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Abstract: In an event detection application, sensor nodes measure signals that are emitted from
multiple events and attenuated by the environment, and then collaborate to estimate the locations
and magnitudes of the events. Existing event detection algorithms often assume that the number of
the events is known in advance and/or the attenuation coefficient of the environment is given. This
paper considers the case that both the number of the events and the attenuation coefficient of the
environment are unknown. Through exploiting the sparse nature of the events, we propose an ℓ-norm
regularised least squares formulation that automatically estimates the number of the events as well
as their locations and magnitudes; the attenuation coefficient of the environment also appears as an
optimisation variable. We develop a decentralised algorithm and its accelerated variant to solve the
joint event detection and environment perception problem using the alternating direction method of
multipliers (ADMM).
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This paper is a revised and expanded version of a paper entitled ‘Joint multi-source localization and
environment perception in wireless sensor networks’ presented at the 22nd Chinese Control and
Decision Conference (CCDC’2010), Xuzhou, China, 26–28 May, 2010.

1 Introduction

In recent years, the rapid development of micro-electronics
and wireless communication technologies has enabled the
deployment of large-scale wireless sensor networks (WSNs)
for event detection applications (Akyildiz and Kasimoglu,
2004; Yick et al., 2008). In a WSN, sensor nodes are
able to collect measurements, process data locally, and
communicate with their neighbours without the intervention
of human operators. This characteristic makes WSNs fit for
event detection applications in hazardous environments, such
as nuclear radioactive source detection (Sundaresan et al.,
2007) and contaminant source detection (Sun and Coyle,
2010). Further, WSNs are easy to deploy that motivates the
applications of structural health monitoring (Lynch, 2007) and
area surveillance (Wittenburg et al., 2010) where deploying
wired sensor networks is often costly.

1.1 Related work

One of the main challenges in event detection is to
estimate locations and magnitudes of an unknown number
of events. When the number of events is known as a prior
knowledge, traditional detection and estimation techniques,
such as the maximum likelihood estimator or the expectation
maximisation algorithm (Sheng and Hu, 2005; Mandel et al.,
2010), are applicable. However, when the number of events is
unknown in advance, the event detection becomes intractable
since enumerating the possible numbers of events leads to
unaffordable computation burden. To address this issue, an
intuitive idea is to choose some candidate points in the sensing
field and confine the events to occur at them. The candidate
points can be sensor nodes (Ling and Tian, 2010; Yuan
et al., 2015) or grid points (Meng et al., 2009; Bazerque
and Giannakis, 2010). If the number of the candidate points
is large enough, this approximation leads to high estimation
accuracy at the risk of solving an underdetermined least
squares problem. Nevertheless, since the events are sparsely
occurring in the sensing field and the number of the events
is often much smaller than that of the candidate points, the
underdetermined least squares problem can be penalised by
a sparsity-enhanced term that yields a unique solution (Ling
and Tian, 2010; Yuan et al., 2015; Meng et al., 2009; Bazerque
and Giannakis, 2010).

Another main challenge in event detection is to efficiently
process data in WSNs. Traditionally an event detection
algorithm is run on a fusion centre that collects measurements
from distributed sensor nodes. However, this centralised data
processing scheme suffers from energy-consuming multi-hop
communication and is fragile to the failure of several critical
relaying sensor nodes. To enable scalable data processing
in a large-scale WSN, decentralised data processing has
received extensive research interests recently (Predd et al.,

2006; Wittenburg et al., 2012; Schmidt et al., 2012; Laitrakun
and Coyle, 2013). In the decentralised data processing
scheme, the sensor nodes no longer send their measurements
to the fusion centre. By taking advantages of their computation
abilities, the sensor nodes communicate with their one-
hop neighbours and process their data locally. Through
decentralised and iterative in-network data processing, sensor
nodes achieve a consensus on the events occurring in the
sensing field. Such a decentralised WSN involves energy-
efficient one-hop communication and is robust to the failure
of a portion of sensor nodes. Typical decentralised data
processing algorithms include the decentralised subgradient
method (Nedic and Ozdaglar, 2009), the decentralised dual
averaging algorithm (Duchi et al., 2012), and the alternating
direction method of multipliers (ADMM) (Bertsekas and
Tsitsiklis, 1997; Schizas et al., 2008). Among these
algorithms, the ADMM is a remarkable one due to its fast
convergence, which means low communication cost in a
decentralised WSN.

However, to the best of our knowledge most of the
existing works assume that the attenuation coefficient of
the environment is known as a prior knowledge, or has
been estimated in advance. For example, the energy emitted
from an acoustic or magnetic source is often assumed to be
proportional to exp(−θd2) where d is the distance between
the source and the sensor node and θ is the known attenuation
coefficient of the environment (Liu et al., 2012; Patwari et al.,
2005). Since estimating the attenuation coefficient is often
time-consuming and subject to the dynamic change of the
environment, such an approach is unreliable and may lead to
degradated event detection accuracy.

1.2 Our contributions

In light of the above discussions, in this paper we develop
decentralised algorithms that simultaneously accomplish the
multiple-event detection and environment perception tasks.
Specifically, we confine that the events occur at a given set
of candidate points and utilise the fact that the number of
the events is much smaller than the number of the candidate
points as in Ling and Tian (2010), Yuan et al. (2015),
Meng et al. (2009) and Bazerque and Giannakis (2010). This
way, the task of estimating the locations and magnitudes of
multiple events can be formulated as recovering a sparse
vector from its linear measurements. Different to Ling and
Tian (2010), Yuan et al. (2015), Meng et al. (2009) and
Bazerque and Giannakis (2010), in this paper the attenuation
coefficient of the environment is no longer known as a prior
knowledge, but an extra parameter to estimate. Since the two
optimisation variables, the sparse vector that represents the
locations and magnitudes of the events and the attenuation
coefficient of the environment, are entangled together, the
joint event detection and environment perception problem is
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nonconvex. We develop a decentralised joint event detection
and environment perception algorithm based on the ADMM,
which not only provides a skillful variable splitting technique
to enable decentralised algorithm design, but also utilises the
structure of the objective function such that each subproblem
is tractable. To improve energy-efficiency of the WSN,
we further develop a heuristic scheme that accelerates the
proposed decentralised algorithm.

1.3 Paper organisation

The rest of this paper is organised as follows. Section 2
formulates the joint event detection and environment
perception problem. Section 3 analyses the structure of the
objective function that motivates a centralised algorithm
through alternating minimisation. Section 4 proposes
a decentralised joint event detection and environment
perception algorithm based on the ADMM and then provides
a heuristically accelerated version. Numerical experiments are
given in Section 5 to verify the proposed algorithms. Section 6
concludes the paper.

2 Problem formulation

Suppose that we are monitoring a two-dimensional
sensing area in which multiple event sources are emitting
signals and a large-scale WSN is deployed to collect
measurements. We make the following assumptions about
how the signals emitted from the events attenuates in the
environment and how the sensor nodes measure the received
signals.

Assumption 1 (Attenuation function): The signal emitted
from any event attenuates following an attenuation function of
the environment f(d, θ) where d is the distance from the event
to the measurement point and θ is the attenuation coefficient
of the environment. The attenuation function f(d, θ) is
monotonically decreasing with respect to the distance d as
well as normalised by f(0, θ) = 1 and f(∞, θ) = 0.

Assumption 2 (Linearly superimposed measurement): The
measurement of any sensor node is the linear superposition
of the signal strengths emitted from the events.

Assumption 1 is common in various event detection
applications. For example, the energy emitted from an acoustic
or magnetic source is often attenuated according to f(d, θ) =
exp(−θd2). We assume a single attenuation coefficient θ for
events that occurring at different locations, implying that the
sensing field is homogeneous. In previous works θ is often
assumed to be known in prior, while in this paper we will
address the case that θ is unknown. Assumption 2 implies that
the sensor nodes are calibrated and the measurement is free of
distortion.

To enable tractable multiple-event detection, we choose
some candidate points in the sensing field and confine the

events to occur at them. The candidate points can be sensor
nodes (Ling and Tian, 2010; Yuan et al., 2015) or grid points
(Meng et al., 2009; Bazerque and Giannakis, 2010). Further,
the events are sparse compared to the candidate points since
it is uncommon to have a large number of events occurring
simultaneously.

Assumption 3 (Candidate points and sparsity): The events
are confined to a set of candidate points in the sensing field.
The number of the events is much smaller than the number of
candidate points.

The WSN is composed of L sensor nodes; we denote the set
of sensor nodes as L. Sensor nodes have a communication
range rC which is the maximum distance within which two
sensor nodes can directly communicate. For any sensor node
vi, it is able to communicate with another sensor node vj if
dij , the distance between vi and vj is no larger than rC . The
communication is bidirectional and vi and vj are called as
neighbours. If dij is larger than rC , then vi and vj are unable
to communicate and they are not neighbours of each other. We
denote the set of vi’s neighbours as Ni whose cardinality |Ni|
is the number of vi’s neighbours. We require the WSN to be
connected.

Assumption 4 (Network connectivity): Given the
communication range rC of the sensor nodes, the WSN is
bidirectionally connected.

Without loss of generality, we consider the case that the
events occur at the sensor nodes. The derivation below can be
straightforwardly extended to the case that the events occur at
any other candidate points. For any possible event occurring
at sensor node vj , we denote its magnitude as xj ; xj = 0
means that such an event does not exist and otherwise xj >
0. Define x = [x1;x2; . . . ;xL] that represents the locations
and magnitudes of the events. According to Assumption 1, its
strength measured by sensor node vi is f(dji, θ) where dji
is the distance between vj and vi. According to Assumption
2, the measurement of vi is the linear superposition of all
possible events, i.e., bi =

∑
vj∈L f(dji, θ)xj in the noise-

free case. Our objective is to jointly estimate x and θ from
the measurements {bi}vi∈L through decentralised in-network
data processing.

If no prior knowledge of the vector x is available, a natural
approach to solving x and θ from {bi}vi∈L is to formulate a
nonlinear least squares problem

min
x,θ

∑
vi∈L

(
bi −

∑
vj∈L

f(dji, θ)xj

)2

,

s.t. xi ≥ 0, ∀vi ∈ L.
(1)

However, equation (1) is ill-posed. Suppose that θ is given
and we only need to solve x from equation (1), there are
L unknowns x1, x2, · · · , xL and L linear measurements
b1, b2, · · · , bL. Since θ is also unknown, the solutions to
equation (1) is not unique. The same situation appears when
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we choose grid points other than sensor nodes as the candidate
points, if the number of grid points is larger than the number
of sensor nodes.

According to Assumption 3, we know that the number of
events is much smaller than the number of sensor nodes. Hence
there are only a smaller number of elements in x is nonzero;
in another word, x is a sparse vector. This prior knowledge
motivates us to penalise the ordinary least squares problem (1)
with a sparsity-promoting ℓ1-norm term

min
x,θ

J(x, θ) = ∥x∥1 +
λ

2

∑
vi∈L

bi −
∑
vj∈L

f(dji, θ)xj

2

,

s.t.x ≥ 0.

(2)

In the ℓ1-norm regularised nonlinear least squares problem
(2), the ℓ1-norm term ∥x∥1 =

∑
vj∈L |xj | helps find a sparse

x. Through tuning the nonnegative weight λ, equation (2)
achieves a tradeoff between the sparsity of x and the squared
error. A large λ leads to small squared error but numerous
false alarms, while a small λ results in a sparse solution of x
but poor fitting to the measurements (Donoho, 2006; Candes
et al., 2006).

3 Centralised algorithm

In the ℓ1-norm regularised nonlinear least squares problem
(2), the two optimisation variables x and θ are entangled
in the squared error term. The objective function J(x, θ) is
not necessarily convex for any nontrivial choice of f(d, θ).
Therefore, designing an efficient centralised optimisation
algorithm to solve equation (2) is a challenging task, not
mentioning that our goal is to solve equation (2) in a
decentralised manner.

Fortunately, the optimisation problem (2) has a nice
structure that makes developing efficient centralised and
decentralised algorithms possible. Observe that fixing θ,
the x-subproblem minimises a ℓ1-norm regularised linear
least squares objective function subject to a nonnegativity
constraint, and hence is a convex program (Boyd et al., 2004).
On the other hand, fixing x, the θ-subproblem optimises over a
one-dimensional variable θ. Though the θ-subproblem is often
nonconvex, we are able to find an acceptable solution of θ
using single-variable search methods.

Through investigating the problem structure of
equation (2), we propose a centralised algorithm based
on alternating minimisation (Gorski et al., 2007), which
first fixes θ and minimises over x and then fixes x and
minimises over θ. We summarise the centralised event
detection and environment perception (CEEP) algorithm
in Algorithm 1. Numerical experiments (cf. Section 5)
demonstrate its satisfactory convergence properties, implying

that the algorithm is robust to the nonconvexity of the θ-
subproblem. Actually, we find that the final estimate of θ is
very close to its true value in the numerical experiments.

Algorithm 1 Centralized Event detection and
Environment Perception (CEEP)

Require: Measurement b, parameter λ, attenuation function
f(d, θ).

1: Initialize x(0) = 0, θ(0) = 0.
2: for t = 0, 1, 2, . . . do

3: Update x(t + 1) via

x(t + 1) = arg min
x≥0

‖x‖1 + λ
2

∑

vi∈L

(

bi −
∑

vj∈L

f(dji, θ(t))xj

)

2

.(3)

4: Update θ(t + 1) via

θ(t + 1) = arg min
θ

λ
2

∑

vi∈L

(

bi −
∑

vj∈L

f(dji, θ)xj(t + 1)

)

2

.(4)

5: end for

6: Return x(t + 1) and θ(t + 1).

In the next section, we will introduce the ADMM to solve
equation (2) in a decentralised manner, in which the separable
structure of the problem still plays a key role.

4 Decentralised algorithms

This section applies the ADMM to solve the joint event
detection and environment perception problem (2). Section 4.1
rewrites equation (2) to a form that can be handled by
the ADMM and develops a decentralised algorithm. This
algorithm is equivalent to a much simpler version given proper
initialisation, as shown in Section 4.2. To improve energy-
efficiency of the WSN, Section 4.3 further develops a heuristic
scheme that efficiently accelerates the proposed decentralised
algorithm.

4.1 The ADMM

The ADMM solves a constrained minimisation problem with
two blocks of variables. In each iteration, the algorithm
first minimises the augmented Lagrangian over one block
of variables, then minimises the augmented Lagrangian over
another block of variables, and finally updates the Lagrange
multiplier (Bertsekas and Tsitsiklis, 1997; Boyd et al., 2010).
Through reformulating equation (2) to a constrained form the
ADMM is applicable, yielding a decentralised algorithm as
we will demonstrate below.

We let each sensor node vi keep a local copy of x
(denoted by x(i)) and a local copy of θ (denoted by θ(i)).
We expect that the local copies of the sensor nodes are
the same. To do so, for any two neighbours vi and vj we
introduce auxiliary variables z(ij) and w(ij) and let x(i) =
z(ij) = x(j) and θ(i) = w(ij) = θ(j). These way, equation (2)
can be rewritten as
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min
∑

vi∈L
Ji(x

(i), θ(i))

=
∑

vi∈L

[
x
(i)
i + λ

2

(
bi −

∑
vj∈L

f(dji, θ
(i))x

(i)
j

)2 ]
,

s.t. x(i) = z(ij), x(j) = z(ij), ∀vi ∈ L,∀vj ∈ Ni,
θ(i) = w(ij), θ(j) = w(ij), ∀vi ∈ L, ∀vj ∈ Ni,
x(i) ≥ 0, ∀vi ∈ L.

(5)

In equation (5) the optimisation variables are {x(i)},
{θ(i)}, {z(ij)}, {w(ij)} and the local objective function at
sensor node vi is defined as Ji(x

(i), θ(i)) = x
(i)
i + λ

2 (bi −∑
vj∈L f(dji, θ

(i))x
(i)
j )2. The following proposition indicates

that under Assumption 3, i.e., the WSN is bidirectionally
connected, equations (2) and (5) are equivalent.

Proposition 2 (Equivalence of equations (2) and (5)): If
Assumption 3 holds, i.e., the WSN is bidirectionally connected,
then equations (2) and (5) are equivalent in the sense that the
solutions of x and θ to equation (2) are also the solutions of
x(i) and θ(i) to equation (5) for any vi ∈ L, and vise versa.

Proof: We first show that the solutions of x(i) and θ(i) to
equation (5) should be the same as the solutions ofx(j) and θ(j)

to equation (5), for any vi and vj . According to Assumption
3 the WSN is bidirectionally connected, and hence there is a
path between any vi and vj . Since the equality constraints in
equation (5) hold for any pair of neighbours along the path,
the solutions of any local copies along the path should be the
same. Therefore we havex(i) = x̄ and θ(i) = θ̄ for any vi ∈ L.

Note that x̄i ≥ 0 for any vi ∈ L due to the inequality
constraints in (5). Further,

∑
vi∈L Ji(x̄, θ̄) = J(x̄, θ̄).

Therefore, (x̄, θ̄) is also a minimiser to equation (2). On the
other hand, a minimiser to equation (2) is also a part of a
minimiser to equation (5). �

After reformulating equations (2)–(5), we separate the
optimisation variables as two blocks, {x(i), w(ij)} and
{θ(i), z(ij)} such that the ADMM is applicable. The
augmented Lagrangian function of equation (5) is

h({x(i)}, {θ(i)}, {z(ij)}, {w(ij)}, {pij},
{qij}, {mij}, {nij}) =

∑
vi∈L

Ji(x
(i), θ(i))

+
∑
vi∈L

∑
vj∈Ni

(
[x(i) − z(ij)]T p(ij) +

τ

2
∥x(i) − z(ij)∥2

)
+
∑
vi∈L

∑
vj∈Ni

(
[x(j) − z(ij)]T q(ij) +

τ

2
∥x(j) − z(ij)∥2

)
+
∑
vi∈L

∑
vj∈Ni

(
[θ(i) − w(ij)]Tm(ij) +

τ

2
∥θ(i) − w(ij)∥2

)
+
∑
vi∈L

∑
vj∈Ni

(
[θ(j) − w(ij)]Tn(ij) +

τ

2
∥θ(j) − w(ij)∥2

)
,

(6)

subject to the constraintsx(i) ≥ 0,∀vi ∈ L. Here p(ij), q(ij) ∈
RL are Lagrange multipliers attached to the constraints
x(i) = z(ij) and x(j) = z(ij), respectively; m(ij), n(ij) ∈ R

are Lagrange multipliers attached to the constraints θ(i) =
w(ij) and θ(j) = w(ij), respectively; τ is a positive stepsize
parameter of the ADMM. At iteration t+ 1, the algorithm
works as follows.

Step 1. Updates of {x(i), w(ij)}. Fixing {θ(i), z(ij)} as the
current solutions and {pij}, {qij}, {mij}, {nij} as the current
Lagrange multipliers, the updates of {x(i), w(ij)} are

{x(i)(t+ 1), w(ij)(t+ 1)}
= argminh({x(i)}, {θ(i)(t)}, {z(ij)(t)}, {w(ij)},

{pij(t)}, {qij(t)}, {mij(t)}, {nij(t)}),
s.t. x(i) ≥ 0, ∀vi ∈ L.

(7)

Notice that equation (7) is separable to sensor nodes {vi} and
pairs of neighbours {(vi, vj)}. Hence for any sensor node vi

x(i)(t+ 1) = arg min
x(i)≥0

Ji(x
(i), θ(i)(t))

+
∑

vj∈Ni

[p(ij)(t)

+τ
∑

vj∈Ni

∥x(i) − z(ij)(t)+z(ji)(t)
2 ∥2.

(8)

And for any pair of neighbours (vi, vj)

w(ij)(t+ 1) = 1
2 [θ

(i)(t) + θ(j)(t)]
+ 1

2τ [m
(ij)(t) + n(ij)(t)].

(9)

Step 2. Updates of {θ(i), z(ij)}. Fixing {x(i), w(ij)} as the
current solutions and {pij}, {qij}, {mij}, {nij} as the current
Lagrange multipliers, the updates of {θ(i), z(ij)} are

{θ(i)(t+ 1), z(ij)(t+ 1)}
= argminh({x(i)(t+ 1)}, {θ(i)}, {z(ij)},
{w(ij)(t+ 1)}, {pij(t)}, {qij(t)}, {mij(t)}, {nij(t)}).

(10)

Again, notice that equation (10) is separable to sensor nodes
{vi} and pairs of neighbours {(vi, vj)}. Hence for any sensor
node vi

θ(i)(t+ 1) = argmin
θ(i)

Ji(x
(i)(t+ 1), θ(i))

+
∑

vj∈Ni

[m(ij)(t) + n(ji)(t)]T θ(i)

+τ
∑

vj∈Ni

∥θ(i) − w(ij)(t+1)+w(ji)(t+1)
2 ∥2.

(11)

And for any pair of neighbours (vi, vj)

z(ij)(t+ 1) = 1
2 [x

(i)(t+ 1) + x(j)(t+ 1)]
+ 1

2τ [p
(ij)(t) + q(ij)(t)].

(12)

Step 3. Updates of {pij}, {qij}, {mij}, {nij}. Fixing
{x(i), θ(i), z(ij), w(ij)} as the current solutions, for any pair
of neighbours (vi, vj) its corresponding Lagrange multipliers
pij , qij ,mij , nij are updated as

p(ij)(t+ 1) = p(ij)(t) + τ [x(i)(t+ 1)− z(ij)(t+ 1)],

q(ij)(t+ 1) = q(ij)(t) + τ [x(j)(t+ 1)− z(ij)(t+ 1)],

m(ij)(t+ 1) = m(ij)(t) + τ [θ(i)(t+ 1)− w(ij)(t+ 1)],

n(ij)(t+ 1) = n(ij)(t) + τ [θ(j)(t+ 1)− w(ij)(t+ 1)].

(13)
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The algorithm proposed above is fully decentralised. At
time t+ 1, each sensor node vi collects θ(j)(t) and zji(t)
from each of its neighbours vj , solves x(i)(t+ 1) according
to equation (8), and updates w(ij)(t+ 1) according to
equation (9). Then each sensor node vi collects w(ji)(t+
1) and x(j)(t+ 1) from each of its neighbours vj , solves
θ(i)(t+ 1) according to equation (11), and updates z(ij)(t+
1) according to equation (12). Finally each sensor node
vi updates its Lagrange multipliers pij(t+ 1), qij(t+ 1),
mij(t+ 1), nij(t+ 1) according to equation (13) using its
local information.

Since equation (5) is not a convex program, the proposed
algorithm cannot guarantee convergence to the global optimal
solution. Nevertheless, the convex program (8) is tractable
and the nonconvex program (11) can be approximately solved
by various single-variable optimisation methods. This nice
characteristic endows the proposed algorithm based on the
ADMM with satisfactory empirical convergence properties
(see the similar applications of the ADMM in nonconvex
optimisation, e.g., Boyd et al. (2010); Mardani et al. (2013)),
which will be demonstrated through numerical experiments in
Section 5.

In the proposed algorithm, at time t+ 1 sensor node vi
needs to collect θ(j)(t), z(ji)(t), w(ji)(t+ 1), and x(j)(t+ 1)
from each of its neighbours vj . In the next subsection, we will
show that with proper initialisation the proposed algorithm
can be simplified to an equivalent form that reduces 50% of
communication cost.

4.2 Decentralised joint event detection and
environment perception

Substituting the update of z(ij)(t+ 1) in equation (12) into
the updates of p(ij)(t+ 1) and q(ij)(t+ 1) in equation (13),
we have

p(ij)(t+ 1) =
1

2
[p(ij)(t)− q(ij)(t)]

+
τ

2
[x(i)(t+ 1)− x(j)(t+ 1)], q(ij)(t+ 1)

=
1

2
[q(ij)(t)− p(ij)(t)]

+
τ

2
[x(j)(t+ 1)− x(i)(t+ 1)].

(14)

Apparently, if we initialise p(ij)(0) = −q(ij)(0) =
−p(ji)(0) = q(ji)(0), then for t ≥ 0 we have p(ij)(t) =
−q(ij)(t) = −p(ji)(t) = q(ji)(t). Hence The updates of
p(ij)(t+ 1) and q(ji)(t+ 1) are

p(ij)(t+ 1) = p(ij)(t) + τ
2 [x

(i)(t+ 1)− x(j)(t+ 1)],
q(ji)(t+ 1) = q(ji)(t) + τ

2 [x
(i)(t+ 1)− x(j)(t+ 1)].

(15)

For vi, summing the two equations in equation (15) up over all
neighbours vj ∈ Ni and defining a new Lagrange multiplier
α(i)(t) =

∑
vj∈Ni

[p(ij)(t) + q(ji)(t)], we have

α(i)(t+ 1) = α(i)(t)
+τ

∑
vj∈Ni

[x(i)(t+ 1)− x(j)(t+ 1)]. (16)

Applying the equality p(ij)(t) = −q(ij)(t) in equation (12)
leads to z(ij)(t+ 1) = 1

2 [x
(i)(t+ 1) + x(j)(t+ 1)]. If we

further initialise z(ij)(0) = 1
2 [x

(i)(0) + x(j)(0)], then for t ≥
0 we have z(ij)(t) = 1

2 [x
(i)(t) + x(j)(t)].

Substituting α(i)(t) =
∑

vj∈Ni
[p(ij)(t) + q(ji)(t)] and

z(ij)(t) = 1
2 [x

(i)(t) + x(j)(t)] into equation (8), the update
can be equivalently rewritten as

x(i)(t+ 1) = arg min
x(i)≥0

Ji(x
(i), θ(i)(t))

+[α(i)(t)]Tx(i) + τ
∑

vj∈Ni

∥x(i) − x(i)(t)+x(j)(t)
2 ∥2. (17)

On the other hand, summing up the updates of m(ij)(t+ 1)
and n(ij)(t+ 1) in equation (13), we have

m(ij)(t+ 1) + n(ij)(t+ 1) = m(ij)(t) + n(ij)(t)
+τ [θ(i)(t+ 1) + θ(j)(t+ 1)]− 2τw(ij)(t+ 1).

(18)

Substituting the update of w(ij)(t+ 1) in equations (9), (18)
can be simplified to

m(ij)(t+ 1) + n(ij)(t+ 1)
= τ [θ(i)(t+ 1) + θ(j)(t+ 1)]− τ [θ(i)(t) + θ(j)(t)].

(19)

If we initialise m(ij)(0) + n(ij)(0) = τ [θ(i)(0) + θ(j)(0)]−
τ [θ(i)(−1) + θ(j)(−1)], then for t ≥ 0

m(ij)(t) + n(ij)(t)
= τ [θ(i)(t) + θ(j)(t)]− τ [θ(i)(t− 1) + θ(j)(t− 1)].

(20)

Substituting equation (20) into equation (9), we have

w(ij)(t+ 1) = [θ(i)(t) + θ(j)(t)]
−1

2 [θ
(i)(t− 1) + θ(j)(t− 1)],

(21)

and hence

w(ij)(t+ 1) + w(ji)(t+ 1)
= 2[θ(i)(t) + θ(j)(t)]− [θ(i)(t− 1) + θ(j)(t− 1)].

(22)

Defining a new Lagrange multiplier β(i)(t) =
∑

vj∈Ni

[m(ij)(t) + n(ji)(t)], from equation (13) we know

β(i)(t+ 1) = β(i)(t)
+τ

∑
vj∈Ni

[2θ(i)(t+ 1)− w(ij)(t+ 1)− w(ji)(t+ 1)]. (23)

Substituting equation (22) into equation (23) yields

β(i)(t+ 1) = β(i)(t) + τ
∑

vj∈Ni

[2θ(i)(t+ 1)− 2θ(i)(t)

−2θ(j)(t) + θ(i)(t− 1) + θ(j)(t− 1)].
(24)

Substituting β(i)(t) and equation (22) into equation (11), the
update can be equivalently rewritten as

θ(i)(t+ 1) = argmin
θ(i)

Ji(x
(i)(t+ 1), θ(i)) + [β(i)(t)]T θ(i)

+τ
∑

vj∈Ni

∥θ(i) − θ(i)(t)− θ(j)(t)

+
θ(i)(t− 1) + θ(j)(t− 1)

2
∥2.

(25)
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In summary, the simplified algorithm works as follows.
At time t+ 1, sensor node vi collects x(j)(t) and θ(j)(t)
from each of its neighbours vj . Upon receiving all of
them, vi updates x(i)(t+ 1) and θ(i)(t+ 1) according to
equations (17) and (25), respectively. Then vi updatesα(i)(t+
1) and β(i)(t+ 1) according to equations (16) and (24),
respectively. The algorithm is decentralised and equivalent
to the one developed in the previous subsection given
initialisation p(ij)(0) = −q(ij)(0) = −p(ji)(0) = q(ji)(0),
z(ij)(0) = 1

2 [x
(i)(0) + x(j)(0)], and m(ij)(0) + n(ij)(0) =

τ [θ(i)(0) + θ(j)(0)]− τ [θ(i)(−1) + θ(j)(−1)], while reduces
50% communication cost since transmission of {zji} and
{w(ji)} is no longer needed. We name the algorithm as
decentralised event detection and environment perception
(DEEP) that is outlined in Algorithm 2.

Algorithm 2 Decentralized Event detection and
Environment Perception (DEEP) at vi

Require: Measurement bi, parameter λ, attenuation
function f(d, θ), neighbor set Ni, distance dji for all
vj ∈ Ni.

Require: Stepsize τ .
1: Initialize x(i)(0) = 0, θ(i)(0) = 0, θ(i)(−1) = 0, α(i)(0) =

0, and β(i)(0) = 0.
2: Initialize x(j)(0) = 0, θ(j)(0) = 0, and θ(j)(−1) = 0 for all

vj ∈ Ni.
3: for t = 0, 1, 2, . . . do

4: Update x(i)(t + 1) via (17)

x(i)(t + 1) = arg min
x(i)≥0

Ji(x
(i), θ(i)(t))

+[α(i)(t)]T x(i) + τ
∑

vj∈Ni

‖x(i) − x(i)
(t)+x(j)

(t)

2
‖2.

(26)

5: Update θ(i)(t + 1) via (25)

θ(i)(t + 1) = arg min
θ(i)

Ji(x
(i)(t + 1), θ(i)) + [β(i)(t)]T θ(i)

+τ
∑

vj∈Ni

‖θ(i) − θ(i)(t) − θ(j)(t) + θ(i)
(t−1)+θ(j)

(t−1)

2
‖2.

(27)

6: Transmit x(i)(t + 1) and θ(i)(t + 1) to and receive
x(j)(t + 1) and θ(j)(t + 1) from all neighbors vj ∈ Ni.

7: Update α(i)(t + 1) via (16)

α(i)(t + 1)

= α(i)(t) + τ
∑

vj∈Ni

[x(i)(t + 1) − x(j)(t + 1)]. (28)

8: Update β(i)(t + 1) via (24)

β(i)(t + 1) = β(i)(t) + τ
∑

vj∈Ni

[2θ(i)(t + 1)

−2θ(i)(t) − 2θ(j)(t) + θ(i)(t − 1) + θ(j)(t − 1)].
(29)

9: end for

10: Return x(i)(t + 1) and θ(i)(t + 1).

4.3 Heuristic acceleration

To accelerate the DEEP algorithm and mitigate the
communication cost, next we introduce two heuristic
acceleration techniques.

The first technique comes from the observation that if
the measurement bi of sensor node vi is small, it is very
likely that there is no event occurring at the sensor point
vi. To see so, recall that according to Assumption 1, the
attenuation function f(d, θ) is monotonically decreasing with
respect to the distance d as well as normalised by f(0, θ) = 1
and f(∞, θ) = 0. If there is a significant event occurring at

the sensor point vi such that xi is large enough, then bi =∑
vj∈L f(dji, θ)xj ≥ xi in the noise-free case. Unless the

random noise is large enough to cancel the effect of the event,
bi should be large enough. This fact motivates us to simply
set xi = 0 during the optimisation process if bi is smaller
than a certain threshold ϵ. Through truncating the intermediate
estimates of x and force those small elements to be zero, the
algorithm can concentrate on those large elements that are
likely corresponding to the true events.

Algorithm 3 Accelerated Decentralized Event
detection and Environment Perception (ADEEP) at vi

Require: Measurement bi, parameter λ, attenuation
function f(d, θ), neighbor set Ni, distance dji for all
vj ∈ Ni.

Require: Stepsize τ , threshold ǫ, ratio ρ.
1: Initialize x(i)(0) = 0, θ(i)(0) = θ̂(i)(0) = θ(i)(−1) = 0,

α(i)(0) = 0, β(i)(0) = 0, r(i)(0) = 0, and η(i)(0) = 0.
2: Initialize x(j)(0) = 0, θ(j)(0) = 0, and θ(j)(−1) = 0 for all

vj ∈ Ni.
3: for t = 0, 1, 2, . . . do

4: If bi ≥ ǫ, update x(i)(t + 1) via

x(i)(t + 1) = arg min
x(i)≥0

Ji(x
(i), θ̂(i)(t))

+[α(i)(t)]T x(i) + τ
∑

vj∈Ni

‖x(i) − x(i)
(t)+x(j)

(t)

2
‖2,

(30)

otherwise
x(i)(t + 1) = arg min

x(i)≥0,x
(i)
i

=0

Ji(x
(i), θ̂(i)(t))

+[α(i)(t)]T x(i) + τ
∑

vj∈Ni

‖x(i) − x(i)
(t)+x(j)

(t)

2
‖2.

(31)

5: Update θ(i)(t + 1) via (25)

θ(i)(t + 1) = arg min
θ(i)

Ji(x
(i)(t + 1), θ(i)) + [β(i)(t)]T θ(i)

+τ
∑

vj∈Ni

‖θ(i) − θ(i)(t) − θ(j)(t) + θ(i)
(t−1)+θ(j)

(t−1)

2
‖2.

(32)

6: Transmit x(i)(t + 1) and θ(i)(t + 1) to and receive
x(j)(t + 1) and θ(j)(t + 1) from all neighbors vj ∈ Ni.

7: Update α(i)(t + 1) via (16)

α(i)(t + 1)

= α(i)(t) + τ
∑

vj∈Ni

[x(i)(t + 1) − x(j)(t + 1)]. (33)

8: Update β(i)(t + 1) via (24)

β(i)(t + 1) = β(i)(t) + τ
∑

vj∈Ni

[2θ(i)(t + 1)

−2θ(i)(t) − 2θ(j)(t) + θ(i)(t − 1) + θ(j)(t − 1)].
(34)

9: Calculate primal residual r(i)(t + 1) = ‖θ(i)(t + 1) −
θ̂(i)(t)‖.

10: if r(i)(t + 1) < ρr(i)(t) then

11: η(i)(t + 1) =
1+

√
1+4(η(i)(t))2

2
and θ̂(i)(t + 1) =

θ(i)(t + 1) + η(t)−1

η(t+1)
[θ(i)(t + 1) − θ(i)(t)].

12: else

13: η(i)(t + 1) = 1 and θ̂(i)(t + 1) = θ(i)(t + 1).
14: end if

15: end for

16: Return x(i)(t + 1) and θ(i)(t + 1).

This heuristic acceleration technique can be viewed as
using support detection to enhance the performance of a
sparse optimisation algorithm. To solve a sparse optimisation
problem, the key issue is to find the nonzero locations of
the optimal solution, defined as supports. Once the supports
are correctly detected, the algorithm reduces to solving a
low-dimensional ordinary nonlinear least squares problem and
converges much faster.
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The second technique is to use Nesterov acceleration to
expedite the ADMM. Specifically, for each sensor node vi
define an acceleration factor η(i) that updates via

η(i)(t) =
1+

√
1+4(η(i)(t−1))2

2 . (35)

Then in the x(i)-update equation (17), replace θ(i)(t) by the
accelerated one

θ̂(i)(t) = θ(i)(t) +
η(i)(t− 1)− 1

η(i)(t)
[θ(i)(t)− θ(i)(t− 1)],

(36)

if the current primal residual reduces sufficiently from the
previous value. This acceleration technique is motivated by
goldstein et al. (2012) that accelerates on both the primal and
dual variables. In our algorithm we only accelerate on the
primal variables θ(i), because through preliminary numerical
experiments we find that for our specific optimisation problem
accelerating on the dual variables may lead to numerical
instability. Our conjecture is that the joint event detection and
environment perception problem is nonconvex, and is thus
sensitive to the dual acceleration strategy.

The algorithm using the acceleration techniques, named
as accelerated decentralised event detection and environment
perception (ADEEP), is shown in Algorithm 3. The
modifications alleviate the interference of those false supports
to the optimisation process and accelerate on the primal
variables. The effectiveness of the acceleration techniques will
be demonstrated in the numerical experiments.

5 Numerical experiments

In the numerical experiments we assume that L = 100 sensor
nodes are deployed as a 10× 10 grid in a two dimensional
sensing area [1, 10]× [1, 10]. Four events occur at points
(1, 10), (2, 2), (2, 5) and (4, 6) with amplitudes 2, 2, 1 and 2,
respectively. The influence function f(d, θ) = exp(−θd2). In
the joint event detection and environment perception problem
(2), we choose the weight parameter λ = 100 that balances
the sparsity of the events and the estimation error.

We compare the following four algorithms in the numerical
experiments:

1 CEEP that is introduced in Section 3

2 DEEP that is introduced in Section 4.2 with τ = 1

3 ADEEP that is introduced in Section 4.3 with τ = 1,
ϵ = 0.1, and ρ = 0.99

4 D-Lasso that is proposed in Bazerque and Giannakis
(2010).

Here CEEP is centralised, while DEEP, ADEEP, and D-Lasso
are decentralised. CEEP, DEEP, and ADEEP are joint event
detection and environment perception algorithms, in which
the one-dimensional environment perception subproblems are

approximately solved by the 0.618 method (Miller, 2000).
D-Lasso assumes that the attenuation coefficient θ is known
in advance.

Next we briefly discuss energy consumption of the
decentralised algorithms. At each iteration of DEEP and
ADEEP, sensor node vi broadcasts an L-dimensional vector
x(i) and a scalar θ(i) to and receives an L-dimensional vector
x(j) and a scalar θ(j) from all neighbours vj ∈ Ni. Suppose
that powers of broadcasting and receiving a scalar are pb and
pr, respectively. Therefore, the energy consumption of sensor
node vi is (L+ 1)

[
pb + pr|Ni|

]
and the energy consumption

of the overall network is (L+ 1)
∑

vi∈L
[
pb + pr|Ni|

]
per

iteration. D-Lasso assumes that the attenuation coefficient θ
is fixed and not optimised, hence the energy consumption of
the overall network is L

∑
vi∈L

[
pb + pr|Ni|

]
per iteration.

The numerical experiments use root mean square error
(RMSE) of event detection as the performance criterion.
Suppose that the true value of the signal is xo, the centralised
estimate is x, and the decentralised estimate of sensor node vi
is x(i). RMSE is defined as ∥x− xo∥2 or 1

L

∑
vi∈L ∥x(i) −

xo∥2. We consider two different cases for the measurements,
one is noise-free and another is noise-polluted.

5.1 The noise-free case

Consider the noise-free case first. Set the attenuation
coefficient θ = 2 that means fast decay of signal strength.
We suppose that D-Lasso has the correct knowledge of θ.
Figure 1 compares the four algorithms with respect to the
RMSE of event detection. It is interesting that the three
joint event detection and environment perception algorithms
achieve the same RMSE as that of D-Lasso, which exactly
knows the attenuation coefficient θ in advance. The centralised
algorithm CEEP converges to a stationary point quickly.
The decentralised algorithm DEEP converges to the same
stationary point within 500 iterations. Its accelerated version
ADEEP reaches the same RMSE within 400 iterations.
The observation shows that the acceleration techniques are
effective.

We also demonstrate the process of environment
perception in Figure 2 for CEEP, DEEP, and ADEEP. In DEEP
and ADEEP, since each sensor node holds a local estimate of
θ, we choose one random local estimate as an representative.
The estimates of θ all converge to the true value and the
convergence time is the same as that of event detection.

Now we impose variation to the environment such that the
true attenuation coefficient θ is changed to 1, which means that
signal strength decays slower. D-Lasso still assumes the true
value of θ is 2. As shown in Figure 3, D-Lasso fails because
the prior knowledge of θ is wrong. As a comparison, the three
joint event detection and environment perception algorithms
CEEP, DEEP, and ADEEP work well due to the assistance of
the environment perception step. DEEP and ADEEP converge
much slower than those in Figure 1. The reason is that if the
true θ is smaller, then signal strength decays slower and thus
each event couples more sensor nodes. Therefore, more sensor
nodes must reach consensus on the estimates of the events in
the algorithm.



Joint event detection and environment perception in decentralised wireless sensor networks 177

Figure 1 RMSE with respect to event detection in CEEP, DEEP,
ADEEP, and D-Lasso. The measurements are noise-free.
The true attenuation coefficient θ = 2, which is exactly
known by D-Lasso in advance (see online version
for colours)
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Figure 2 Estimate of θ for environment perception in CEEP,
DEEP, and ADEEP. The measurements are noise-free.
The true attenuation coefficient θ = 2 (see online
version for colours)
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Figure 3 RMSE with respect to event detection in CEEP, DEEP,
ADEEP, and D-Lasso. The measurements are noise-free.
The true attenuation coefficient θ = 1 while D-Lasso
assumes its value is 2 (see online version for colours)
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5.2 The noise-polluted case

Second we consider the noise-polluted case. Suppose that
the measurements are polluted by the Gaussian noise with
different standard deviations. Set the attenuation coefficient
θ = 2 that is exactly known by D-Lasso in advance.

Figure 4 illustrates the RMSE with respect to event detection
for the four algorithms. The algorithms all demonstrate
robustness to the measurement noise.

Figure 4 RMSE with respect to event detection in CEEP, DEEP,
ADEEP, and D-Lasso. The measurements are polluted
by the Gaussian noise with different standard deviations.
The true attenuation coefficient θ = 2 that is known by
D-Lasso in advance (see online version for colours)
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6 Conclusion

This paper addresses the joint event detection and environment
perception problem in a WSN. Through exploiting the
sparse nature of the events, we propose an ℓ1-norm
regularised least squares formulation that automatically
estimates the number of the events as well as their
locations and magnitudes; the attenuation coefficient of
the environment is also an optimisation variable in the
formulation. We develop a decentralised algorithm based on
the ADMM. Through exploiting structures of the problem,
the decentralised algorithm in each node boils down to three
steps: an event detection step that is a convex program;
an environment perception step that is a nonconvex one-
dimensional optimisation problem; a multiplier update step
that contains only algebraic operations. To improve energy-
efficiency of the WSN, we further develop a heuristic
scheme that accelerates the proposed decentralised algorithm.
Numerical experiments demonstrate the effectiveness of
the decentralised joint event detection and environment
perception algorithms.

In DEEP and ADEEP, we assume that the communication
among sensor nodes is synchronised through implementing
existing synchronisation techniques (Ye et al., 2008).
Though synchronous optimisation is common in designing
decentralised algorithms, asynchronous optimisation has
attracted increasing research interest in recent years (Nedic,
2011). One of our future research directions is to
develop asynchronous joint event detection and environment
perception algorithms in decentralised networks.
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