the dual
decomposition updates (10) and (11) also converge to an
optimal solution of the convex program (7) when the step size
c is sufficiently small (Bertsekas, 1999). The computational
stability of the dual decomposition method is favourable due
to the existence of the quadratic term in equation (7), which
makes the objective function strongly convex.

2.2 Algorithm outline

The proposed ADMM-based distributed constrained
optimisation algorithm is outlined in Algorithm 1. At time
k = 0, the cloud center and the agents initialise the variables
as y0 ∈ X , µ0 = 0, ν0 = 0 and x0i ∈ Xi. At time k + 1, every
agent i updates xk+1

i from equation (6), using the values of yki
and µk

i that are known after the communication step in Line
12. Then the cloud center collects all xk+1

i from the agents
and solves yk+1 from equation (7) by an inner loop with T
slots. The initial values of the inner loop are yk+1(0) = yk

and νk+1(0) = νk. The primal update of yk+1(t+ 1) from
equation (10) requires local variables yk+1(t) and µk as well
as variables xk+1

i available from the communication step
in Line 3. The dual update of νk+1(t+ 1) in equation (11)
requires only local variables yk+1(t+ 1) and νk+1(t). When
the inner loop terminates after T slots, the outer-loop primal
variable is set as yk+1 = yk+1(T ) and the inner-loop dual
variable is set as νk+1 = νk+1(T ). Both yk+1 and xk+1 are
used in calculating the dual variable µk+1 from equation (8).
Finally, yk+1

i and µk+1
i are disseminated to every agent i by

the cloud center. Figure 1 shows a schematic diagram on the
computation and communication of cloud center and agents.

2.3 Implementation issues

As we have discussed in Section 2.1, the ADMM-based
distributed constrained optimisation algorithm converges to
the optimal solution of equation (3) when the subproblems (6)
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and (7) are exactly solved. If computing the projection onto the
set Xi is affordable in agent i, equation (6) can be efficiently
solved by the projected (sub)gradient method. Indeed, it is
possible to run the projected (sub)gradient method for only
several steps to obtain an approximate solution, while still
guaranteeing convergence, as we have observed in the inexact
ADMM approaches (Ng and Yuan, 2011; Ling et al., 2015;
Chang et al., 2015; Mokhtari et al., 2016). Further, if the local
constraint xi ∈ Xi is absent and the local objective function
fi(xi) has a special form (for example, the ℓ1 and ℓ2 norms),
the resultant problem has an explicit solution.

Figure 1 Computation and communication of cloud center and
agents (see online version for colours)

Therefore, the main computational bottleneck of the
algorithm resides in the inner loops of solving equation (7).
Theoretically, the dual decomposition subroutine converges to
the optimal solution of equation (7) only when the number of
inner iterations T goes to infinity. Though the cloud center is
often supposed to have strong computation power, spending a
large number of iterations in the inner loops is still inefficient.
Therefore, in implementing the algorithm, we set T to be
a fixed small number. Numerical experiments in Section 4
show that the solutions of the inner loops will be more and
more accurate as the outer loops evolve. With particular
note, since the dual decomposition subroutine works on the
primal-dual domain, theoretically analysing the difference
between the inexact solution and the optimum to equation (7)
is challenging. For this reason, the existing convergence
guarantee for inexact ADMM no longer holds. We leave the
analysis of this inexact version of the proposed algorithm to
future research.

2.4 Comparisons with existing works

The main feature of the proposed ADMM-based distributed
constrained optimisation algorithm is to utilise the divide-
and-conquer technique for assigning the computation to two
layers, the cloud center layer and the distributed agent layer.
The two layers conduct their computing tasks respectively,
while collaborate to obtain the global optimal solution through
information exchange. To be specific, the cloud center sends
the intermediate primal variable yk+1 ∈ Rp and the dual
variable µk+1 ∈ Rp to the agents, while the agents send the
intermediate primal variables xk+1

i ∈ Rpi to the cloud center.
Notice that yk+1 is an estimate of x = [x1; · · · ;xn] from the
cloud center’s perspective. The two primal variables yk+1 and

xk+1 = [xk+1
1 ; · · · ;xk+1

n ] shall converge to the same optimal
argument as k goes to infinity, and the role of the dual variable
µk+1 is to punish the gap between the two vectors. This setting
results in affordable communication costs between the two
layers.

A naive approach to solving the constrained optimisation
problem (1) is to let the cloud center collect all the
local objective functions and local constraints from the
agents. Apparently, this approach is costly in communication,
inflexible to the changes of the network topology and the
optimisation task, and insecure due to the danger of leaking
local information. Contrarily, the proposed algorithm has
the advantages of lightweight communication, flexibility to
uncertainties, and privacy preservation.

Two notable approaches to solving the constrained
optimisation problem (1) are the dual decomposition
algorithm proposed in Hale and Egerstedt (2014) and the
Tikhonov regularised dual decomposition algorithm proposed
in Hale et al. (2015). The two algorithms both work in the
primal-dual domain of (1) – instead, our algorithm works in
the primal-dual domain of the equivalent form (3). The dual
decomposition algorithm in Hale and Egerstedt (2014) suffers
from computational instability when the objective function
is not strongly convex or non-differentiable. This issue is
addressed in Hale et al. (2015) by introducing Tikhonov
regularisation to both the primal and dual variables, at the
cost of yielding a non-optimal solution. Note that at every
iteration these two algorithms require the cloud center to
collect the primal variables from all the agents, update the dual
variables, and send both the primal and dual variables to all the
agents. Therefore, at every iteration the cloud center collects
a p-dimensional primal variable, while sends to every agent
an m-dimensional dual variable and a p-dimensional primal
variable. In comparison, at every iteration in Algorithm 1,
the cloud center collects p-dimensional primal variables x =
[x1; · · · ;xn], while sends to agent i a pi-dimensional dual
variable µi and a pi-dimensional primal variable yi. In
summary, at every iteration of Hale and Egerstedt (2014)
and Hale et al. (2015), the communication load of the cloud
center is p in collecting information, and p+m in sending
information in a broadcast mode. In a unicast mode, the
communication load of sending increases to n(m+ p), which
is proportional to the number of agents n. In our algorithm,
the communication load of the cloud center is 2p in sending
and p in collecting, both irrelevant with the network size.
Similarly, for agent i the communication loads of sending are
both pi in the two algorithms, but those of collecting are p+m
in Hale and Egerstedt (2014); Hale et al. (2015), while 2pi
in Algorithm 1. Therefore, the proposed algorithm is more
communication-efficient than those in Hale and Egerstedt
(2014); Hale et al. (2015).

3 PDFO method for distributed constrained
optimisation

To reduce the iteration-wise computational cost of ADMM,
Section 3.1 proposes a PDFO method for solving equation (1)
such that the cloud center and the agents do not need to
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run inner loops to solve optimisation subproblems. Instead,
at every iteration the cloud center only uses one projected
(sub)gradient step to update its primal variable; the same every
agent does. The resultant algorithm is outlined in Section 3.2.
Its convergence is analysed in Section 3.3.

Algorithm 1 ADMM-Based Algorithm
Require: Cloud center initializes y0 ∈ X , µ0 = 0, ν0 = 0.
Require: Every agent i initializes x0

i = Xi.
1: for times k = 1, 2, . . . do
2: Every agent i updates xk+1

i from (6).
3: Cloud center collects all xk+1

i from agents.
4: Cloud center solves (7) by the following inner loop.
5: Initializes yk+1(0) = yk and νk+1(0) = νk.
6: for t = 0, 1, · · · , T − 1 do
7: Updates primal variable yk+1(t+ 1) from (10);
8: Updates dual variable νk+1(t+ 1) from (11).
9: end for

10: Lets yk+1 = yk+1(T ) and νk+1 = νk+1(T ).
11: Cloud center calculates dual variable µk+1 from (8).
12: Cloud center sends yk+1

i and µk+1
i to every agent i.

13: end for

3.1 Algorithm development

The proposed PDFO algorithm considers another equivalent
form of equation (1), which is

min
n∑

i=1

fi(xi) + h(y),

s.t. x− y = 0,

xi ∈ Xi, i = 1, . . . , n,

gj(y) ≤ 0, j = 1, . . . ,m, y ∈ X .

(13)

Again, y , [y1; · · · ; yn] ∈ Rp is an auxiliary variable, where
yi ∈ Rpi . Observe that equation (13) is slightly different to
equation (3) by adding the constraint y ∈ X , where X is
defined as the Cartesian product of Xi, i = 1, . . . , n. This
slight modification is important to the development of the
PDFO algorithm. Dualising the equality constraint x− y =
0 and the inequality constraints gj(y) ≤ 0 yields a partially
augmented Lagrangian function

L̃ρ(x, y, µ, ν) =
n∑

i=1

fi(xi) + h(y) +
m∑
j=1

νjgj(y)

+ ⟨µ, x− y⟩+ ρ

2
∥x− y∥2,

s.t. xi ∈ Xi, i = 1, . . . , n, y ∈ X ,

(14)

where µ ∈ Rp is the Lagrange multiplier attached to x−
y = 0, νj ∈ R+ are the Lagrange multipliers attached to
gj(y) ≤ 0, j = 1, . . . , n, and ρ is a positive constant. Notice
that equation (14) is different to equation (4) since gj(y) ≤
0 are also dualised. To avoid introducing nonconvex terms,
these inequality constraints are not quadratically augmented
to equation (14).

At every iteration, the proposed PDFO algorithm first fixes
y, µ, and ν to inexactly minimise L̃ρ over x, then fixes x, µ,
and ν to inexactly minimise L̃ρ over y, and finally updates µ
and ν. At time k + 1, the update of xi is

xk+1
i = PXi

[
xki − a∇xk

i
L̃ρ(x

k, yk, µk, νk)
]

= PXi

[
xki − a(∇fi(xki ) + µk

i + ρxki − ρyki )
]
.

(15)

Here a is a positive step size and PXi denotes projection onto
the set Xi. The update of the auxiliary variable y is

yk+1 = PX
[
yk − b∇yk L̃ρ(x

k+1, yk, µk, νk)
]

= PX

[
yk − b

{
∇h(yk)− µk − ρxk+1 + ρyk

+

m∑
j=1

νkj ∇gj(yk)
}]
.

(16)

Again, b is a positive step size and PX denotes projection onto
the set X . Then the update of µ is

µk+1 = µk + ρ∇µk L̃ρ(x
k+1, yk+1, µk, νk)

= µk + ρ(xk+1 − yk+1),
(17)

where the dual ascent step size ρ is the same as the positive
constant used in the augmented Lagrangian L̃ρ. Denote ν ,
[ν1; · · · ; νm] ∈ Rm

+ . The update of ν is

νk+1 = PD
[
νk + b∇νk L̃ρ(x

k+1, yk+1, µk+1, νk)
]
, (18)

and thus for every νj we have

νk+1
j = PD

[
νkj + bgj(y

k+1)
]
. (19)

Here the dual ascent step size b is the same as the one we used
in the update of y, and PD denotes projection onto the set
D , [0, νmax]. The value of the positive constant νmax will be
given in equation (28) of Theorem 1.

Remark 2: Comparing the PDFO method with the ADMM-
based algorithm, we can observe that their major differences
are three-fold. First, the update of xi in equation (15) is a
simple projected (sub)gradient step; while in the ADMM-
based algorithm, the update of xi in equation (6) solves
an optimisation problem, which requires running multiple
projected (sub)gradient steps. Second, at every iteration,
the PDFO method updates y and νj only once, but the
ADMM-based algorithm uses inner loops and updates them
multiple times. Third, the update of y in equation (10) is a
(sub)gradient descent step and that in equation (16) projects
onto X after (sub)gradient descent. Meanwhile, the update
of νj in equation (12) projects onto the nonnegative orthant,
but that in equation (19) has an additional upper bound. The
first two differences enable the PDFO method to achieve
much better iteration-wise computational efficiency than the
ADMM-based algorithm. The third difference compensates
the lack of inner loops to update y and νj , and guarantees
the computational stability of the PDFO method. We also
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emphasise that the PDFO method has the same iteration-wise
communication cost as that of the ADMM-based algorithm,
and is hence advantageous over the existing works (Hale and
Egerstedt, 2014; Hale et al., 2015) as we have discussed in
Section 2.4.

3.2 Algorithm Outline

The proposed PDFO method that solves the distributed
constrained optimisation problem (1) is outlined in
Algorithm 2. At time k = 0, the cloud center and the
agents initialise the variables as y0 ∈ X , µ0 = 0, ν0 = 0
and x0i ∈ Xi. At time k + 1, every agent i updates xk+1

i

from equation (15), using the values of yki and µk
i that are

known after the communication step in Line 7. Then the cloud
center collects all xk+1

i from the agents, while updates yk+1

from equation (16), µk+1 from equation (17), and νk+1 from
equation (18). The updates of yk+1 andµk+1 require variables
xk+1
i available from the communication step in Line 3. The

update of νk+1 in equation (11) requires only local variables.
Finally, yk+1

i and µk+1
i are disseminated to every agent i

by the cloud center. Notice that PDFO and ADMM, though
totally different in algorithmic details, have the same flow
of computation and communication, as we have shown in
Figure 1.

Algorithm 2 PDFO Method
Require: Cloud center initializes y0 ∈ X , µ0 = 0, ν0 = 0.
Require: Every agent i initializes x0

i = Xi.
1: for times k = 1, 2, . . . do
2: Every agent i updates xk+1

i from (15).
3: Cloud center collects all xk+1

i from agents.
4: Cloud center updates primal variable yk+1 from (16);
5: Cloud center calculates dual variable µk+1 from (17).
6: Cloud center calculates dual variable νk+1 from (18).
7: Cloud center sends yk+1

i and µk+1
i to every agent i.

8: end for

3.3 Convergence analysis

To prove convergence of the PDFO method, we make
the following assumptions on the distributed constrained
optimisation problem (1).

Assumption 1: There exists a slater point (Bertsekas et al.,
2003) (x̄, ȳ) of equation (13) such that x̄ ∈ X , ȳ ∈ X , x̄ = ȳ,
and gj(ȳ) < 0, j = 1, . . . ,m.

Assumption 2: The cost function f(x) ,
∑n

i=1 fi(xi) has
Lipschitz continuous gradient with constantLf and is convex.
That is, for any two arbitrary points x and x̃ in the domain of
f(x), we have

f(x) ≤ f(x̃) + ⟨∇f(x̃), x− x̃⟩+ Lf

2
∥x− x̃∥2, (20)

f(x) ≥ f(x̃) + ⟨∇f(x̃), x− x̃⟩. (21)

The cost function h(x) has Lipschitz continuous gradient with
constant Lh and is strongly convex with constant Mh. That

is, for any arbitrary points x and x̃ in the domain of h(x), we
have

h(x) ≤ h(x̃) + ⟨∇h(x̃), x− x̃⟩+ Lh

2
∥x− x̃∥2, (22)

h(x) ≥ h(x̃) + ⟨∇h(x̃), x− x̃⟩+ Mh

2
∥x− x̃∥2. (23)

Assumption 3: The constraint set X is convex and bounded.
The constraint functions gj(x), j = 1, . . . ,m have Lipschitz
continuous gradients with constants Lgj and are convex. That
is, for any arbitrary points x and x̃ in the domain of gj(x), we
have

gj(x) ≤ gj(x̃) + ⟨∇gj(x̃), x− x̃⟩+
Lgj

2
∥x− x̃∥2, (24)

gj(x) ≥ gj(x̃) + ⟨∇gj(x̃), x− x̃⟩. (25)

For future usage, collect all the Lipschitz continuity constants
Lgj into a vector LG , [Lg1 ; · · · ;Lgm ] ∈ Rm. Also define
G(x) , [g1(x); · · · ; gm(x)] ∈ Rm. For any two points x and
x̃ in X , there is a positive constant δ such that it holds

∥G(x)−G(x̃)∥2 ≤ δ∥x− x̃∥2. (26)

Assumptions 1 and 2 are common in the convergence analysis
of convex optimisation algorithms. Recall the definition of
f(x) =

∑n
i=1 fi(xi), we know that f(x) being convex is

equivalent to all fi(xi) being convex, and the sufficient
condition of f(x) having Lipschitz continuous gradient with
constant Lf is that all ∇fi(xi) have Lipschitz continuous
gradient with constant Lf . Also notice that the strong
convexity of h(x) guarantees that the objective function in
equation (1) is also strongly convex, which is important to the
computational stability the PDFO method since it only utilises
first-order information in the primal-dual domain. Assumption
3 is reasonable because the local decision variables xi are
often bounded, such that X , the Cartesian product of the local
constraintsXi, is also bounded. In addition, the inequality (26)
naturally satisfies given that all gj(x) are differentiable and X
is bounded.

An immediate conclusion from Assumptions 1–3 is that
any optimal primal-dual solution of equation (13) is bounded
as shown by Lemma 1, whose is given in Appendix B.

Lemma 1: Under Assumptions 1–3, any optimal primal-
dual solution (x∗, y∗, µ∗, ν∗) of equation (13) is bounded.

The following theorem shows convergence of the PDFO
method. Its proof is given in Appendix A.

Theorem 1: Under Assumptions 1–3 and given that the
PDFO parameters a, b and ρ are chosen such that

a ≤ 1

Lf + ρ
,

b ≤ min
{ 1

νmax

∑m
j=1 Lgj + Lh + ρ

,
1√
δ
,
Mh

δ

}
,

(27)
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and

νmax >∥ν∗∥+
(
∥ν0 − ν∗∥2 +

(
b

a
− bρ

)
∥x0 − x∗∥2

+(1− b2δ)∥y0 − y∗∥2 + b

ρ
∥µ0 − µ∗∥2

)1/2

,

(28)

then the sequence (xk, yk, µk, νk) generated by the
PDFO recursion (15), (16), (17) and (19) converges to
(x∗, y∗, µ∗, ν∗), which is an optimal primal-dual solution of
equation (13), as k → ∞.

Observe the lower bound of the parameter νmax given in
equation (28) is not necessarily easy to calculate. In practice,
we simply use a sufficiently large value to replace this
theoretical bound. Nevertheless, the theoretical bound in
equation (28) is critical to the convergence analysis of the
PDFO algorithm.

4 Numerical experiments

In the numerical experiments, we adopt the same benchmark
problem as given in Hale et al. (2015). There are eight
distributed agents connected via the cloud center. Every agent
i has a local decision variable xi = [xi,1;xi,2] ∈ R2, which
represents the position of the agent in a two-dimensional plane.
The summation of the local objective functions is

8∑
i=1

fi(xi) = x21,1 + x21,2 + (x2,1 + 1)2 + (x2,2 − 1)2

+ (x3,1 − 0.2)2 + (x3,2 + 0.6)2 + (x4,1 + 1.4)2

+ (x4,2 − 1.4)2 + (x5,1 + 0.1)2 + (x5,2 − 0.5)2

+ (x6,1 + 0.7)2 + (x6,2 − 0.7)2 + (x7,1 − 0.5)2

+ x7,2 − 1.1 + (x8,1 + 0.3)2 + x48,2.

The global objective function is

h(x) =
1

200

(
∥x1 − x4∥2 + ∥x1 − x8∥2 + ∥x4 − x8∥2

)
.

The agents are subject to five global distance constraints

g1(x) = ∥x1 − x2∥2 − 0.6 ≤ 0,

g2(x) = ∥x1 − x5∥2 − 1.2 ≤ 0,

g3(x) = ∥x7 − x8∥2 − 1.8 ≤ 0,

g4(x) = ∥x1 − x3∥2 − 0.4 ≤ 0,

g5(x) = ∥x4 − x6∥2 − 0.9 ≤ 0.

The variables are also subject to local box constraints, which
are xi ∈ Xi , [−1.5, 1.5]× [−1, 1.5] for all the agents i.

We compare the proposed distributed constrained
optimisation algorithms ADMM and PDFO with the Tikhonov
regularised dual decomposition (TRDD) algorithm in Hale
et al. (2015). The parameters of TRDD are the same as those
in Hale et al. (2015): the primal regularisation constant is 0.1,
the dual regularisation constant is 0.1, the primal step size is

2.804× 10−2, and the dual step size is 9.835× 10−4. The
ADMM-based algorithm has three parameters: the augmented
Lagrangian constant is ρ = 1.5, the inner loop gradient step
size is c = 0.3, and the number of inner loop slots T is set to
be 1, 3 and 10. To distinguish the algorithms with different
T , we denote them as ADMM-1, ADMM-3 and ADMM-10,
respectively. The PDFO method also has three parameters: the
augmented Lagrangian constant is ρ = 1.5, the gradient step
size of x update is a = 0.4 and that of y update is b = 0.3.

Convergence properties of all the algorithms are shown in
Figure 2. The performance metric is relative error, which is
defined as the distance between xk and the optimal solution
x∗. The proposed algorithms quickly to the optimal solution
with an accuracy of 10−3, ADMM-3 and ADMM-10 within
20 iterations while ADMM-1 and PDFO within 50 iterations.
As a comparison, TRDD converges slowly to a neighbourhood
of the optimal solution. The slow convergence is due to the
small step size that is used to guarantee the computational
stability of the dual decomposition method. Meanwhile, the
Tikhonov regularisation essentially yields a new problem,
whose optimal solution is different to that of equation (1), so
that the convergence is inaccurate.

Figure 2 Relative errors of the proposed distributed constrained
optimisation algorithms ADMM-T and PDFO, as well
as the Tikhonov regularised dual decomposition (TRDD)
algorithm. Here T denotes the number of inner loops of
ADMM and its value is set to be 1, 3 and 10 (see online
version for colours)

Comparing ADMM-1 and PDFO, we see that both of them
do not use inner loops to update y. ADMM-1 is slightly faster
than PDFO, because the former exactly updates x while the
latter only runs one projected gradient step. For the ADMM-
based algorithm with different numbers of inner loops T ,
apparently largerT yields more accurate y update, and leads to
faster convergence of the outer loop iterations. Nevertheless,
the side effect is higher computation cost. Our suggestion is
that, if the computation cost is not an issue, we can let the
cloud center accurately update x and y so as to achieve fast
convergence; otherwise, PDFO and ADMM-T with small T
are better approaches. Again, we emphasise that there is no
convergence guarantee for ADMM-T as long as T is finite,
as we have discussed in Section 2.3. PDFO converges to
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the optimal solution of equation (1) as we have theoretically
established in Section 3.3.

Below we consider consensus constraint violation, which
is defined as the distance between xk and yk. In Figure 3 we
only compare the proposed ADMM and PDFO algorithms,
since TRDD does not involve the consensus constraint. The
consensus constraint is quickly satisfied in both ADMM-3 and
ADMM-10, while the violations vanish slower for ADMM-
1 and PDFO. Combining Figures 2 and 3, we can conclude
that in ADMM and PDFO, the primal variables x and y both
converges to the optimal solution of equation (1).

Figure 3 Consensus constraint violations of the proposed
distributed constrained optimisation algorithms
ADMM-T and PDFO. Here T denotes the number of
inner loops of ADMM and its value is set to be 1, 3 and
10 (see online version for colours)

Figure 4 Inner loop errors vs. the evolution of outer loop iterations
in ADMM-T , with different numbers of inner loop slots
T = 1, 3 and 10 (see online version for colours)

We further investigate the impact of the number of inner loop
slots T on the convergence of ADMM. Letting all the other
parameters unaltered, we vary the value of T as 1, 3 and 10.
Figure 4 shows the inner loop error, which is defined as the
distance between the solved result and the optimal solution
of equation (7). Apparently, when we spend more slots in
the inner loops, the error shall become smaller. However,
for any particular value of T , the error decays to zero along
with the evolution of the outer loop, which explains the

exact convergence of the outer loop iterations demonstrated in
Figure 2. This observation implies that it is possible to prove
the convergence of ADMM-T even when T is finite.

5 Conclusions

This paper considers a distributed constrained optimisation
problem where a group of distributed agents are
interconnected via a cloud center, and collaboratively
minimise a network-wide objective function subject to
local and global constraints. We introduce divide-and-
conquer techniques that assign the local objective functions
and constraints to the agents while the global ones to the
cloud center. This yields two fully distributed constrained
optimisation algorithms, one is an ADMM-based algorithm
and another is a primal-dual first-order method, with an agent
layer and a cloud center layer. The two layers exchange
their intermediate variables so as to collaboratively obtain a
network-wide optimal solution. Effectiveness of the proposed
algorithms is validated by numerical experiments.

One of our future research direction is to analyse the
convergence properties of ADMM when the number of inner
loops is finite. Of particular interest to us is the effect of the
inexact inner loops on the convergence rate and accuracy.
Another topic is to consider the impact of communication
delays, which are inevitable in the information exchange
between the agents and the cloud center, on the performance
of the proposed algorithms.
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Appendix A: Bound of optimal primal-dual solution

By Assumption 3, X is bounded. Therefore, x∗ ∈ X and y∗ ∈
X must be bounded.

Consider the augmented Lagrangian L̃ρ(x, y, µ, ν) defined
in equation (14) and let ρ = 0 so that it becomes a Lagrangian
function

L̃0(x, y, µ, ν) = f(x) + h(y) +
m∑
j=1

νjgj(y) + ⟨µ, x− y⟩,

where x, y ∈ X . Given any dual variables µ̄ ∈ Rp and ν̄ ∈
Rm

+ , define

q(µ̄, ν̄) = min
x,y∈X

L̃0(x, y, µ̄, ν̄).

It is easy to verify that for any optimal primal-dual solution
(x∗, y∗, µ∗, ν∗), we have

q(µ̄, ν̄) ≤ L̃0(x
∗, y∗, µ̄, ν̄) (A1)

≤ L̃0(x
∗, y∗, µ∗, ν∗)

≤ L̃0(x̄, ȳ, µ
∗, ν∗),

where (x̄, ȳ) is chosen as any pair of slater point of
equation (13). Applying the definition of slater point to the
right hand side of equation (A1) yields

q(µ̄, ν̄) ≤ f(x̄) + h(ȳ) +
m∑
j=1

ν∗j gj(ȳ). (A2)

Changing the order of equation (A2), we have

m∑
j=1

ν∗j (−gj(ȳ)) ≤ f(x̄) + h(ȳ)− q(µ̄, ν̄). (A3)
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Observing that ν∗j ≥ 0 and −gj(ȳ) > 0, j = 1, . . . ,m, we
obtain

m∑
j=1

ν∗j ≤ f(x̄) + h(ȳ)− q(µ̄, ν̄)

minj(−gj(ȳ))
. (A4)

Letting µ̄ = 0 and ν̄ = 0 in equation (A4), it holds

m∑
j=1

ν∗j ≤ f(x̄) + h(ȳ)− (minx,y∈X {f(x) + h(y)})
minj(−gj(ȳ))

, (A5)

Since ν∗j ≥ 0, for all j = 1, . . . ,m, equation (A5) implies that

ν∗j ≤ f(x̄) + h(ȳ)− (minx,y∈X {f(x) + h(y)})
minj(−gj(ȳ))

. (A6)

To bound µ∗, define a sign vector sµ∗ ∈ Rp whose element
is +1 if the corresponding element of µ∗ is positive, −1 if
the corresponding element of µ∗ is negative, and 0 otherwise.
Apparently, ⟨µ∗, sµ∗⟩ = ∥µ∗∥1. Consider any pair of slater
point of equation (13) (x̄, ȳ). Due to the definition of slater
point, we know that x̄ satisfies x̄ ∈ X and gj(x̄) < 0 for all j =
1, . . . ,m. By the continuity of gj(x), there exists a sufficiently
small positive constant κ such that x̄− κsµ∗ ∈ X and gj(x̄−
κsµ∗) < 0. Therefore, similar to equation (A1), we have

q(µ̄, ν̄) ≤ L̃0(x̄− κsµ∗ , ȳ, µ∗, ν∗), (A7)

Expanding the right hand side of equation (A1) yields

q(µ̄, ν̄) ≤ f(x̄− κsµ∗) + h(ȳ) +
m∑
j=1

ν∗j gj(ȳ)− κ⟨µ∗, sµ∗⟩

≤ f(x̄− κsµ∗) + h(ȳ)− κ∥µ∗∥1,

(A8)

where the second inequality is because ν∗j ≥ 0 and gj(ȳ) < 0.
Letting µ̄ = 0 and ν̄ = 0 in equation (A8), it holds

∥µ∗∥1

≤ 1

κ

{
f(x̄− κsµ∗) + h(ȳ)− ( min

x,y∈X
{f(x) + h(y)})

}
.
(A9)

Appendix B: Proof of Theorem 1

We give a key lemma before proving Theorem 1.

Lemma 2: Under Assumptions 1–3, for any (x∗, y∗, µ∗, ν∗)
that is an optimal primal-dual solution of equation (13), the

sequence (xk, yk, µk, νk) generated by the PDFO recursion
(15)–(17) and (19) satisfies

1

2

(
1

a
− Lf − ρ

)
∥xk+1 − xk∥2

+
1

2

1

b
− νmax

m∑
j=1

Lgj − Lh − ρ

 ∥yk+1 − yk∥2

+
1

2
∥ 1
√
ρ
(µk+1 − µk) +

√
ρ(yk+1 − yk)∥2

≤1

2

(
1

a
− ρ

)
(∥xk − x∗∥2 − ∥xk+1 − x∗∥2)

+
1

2
(
1

b
− bδ)(∥yk − y∗∥2 − ∥yk+1 − y∗∥2)

− 1

2
(Mh − bδ)∥yk − y∗∥2

+
1

2ρ
(∥µk − µ∗∥2 − ∥µk+1 − µ∗∥2)

+
1

2b
(∥νk − ν∗∥2 − ∥νk+1 − ν∗∥2).

(B1)

Proof of Lemma 2: The proof contains five steps.

Step 1. Define an auxiliary function

ϕ(x) = f(x) + ⟨x, µk+1 + ρ(yk+1 − yk)⟩

+
ρ

2
∥x− xk+1∥2.

Taking the gradient of ϕ(x) at x = xk yields

∇ϕ(xk) = ∇f(xk) + µk+1 + ρ(yk+1 − yk + xk − xk+1)

= ∇f(xk) + µk + ρ(xk − yk),

where the second equality is due to the update µk+1 = µk +
ρ(xk+1 − yk+1) in equation (17). Thus, it is easy to verify
that the updates of xi in equation (15) are equivalent to

xk+1 =PX
[
xk − a∇ϕ(xk)

]
=argmin

x∈X
∥x− xk + a∇ϕ(xk)∥2

=argmin
x∈X

ϕ(xk) + ⟨x− xk,∇ϕ(xk)⟩

+
1

2a
∥x− xk∥2.

(B2)

Consider the function ϕ̃(x) , ϕ(xk) + ⟨x− xk,∇ϕ(xk)⟩+
∥x− xk∥2/(2a) that is strongly convex with constant 1/a.
Since xk+1 is its minimum point within the set X , thus for
any x ∈ X , it must hold

ϕ̃(x) ≥ϕ̃(xk+1) + ⟨x− xk+1,∇ϕ̃(xk+1)⟩

+
1

2a
∥x− xk+1∥2

≥ϕ̃(xk+1) +
1

2a
∥x− xk+1∥2.

(B3)

Here the first inequality comes from the strong convexity
of ϕ̃(x), while the second inequality comes from the
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first-order optimality condition ⟨x− xk+1,∇ϕ̃(xk+1)⟩ ≥ 0.
Substituting x = x∗ ∈ X into equation (B3) yields ϕ̃(x∗) ≥
ϕ̃(xk+1) + ∥xk+1 − x∗∥2/(2a) and consequently

ϕ(xk) + ⟨xk+1 − xk,∇ϕ(xk)⟩+ 1

2a
∥xk+1 − xk∥2

≤ϕ(xk) + ⟨xk − x∗,∇ϕ(xk)⟩

+
1

2a
∥xk − x∗∥2 − 1

2a
∥xk+1 − x∗∥2.

(B4)

Now we look for an upper bound for the right hand side of
equation (B4) and a lower bound for the left hand side. Since
f(x) is convex and has Lipschitz continuous gradient with
constant Lf , ϕ(x) is strongly convex with constant ρ and has
Lipschitz continuous gradient with constantLf + ρ. From the
strong convexity of ϕ(x) we know

ϕ(xk)− ⟨xk − x∗,∇ϕ(xk)⟩ ≤ ϕ(x∗)− ρ

2
∥xk − x∗∥2.

From the Lipschitz continuity of ∇ϕ(x) we know

ϕ(xk) + ⟨xk+1 − xk,∇ϕ(xk)⟩

≥ϕ(xk+1)− Lf + ρ

2
∥xk+1 − xk∥2.

Substituting this inequality into the two sides of equation (B4)
yields

ϕ(xk+1) +

(
1

2a
− Lf

2
− ρ

2

)
∥xk+1 − xk∥2

≤ϕ(x∗)−
(
ρ

2
− 1

2a

)
∥xk − x∗∥2 − 1

2a
∥xk+1 − x∗∥2.

(B5)

Applying the definition of ϕ(x), from equation (B5) we have(
1

2a
− Lf

2
− ρ

2

)
∥xk+1 − xk∥2 + f(xk+1)− f(x∗)

≤
(

1

2a
− ρ

2

)(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
− ⟨xk+1 − x∗, µk+1 + ρ(yk+1 − yk)⟩.

(B6)

Step 2. Define another auxiliary function

ψ(y) = h(y)− ⟨y, µk+1⟩+ ⟨G(y), ν⟩+ ρ

2
∥y − yk+1∥2.

Similar to what we have done for ϕ(x) above, we are able to
obtain(

1

2b
− Lh

2
− ρ

2
− ⟨LG, ν

k⟩
2

)
∥yk+1 − yk∥2

+ h(yk+1)− h(y∗)

≤
(

1

2b
− ρ

2

)(
∥yk − y∗∥2 − ∥yk+1 − y∗∥2

)
− Mh

2
∥yk − y∗∥2

+ ⟨yk+1 − y∗, µk+1⟩+ ⟨G(y∗)−G(yk+1), νk⟩.

(B7)

Step 3. Observe that f(xk+1)− f(x∗) and h(yk+1)− h(y∗)
appear in the left hand sides of equation (B6) and (B7),
respectively. They denote the gaps between the current primal
iterate (xk+1, yk+1) to the optimal point (x∗, y∗) measured
by function values. Below we bound these function values.
Consider the augmented Lagrangian L̃ρ(x, y, µ, ν) defined in
equation (14) and let ρ = 0 so that it becomes a Lagrangian
function. Apparently, for any xk+1, yk+1 ∈ X , it holds

L̃0(x
∗, y∗, µ∗, ν∗) ≤ L̃0(x

k+1, yk+1, µ∗, ν∗).

Expanding the inequality yields

f(x∗) + h(y∗) + ⟨G(y∗), ν∗⟩+ ⟨x∗ − y∗, µ∗⟩
≤f(xk+1) + h(yk+1) + ⟨G(yk+1), ν∗⟩

+ ⟨µ∗, xk+1 − yk+1⟩.
(B8)

Using the facts x∗ = y∗ and ⟨G(y∗), ν∗⟩ = 0, we reorganize
the terms of equation (B8) and obtain

f(x∗)− f(xk+1) + h(y∗)− h(yk+1)

≤⟨G(yk+1)−G(y∗), ν∗⟩+ ⟨µ∗, xk+1 − yk+1⟩.
(B9)

Step 4. Consider the terms ⟨G(y∗)−G(yk+1), νk⟩ and
⟨G(yk+1)−G(y∗), ν∗⟩ appearing at the right hand sides of
equation (B7) and (B9), respectively. We shall bound their
values. Due to the νj update (19) we have νk+1

j = PD
[
νkj +

bgj(y
k+1)

]
. Meanwhile, for the optimal primal variable ν∗

it must hold ν∗j = PD
[
ν∗j + bgj(y

∗)
]
. The non-expansive

property of the projection PD implies

(νk+1
j − ν∗j )

2 ≤ (νkj − ν∗j + b(gj(y
k+1)− gj(y

∗)))2,

and consequently

∥νk+1 − ν∗∥2 ≤ ∥νk − ν∗ + b(G(yk+1)−G(y∗))∥2.

Expanding the inequality and changing the order, we have

⟨G(y∗)−G(yk+1), νk − ν∗⟩

≤ 1

2b
(∥νk − ν∗∥2 − ∥νk+1 − ν∗∥2)

+
b

2
∥G(yk+1)−G(y∗)∥2.

(B10)

By equation (26) in Assumption 3, it holds ∥G(yk+1)−
G(y∗)∥2 ≤ δ∥yk+1 − y∗∥2. Substituting it into
equation (B10) yields

⟨G(y∗)−G(yk+1), νk − ν∗⟩

≤ 1

2b
(∥νk − ν∗∥2 − ∥νk+1 − ν∗∥2)

+
bδ

2
∥yk+1 − y∗∥2.

(B11)
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Step 5. Summing up the inequalities (B6), (B7), (B9) and (B11)
that are results of the above four steps and noticing that x∗ =
y∗, we have(

1

2b
− Lh

2
− ρ

2
− ⟨LG, ν

k⟩
2

)
∥yk+1 − yk∥2

+

(
1

2a
− Lf

2
− ρ

2

)
∥xk+1 − xk∥2

≤
(

1

2b
− ρ

2

)(
∥yk − y∗∥2 − ∥yk+1 − y∗∥2

)
− Mh

2
∥yk − y∗∥2

+

(
1

2a
− ρ

2

)(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
+

1

2b
(∥νk − ν∗∥2 − ∥νk+1 − ν∗∥2)

+
bδ

2
∥y∗ − yk+1∥2

+ ⟨µ∗ − µk+1, xk+1 − yk+1⟩
+ ρ⟨yk+1 − yk, x∗ − xk+1⟩.

(B12)

Now we go to handle the terms ⟨µ∗ − µk+1, xk+1 − yk+1⟩
and ρ⟨yk+1 − yk, x∗ − xk+1⟩ at the right hand side of
equation (B12). For ⟨µ∗ − µk+1, xk+1 − yk+1⟩, using the µ
update µk+1 = µk + ρ(xk+1 − yk+1) in equation (17), we
have

⟨µ∗ − µk+1, xk+1 − yk+1⟩

=
1

ρ
⟨µ∗ − µk+1, µk+1 − µk⟩

=
1

2ρ
(∥µk − µ∗∥2 − ∥µk+1 − µ∗∥2 − ∥µk+1 − µk∥2).

(B13)

For ρ⟨yk+1 − yk, x∗ − xk+1⟩, since x∗ = y∗ we can write
x∗ − xk+1 as the summation of y∗ − yk+1 and yk+1 − xk+1,
and hence obtain

ρ⟨yk+1 − yk, x∗ − xk+1⟩ = ρ⟨yk+1 − yk, y∗ − yk+1⟩
+ ρ⟨yk+1 − yk, yk+1 − xk+1⟩.

(B14)

Similar to what we have had in equation (B13), the first term
at the right hand side of equation (B14) is

ρ⟨yk+1 − yk, y∗ − yk+1⟩

=
ρ

2
(∥yk − y∗∥2 − ∥yk+1 − y∗∥2 − ∥yk+1 − yk∥2).

(B15)

Again, applying the µ update µk+1 = µk + ρ(xk+1 − yk+1)
in equation (17) to the second term at the right hand side of
equation (B14) yields

ρ⟨yk+1 − yk, yk+1 − xk+1⟩
=− ⟨yk+1 − yk, µk+1 − µk⟩

=
1

2ρ
∥µk+1 − µk∥2 + ρ

2
∥yk+1 − yk∥2

− 1

2
∥ 1
√
ρ
(µk+1 − µk) +

√
ρ(yk+1 − yk)∥2.

(B16)

Substituting equations (B15) and (B16) into equation (B14)
and then combining with equation (B13), we have

⟨µ∗ − µk+1, xk+1 − yk+1⟩
+ ρ⟨yk+1 − yk, yk+1 − xk+1⟩

=
1

2ρ
(∥µk − µ∗∥2 − ∥µk+1 − µ∗∥2)

+
ρ

2
(∥y∗ − yk∥2 − ∥y∗ − yk+1∥2)

− 1

2
∥ 1
√
ρ
(µk+1 − µk) +

√
ρ(yk+1 − yk)∥2.

(B17)

Substituting equation (B17) into equation (B12), noticing the
fact that νkj ∈ [0, νmax], j = 1, . . . , n, and reorganizing the
terms, we obtain the main result (B1) and complete the proof.

2

Now we are ready to prove Theorem 1.

Proof of Theorem 1: By equation (27), we have

1

a
− Lf − ρ > 0,

1

b
− νmax

m∑
j=1

Lgj − Lh − ρ > 0,

1

a
− ρ > 0,

1

b
− bδ > 0, Mh − bδ > 0.

(B18)

Such values of a, b and ρ guarantee all other coefficients in
equation (B1) to be positive, except that −(Mh − bδ)/2 is
negative.

Summing up equation (B1) from time k = 0 to k = K
yields

K∑
k=0

{1

2

(
1

a
− Lf − ρ

)
∥xk+1 − xk∥2

+
1

2

1

b
− νmax

m∑
j=1

Lgj − Lh − ρ

 ∥yk+1 − yk∥2

+
1

2
∥ 1
√
ρ
(µk+1 − µk) +

√
ρ(yk+1 − yk)∥2

}
≤1

2

(
1

a
− ρ

)
(∥x0 − x∗∥2 − ∥xK+1 − x∗∥2)

+
1

2

(
1

b
− bδ

)
(∥y0 − y∗∥2 − ∥yK+1 − y∗∥2)

+
1

2ρ
(∥µ0 − µ∗∥2 − ∥µK+1 − µ∗∥2)

+
1

2b
(∥ν0 − ν∗∥2 − ∥νK+1 − ν∗∥2)

−
K∑

k=0

1

2
(Mh − bδ)∥yk − y∗∥2.

(B19)

Throwing away some terms in equation (B19) and only
keeping those of ∥x0 − x∗∥2, ∥y0 − y∗∥2, ∥µ0 − µ∗∥2, ∥ν0 −
ν∗∥2 and ∥νK+1 − ν∗∥2, we have

1

2b
∥νK+1 − ν∗∥2 ≤ 1

2b
∥ν0 − ν∗∥2

+
1

2

(
1

a
− ρ

)
∥x0 − x∗∥2
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+
1

2

(
1

b
− bδ

)
∥y0 − y∗∥2

++
1

2ρ
∥µ0 − µ∗∥2.

It is easy to verify that for every j and K, we have

νK+1
j ≤ ∥ν∗∥+

(
∥ν0 − ν∗∥2 +

(
b

a
− bρ

)
∥x0 − x∗∥2

+(1− b2δ)∥y0 − y∗∥2 + b

ρ
∥µ0 − µ∗∥2

) 1
2

, νupp.

(B20)

With particular note, equation (B20) implies that, if the
parameters of the PDFO algorithm is properly chosen, the dual
variables νkj shall not exceed the upper bound νupp. Recall
the νj update νk+1

j = PD
[
νkj + bgj(y

k+1)
]

in equation (19),
where D , [0, νmax]. Therefore, if we choose νmax to be
strictly larger than νupp as in equation (28), the projection on
the boundary of νmax will never happen and the νj update can
be written as νk+1

j =
[
νkj + bgj(y

k+1)
]
+

. This is critical to
the following proof.

Now we manipulate equation (B19) again. Throwing away
the nonpositive terms at the right hand side of equation (B19),
we have

K∑
k=0

{1

2

(
1

a
− Lf − ρ

)
∥xk+1 − xk∥2

+
1

2

1

b
− νmax

m∑
j=1

Lgj − Lh − ρ

 ∥yk+1 − yk∥2

+
1

2
∥ 1
√
ρ
(µk+1 − µk) +

√
ρ(yk+1 − yk)∥2

}
≤1

2

(
1

a
− ρ

)
∥x0 − x∗∥2 + 1

2

(
1

b
− bδ

)
∥y0 − y∗∥2

+
1

2ρ
∥µ0 − µ∗∥2 + 1

2b
∥ν0 − ν∗∥2.

(B21)

Observe that the right hand side of equation (B21) is
a nonnegative constant determined by the initial point
(x0, y0, µ0, ν0) and the optimal solution (x∗, y∗, µ∗, ν∗).
Letting K → ∞ and noticing that all the coefficients in
equation (B21) are positive, we know that in the limit (namely,
k → ∞) the following equalities must hold

xk+1 = xk, yk+1 = yk, µk+1 = µk. (B22)

The fact of yk+1 = yk when k → ∞ and the continuity
of gj(y) guarantee that gj(yk+1) = gj(y

k) when k → ∞.

According to νk+1
j = PD

[
νkj + bgj(y

k+1)
]

in equation (19),
we have νk+1

j = νkj when k → ∞ for all j = 1, . . . ,m.
Consequently, it holds in the limit that

νk+1 = νk. (B23)

Combining equations (B22) and (B23), we conclude that the
PDFO iterate (xk, yk, µk, νk) converges to a stationary point

lim
k→∞

(xk, yk, µk, νk) = (x∞, y∞, µ∞, ν∞). (B24)

To prove Theorem 1, it remains to show that the stationary
point (x∞, y∞, µ∞, ν∞) satisfies the KKT conditions of
equation (13). Below we check its primal feasibility, dual
feasibility, complimentarity slackness and stationarity (Boyd
and Vandenberghe, 2004).

Primal feasibility. The projections onto X in the x update in
equation (15) and the y update in equation (16) guarantee that
x∞, y∞ ∈ X . Consider the µ update in equation (17) at its
limit form µ∞ = µ∞ + ρ(x∞ − y∞), it holds x∞ = y∞. We
show gj(y∞) ≤ 0by contradiction. If gj(y∞) > 0, then by the
ν update νk+1

j = PD
[
νkj + bgj(y

k+1)
]

in equation (19), ν∞j
must arrive at νmax, which is the upper bound of D. However,
since ν∞j ≤ νupp as we have proved in equation (B20) and
νupp < νmax as we have assumed in equation (28), there exists
contradiction and gj(y∞) ≤ 0 must hold.

Dual feasibility. This is trivial because by the projection
operator of the ν update νk+1

j = PD
[
νkj + bgj(y

k+1)
]

in
equation (19), where D , [0, νmax], it holds ν∞j ≥ 0, for all
j = 1, . . . ,m.

Complimentarity slackness. If gj(y
∞) < 0, the update

νk+1
j = PD

[
νkj + bgj(y

k+1)
]

in equation (19) drives ν∞j to
0. Because gj(y

∞) ≤ 0, gj(y∞)ν∞j = 0 holds for all j =
1, . . . ,m.

Stationarity. When k → ∞, the x update in equation (15) and
the y update in equation (16) are equivalent to

x∞ = PX
[
x∞ − a∇x∞L̃ρ(x

∞, y∞, µ∞, ν∞)
]
,

y∞ = PX
[
y∞ − b∇y∞L̃ρ(x

∞, y∞, µ∞, ν∞)
]
.

Therefore, for any x, y ∈ X , we have

⟨x− x∞,∇x∞L̃ρ(x
∞, y∞, µ∞, ν∞)⟩ ≥ 0,

⟨y − y∞,∇y∞L̃ρ(x
∞, y∞, µ∞, ν∞)⟩ ≥ 0.

Thus, the stationary point (x∞, y∞, µ∞, ν∞) of the PDFO
algorithm satisfies the KKT conditions of equation (13), which
completes the proof. 2


