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1 Introduction

Event detection is one of the most important applications of
wireless sensor networks (WSNs) (Ling et al., 2010). Typical
event detection tasks include detecting nuclear radioactive
sources (Sundaresan et al., 2007), monitoring structural
health conditions (Lynch, 2007), discovering presence of
contaminants (Sun and Coyle, 2010), to name a few. In a
traditional event detection WSN, data collection and signal
processing are separated. A fusion centre collects sensory data
from distributed wireless sensor nodes, and then processes
the sensory data to accomplish the event detection task. Such
a centralised infrastructure suffers from sharp degradations
of energy efficiency and robustness when the network scale
increases (Liu et al., 2011).

To address this issue, decentralised algorithms in WSNs
have attracted considerable research interest in recent years
(Rabbat and Nowak, 2006; Nedic and Ozdaglar, 2009; Predd
et al., 2007; Zhu et al., 2007; Schizas et al., 2008; Bazerque
and Giannakis, 2010; Ling and Tian, 2010; Jakovetic et al.,
2011). In the absence of any fusion centre, sensor nodes
autonomously exchange information with their neighbours
and collaboratively detect the events. This decentralised
infrastructure, compared to the traditional centralised one,
avoids collecting sensory data to a fusion centre while exploits
collaboration of neighbouring sensor nodes to realise in-
network signal processing. Therefore, the network can achieve
lightweight communication and improved energy efficiency.
In addition, avoiding centralised collection of sensory data
also strengthens network robustness since the network no
longer relies on several critical sensor nodes to relay sensory
data. For detailed discussions on the benefits of decentralised
algorithms in WSNs, readers are referred to Predd et al. (2007).

This paper elaborates on developing an energy-efficient
and robust decentralised algorithm, which scales with network
size, for the event detection application of WSNs. Specifically,
we confine the event sources to be at a set of candidate
positions (here we use sensor node positions as candidate
positions), and model the event detection problem as
recovering a decision vector which represents the event
magnitudes at the candidate positions. Though the existing
decentralised in-network signal processing techniques, such
as consensus optimisation, are applicable to this recovery
problem, they often lead to high communication cost (Schizas
et al., 2008; Bazerque and Giannakis, 2010; Ling and Tian,
2010; Jakovetic et al., 2011). For example, in the consensus
optimisation formulation, each sensor node holds a local copy
of the signal to recover, and the local copies of neighbouring
sensor nodes consent to the same value. Decentralised iterative
algorithms which solve the consensus optimisation problem
require sensor nodes to exchange their current local copies
with their neighbours; therefore, for each sensor node, the
communication cost per iteration is proportional to the size of
its local copy (Schizas et al., 2008; Bazerque and Giannakis,
2010; Ling and Tian, 2010; Jakovetic et al., 2011). Since the
size of each local copy is equal to the number of sensor nodes in
our model, the communication cost per sensor node increases
at least linearly with the network size, which is unacceptable
for large-scale WSNs.

This paper develops a decentralised linear programming
(DLP) algorithm to solve the event detection problem in
an energy-efficient manner. Different from the consensus
optimisation technique, we set an alternative objective that
is simple yet effective. Sensor nodes no longer optimise and
consent on the entire decision vector as in the consensus
optimisation approach; in contrast, we let each sensor node
optimise its own decision variable corresponding to a scalar
element in the decision vector. Indeed, each sensor node solves
a simple linear program through limited communication with
its neighbouring sensor nodes. This strategy works since
the sensory data in the event detection application often
exhibits local correlation other than global correlation; that
is, an occurring event only influences the measurements of
some nearby sensor nodes, but has little effect on faraway
sensory readings. Therefore, recovering the whole decision
vector at each sensor node and letting the whole network
reach consensus are both unnecessary. Theoretically, we prove
that under mild conditions, the DLP algorithm approximately
solves the original event detection problem. We further show
that for a certain scenario, the DLP algorithm converges
to the exact solution; this scenario appears in applications
such as structural health monitoring, etc. Compared to
the alternating direction method (ADMM) algorithm which
solves the consensus optimisation problem, the proposed
DLP algorithm shows much faster convergence and lower
communication cost through numerical simulation.

This paper is organised as follows. The event detection
problem is formulated in Section 2. Section 3 proposes
the DLP algorithm and Section 4 theoretically analyses its
convergence property. Numerical simulation and application
in structural health monitoring are demonstrated in Sections 5
and 6, respectively. Section 7 concludes the paper.

2 Problem formulation

Suppose that a large-scale WSN is densely deployed in a
two-dimensional sensing field. The network has a set of L
sensor nodes, denoted as L = {vi}Li=1. Sensor nodes have a
common communication range rC . Each sensor node can and
only can communicate with its one-hop neighbours within
the communication range, and no multi-hop communication
is permitted to avoid excessive coordination efforts. Given
the communication range rC , the network is bidirectionally
connected.

The event detection task is performed periodically. Within
each sampling period, multiple events may occur in the sensing
field. Each event has an influence on part of the sensing field,
centring around the source of the event; influences of multiple
events are then superposed on the whole sensing field. After
collecting the sensory data, distributed sensor nodes cooperate
to localise the sources and estimate the amplitudes of the
events.

To make the event detection problem tractable, we assume
that there are a set of candidate positions for the event
sources. Typical choices of candidate positions include virtual
grid points in the sensing field (Bazerque and Giannakis,
2010) and positions of sensor nodes (Ling and Tian, 2010).
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Setting the virtual grid points as the candidate positions
makes the resolution of event detection adjustable; however,
in decentralised algorithm design, this setting requires each
sensor node to detect all events in the whole sensing field,
and hence brings high communication cost (Bazerque and
Giannakis, 2010). Contrarily, by choosing the positions of the
sensor nodes as the candidate positions, the resolution of event
detection is directly decided by the density of the sensor nodes.
When the WSN nodes are densely deployed, this setting makes
sense. More importantly, this setting simplifies decentralised
algorithm design since each sensor node only needs to detect
whether there is an event occurring at its own position, as we
shall see below. Therefore, we assume that

(A1) Events occur only at the positions of some sensor nodes.
When the source of one event coincides with the position of
vj , we denote the amplitude of the event by a scalar cj > 0;
otherwise cj = 0.

Based on (A1), we can formulate the event detection problem
as recovering a nonnegative vector c = [c1, ..., cL]

T from the
sensory data. Figure 1 shows the case where sensor nodes are
deployed randomly in the sensing field and events occur at
sensor node points.

Figure 1 Blue points are 400 sensor nodes deployed randomly in
the sensing field, red squares are events, and red circles
are events’ influence areas (see online version
for colours)
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Next, we notice that in many event detection applications, one
event only has a limited influence on its nearby region in the
sensing field. For example, in nuclear radioactive detection,
the influence of a nuclear source decreases polynomially
in distance. Similar distance-dependent influences can be
observed from events such as fire sources and structural
damages. By carefully setting the communication range rC ,
we can confine the influence of an event occurring at the
position of one sensor node to the range of the sensor node’s
one-hop neighbours; more specifically.

(A2) Each event only influences its nearby region in
the sensing field. The influence of a unit-amplitude event
occurring at the position of vj on the sensor node vi is fij ,

and fij = fji. We suppose that fij = 0 if dij ≥ rC , where dij
is the distance between sensor nodes vi and vj .

The assumption (A2) enables design of simple decentralised
algorithms, since it eliminates the interrelationship between
multi-hop sensor nodes and avoids the necessity of multi-hop
communications.

Finally, we make a commonly-used assumption that the
influences of the events are linearly superposed. Combining
with (A2), we have

(A3) The measurement of one sensor node is the superposition
of the influences of all events plus random noise. Since fij =
0 for dij ≥ rC , the measurement bi of vi can be written as
bi =

∑
vj∈Ni∪vi

fijcj + ei, where ei is random noise, andNi

denotes the one-hop neighbours of vi.
We now introduce a key observation that the vector c, which
we want to recover, is sparse. That is, the number of nonzero
elements in c is much smaller than the vector size L. This
prior knowledge holds since event detection for a large-scale
WSN is meaningless if the sensing field is full of event sources.
Nevertheless, we do allow the influences of these sparse events
to span over the whole sensing field. Hence, reconstruction ofc
boils down to minimising a sparsity-imposing metric ||c||1 that
is the ℓ1 norm of c (Donoho, 2006), subject to measurement
constraints. From (A3), two similar formulations arise, one is
a linear program that postulates a bound θ of measurement
noise at each sensor nodes:

min
c

||c||1
s.t. |bi −

∑
vj∈Ni∪vi

fijcj | ≤ θ, ∀vi ∈ L
ci ≥ 0, ∀vi ∈ L.

(1)

And the other is a second-order cone program that confines
the total energy of the measurement noise to be lower than ϵ:

min
c

||c||1
s.t.

∑
vi∈L(bi −

∑
vj∈Ni∪vi

fijcj)
2 ≤ ϵ

ci ≥ 0, ∀vi ∈ L.
(2)

Both equations (1) and (2) incorporate the prior knowledge of
sparse events, which is important in alleviating the undesired
false alarm rates of otherwise non-sparse solutions produced
by general signal recovery approaches such as thresholding or
least squares. In this paper, we focus on the linear program
equation (1) and devote to designing an efficient algorithm as
well as analysing its recovery performance.

3 Decentralised algorithms

Indeed, we can reformulate the event detection problem (1) as
a consensus optimisation problem via introducing local copies
of c and imposing equality constraints on the local copies
of neighbouring sensor nodes. This consensus optimisation
problem can be solved based on the alternating direction
method of multipliers (ADMM) (Bertsekas and Tsitsiklis,
1997). For details of the ADMM-based decentralised
algorithm, readers are referred to Bazerque and Giannakis
(2010) and Ling and Tian (2010). However, the resulting
decentralised algorithm requires each sensor node to share its
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current local copy of c with its neighbouring sensor nodes.
Since in our model, the size of c is equal to the number of
sensor nodes, this approach does not scale when the network
size increases. Further, the consensus optimisation scheme
requires that all sensor nodes reach a consensus, which often
brings slow convergence rate for a large-scale WSN.

To reduce the communication cost per iteration as well as
accelerate the algorithm, this paper proposes a heuristic DLP
algorithm to solve equations (1). Specifically, sensor node vi
solves the following linear program:

min
ci

ci

s.t. |bi − fiici −
∑

vj∈Ni
fijcj | ≤ θ

ci ≥ 0.

(3)

Indeed, equation (3) is corresponding to part of the objective
function and part of the constraints of equation (1).

Solution to equation (3) is ci = [bi − θ −∑
j∈Ni

fijcj ]
+/fii. Here [·]+ denotes the projection to

max{·, 0}. Therefore we have the following heuristic DLP
algorithm as in Algorithm 1.

Algorithm 1 Decentralized Linear Programming
(DLP) Algorithm for sensor vi

Require: Event influence set Ni, coefficient vector Fi =
[fi1, fi2, · · · , fiL]T , measurement bi and predefined
threshold θ

1: Initialize ci = 0;
2: for t = 0, 1, 2, . . ., sensor vi do

3: Transmit ci(t) to, and receive cj(t) from j ∈ Ni;
4: Update ci(t + 1) according to ci = [bi − θ −∑

j∈Ni
fijcj ]

+/fii

5: end for

6: Returns ci(t + 1).

Compared with the ADMM-based decentralised algorithm,
the DLP algorithm just needs to exchange its own decision
variables ci, other than the local copy of c hold by itself with
its neighbours. This way, the communication cost per iteration
can be greatly reduced. Further, as we will demonstrate with
numerical simulation, the DLP algorithm converges much
faster than the ADMM-based decentralised algorithm. The
two properties make the DLP algorithm very energy-efficient
in the event detection application.

4 Convergence property of DLP

In this section, we elaborate on the convergence property of
the proposed DLP algorithm. First, we prove that under mild
conditions, the DLP algorithm solves an optimisation problem
which is similar to the original linear program (1). Second,
we further show that for a certain scenario, the DLP algorithm
exactly converges to the optimal solution of equation (1);
this scenario appears in applications such as structural health
monitoring, etc.

Before going to the theoretical analysis, we rewrite
equation (1) to its equivalent matrix form as

min
c

1T c

s.t. Fc− b ≥ −θ1
Fc− b ≤ θ1
c ≥ 0.

(4)

Here1 = [1, 1, ..., 1]T is anL× 1vector,b = [b1, b2, ..., bL]
T

contains sensory measurements, and

F =

 f11 · · · f1L
...

. . .
...

fL1 · · · fLL

 .

In the matrix F, all diagonal elements are 1; an off-diagonal
element fij ≥ 0 and fij = 0 if vj /∈ Ni ∪ vi. Since fij = fji,
F is symmetric.

Proposition 1: If a symmetric non-negative matrix F is
strictly diagonally dominant and all of its diagonal elements
are equal to 1, then the proposed DLP algorithm converges to
the optimal solution of a linear programming problem

min
c

1TFc

s.t. Fc− b ≥ −θ1
c ≥ 0.

(5)

Proof: It is proved in Mangasarian (1976) that if a nonnegative
matrix F is strictly diagonally dominant, then the optimal
solution of linear program (5) is equivalent to that of the
following linear complementarity problem:

cT (Fc− b+ θ1) = 0, s.t. Fc ≥ b− θ1, c ≥ 0. (6)

Let us rewrite (6) into a quadratic program

min
c

cT (Fc− b+ θ1)

s.t. Fc− b ≥ −θ1
c ≥ 0.

(7)

As proved in Mangasarian (1991), if F = P+Q and P−
Q are both positive definite, and F, P, and Q are all
symmetric, then the quadratic program (7) can be solved by
a matrix splitting algorithm c(t+ 1) = [c(t+ 1)− (Pc(t+
1) +Qc(t)− b+ θ1)]+.

Let P = I be an L× L identity matrix, then Q = F−
I. Obviously F, P, and Q are all symmetric matrices. Note
that F and P−Q = 2I− F are both symmetric and strictly
diagonally dominant, F and P−Q are both positive definite.
The corresponding matrix splitting algorithm to (7) is hence
c(t+ 1) = [b− θ1− (F− I)c(t)]+, which is equivalent to
the DLP algorithm. Therefore, the proposed DLP algorithm
converges to the optimal solution of equation (5). �

Remark 1: In Proposition 1, the only notable assumption
is that F is strictly diagonally dominant. It means that
the influence of an event decays fast enough with respect
to distance. That is, if an event occurs at the position
of sensor node vi with unit magnitude ci = 1, then its
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accumulated influence on other sensor nodes is less than 1,
i.e.,

∑
vj∈Ni

fij < 1.
Proposition 1 shows that under mild conditions, the DLP

algorithm solves equation (5), a linear programming problem
similar to the original problem (4). The objective function
of equation (5) is 1TFc, which reweights the objective
function of equation (4), i.e., 1T c. In addition, the solution
of equation (5) is not necessarily satisfying the inequality
constraint Fc− b ≤ θ1. Note that Proposition 1 only gives
sufficient conditions on the equivalence; the strictly diagonally
dominant assumption can be relaxed, as we will demonstrate
in the simulation results.

Next, we will give an important proposition which guarantees
that the DLP algorithm exactly solves equation (4). This
proposition shows that if the events’ magnitudes are large
enough (i.e., the signal-to-noise ratio is large enough), the DLP
algorithm can converge to the optimal solution of equation (4)
with a proper choice of the parameter θ.

Summing on the rows of the coefficient matrix F, we
denote smax and smin the maximum and minimum values,
respectively. Besides, we denote c0 as the vector which
represents real event occurrence in the sensing field. If c0i ̸= 0,
then an event occurs at the position of sensor node vi with
magnitude c0i. Moveover, we denote n as the noise involved
in measurementb. The following proposition proves when the
DLP algorithm exactly solves the original problem (4).

Proposition 2: Suppose that F is symmetric non-negative,
strictly diagonally dominant, all of its diagonal elements are
equal to 1, and smin−1

smax−1 > 1
β > 0. Then for any event occurring

at the position of sensor node vi with c0i ≥ (β + 1) ∥n∥∞,
if we set θ ≥ β ∥n∥∞, the DLP algorithm exactly solves the
original problem (4).

Proof : First, in Appendix A.III, we prove that under the above
conditions, equation (4) is equivalent to:

min
c

1T c

s.t. Fc− b ≥ −θ1
c ≥ 0.

(8)

Second, in Proposition 1, we prove that if F is symmetric non-
negative, strictly diagonally dominant, and all of its diagonal
elements are equal to 1, then the DLP algorithm converges
to the optimal solution of equation (5). Therefore, to prove
Proposition 2, we only need to show the equivalence between
equations (8) and (5), which is shown in Appendix A.IV. �

Remark 2: Proposition 2 indicates that given smax and smin,
if the signal-to-noise ratio is larger than a certain threshold
(for any event occurring at vi, c0i ≥ (β + 1) ∥n∥∞) and the
parameter θ is properly chosen (θ ≥ β ∥n∥∞), then the DLP
algorithm exactly solves the original problem (4).

Remark 3: Proposition 2 shows that when θ > β∥n∥∞,
the DLP converges to (4). Actually, β∥n∥∞, as shown in
Appendix A, is quite a conservative bound for θ. Simulation
results show that for ∥n∥∞ < θ < β∥n∥∞, DLP may also be
able to converge to equation (4).

Proposition 2 gives a guideline of adjusting β based on the
values of smax and smin. When sensor nodes are randomly
deployed, we can estimate smax and smin via the statistical
property of F. For applications which allow us deploy sensor
nodes in a regular manner, smax and smin can be exactly
determined. Next we show a special example where sensor
nodes are placed at virtual grid points in the square sensing
field, as shown in Figure 2. In the structure health monitoring
application, as we will show in Section 4, sensor nodes can
often be deployed in this manner.

Figure 2 Blue points are 400 sensor nodes deployed at virtual grid
points, red solid squares are events, and red circles are
events’ influence ranges (see online version for colours)
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Corrolary 3: If sensors are deployed as in Figure 2, Then for
any event occurring at the position of sensor node vi with c0i ≥
5 ∥n∥∞, if we set θ ≥ 4 ∥n∥∞, the DLP algorithm exactly
solves equation (4).

Proof: If sensors are deployed as in Figure 2, it is easy to
deduce that smin−1

smax−1 > 1
4 . And from Proposition 2, Corollary 3

is established. �

5 Simulation results

In our simulation, we divide the sensing field into an N ×N
lattice, and deploy L = N2 sensor nodes at the grid points.
The distance between two neighbouring sensor nodes is r,
such that the lattice grid can be represented by sensor positions
{(xr, yr) : x, y = 1, 2, ..., N}. Suppose that events occur at
several grid points. We use the following basis function to
approximate the influence of unit-magnitude event:

fij = fj(vi) =

{
e−

d2ij

σ2 dij < rE
0 dij ≥ rE

. (9)

Here we let rC = rE . In addition, sensory measurements are
polluted by uniformly random noise, ranging from −0.01 to
0.01.
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First we check the convergence property of the
DLP algorithm. Suppose four events with magnitude
0.25, 0.5, 0.75 and 1 (satisfying c0i ≥ 5∥n∥∞) occur
at (3r, 5r), (4r, 2r), (6r, 6r) and (8r, 7r), respectively.
Meanwhile, σ2 is set as 0.5 and rE = 0.01 to keep F being
strictly diagonally dominant. Denote c0 as the true event
vector, ctlp as the optimal solution of problem (4) and cdlp as
the fixed point of DLP. ∥ctlp − cdlp∥2 denotes the gap between
the fixed point of DLP and optimal solution of (4). During
the simulation, θ varies from 0 to 0.04 while ∥n∥∞ is fixed at
0.01.

Figure 3 depicts that when θ > 0.01, DLP converges to the
optimal solution of equation (4). Actually, from the deduction
of Proposition 2 we know it is quite conservative to choose
θ > 4∥n∥∞. DLP performs much better than our theoretical
analysis.

Figure 3 DLP converges to the optimal solution of equation (4)
when θ > 0.01 (see online version for colours)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.01

0.02

0.03

0.04

0.05

0.06

θ

||
c

d
lp

−
d

tl
p
||

2

Next we compare the convergence between DLP and ADMM.
Suppose two events, with magnitudes 1 and 0.5, occur
at (3r, 5r) and (5r, 5r). During the simulation, σ2 = 0.5,
rE = 0.01, ∥n∥∞ = 0.01 and θ = 0.05. Figure 4 shows
the convergence behaviour of the two algorithms. These
two decentralised algorithms both provide accurate locations
and converge to the solution of model (4). However, the
ADMM algorithm converges after 90 iterations, while the
DLP algorithm converges after only 4 iterations. With less
communication cost per iteration and much faster convergence
rate, DLP greatly improves energy-efficiency of the network.

Finally we will show DLP can also perform well in some
cases where F is not diagonally dominant. Note that we can
adjust σ2 to vary the diagonal dominance of F and it is easy to
verify that whenσ2 > 0.65 and rE = 0.01,F is not diagonally
dominant. Figure 5 shows that when σ2 ≤ 1.2, DLP will
always converge exactly to the optimal solution of problem
(4), but after that, DLP can hardly converge.

6 Structural health monitoring

This section demonstrates the application of the DLP
algorithm in a structure health monitoring (SHM) network.
SHM refers to the process of damage detection for civil,

aerospace and mechanical engineering systems (Lynch, 2007).
The application of WSNs in SHM has attracted much attention
in recent years. By collecting the structure health information
through distributed and unattended sensor nodes, damages or
anomalies in a structure can be localised and the severities of
damages or anomalies can be identified.

Figure 4 DLP vs. ADMM (see online version for colours)
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Figure 5 DLP can still converge to the optimal solution of
equation (4) even if F is not strictly diagonally
dominant. Note DLP cannot converge when σ2 ≥ 1.2,
where we force it to stop after 200 iterations (see online
version for colours)
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The decentralised SHM system works with three stages (Ling
et al., 2009; Ling and Tian, 2009). Firstly in a modelling stage,
sensor nodes collect baseline responses from a undamaged
structure. Secondly in a statistical pattern recognition stage,
each sensor node collects operational responses and achieves
a damage sensitive coefficient by comparing with baseline
responses. Thirdly in a decentralised decision-making stage,
the damage sensitive coefficients are used to estimate a vector
of damage severity coefficients, which denotes the positions
and severities of damages. Since each damage in a structure
only influences the nearby sensor nodes and the vector of
damage severity coefficients is often sparse. By restricting the
locations of damages on sensor node points, we can establish
an event detection model as in equation (1).

Consider the example in Ling and Tian (2009). Suppose
that there is a steel frame structure with 12 stories and 9
bays, simplified as a two-dimensional model, as illustrated in
Figure 6. A grid network of 120 sensor nodes is deployed
at the joint points. The width of a bay is 24 feet and the
height of a floor is 14 feet. Ambient vibrations are imposed to
the foundation with Gaussian white noise. Responses of the
structure are analysed by the finite element software OpenSees
(Pacific Earthquake Engineering Research Center, 1999). By
reducing 72% stiffness for the column between sensors (7,5)
(located in 7th floor, 5th bay) and (8,5) (located in 8th floor,
5th bay), two damages are introduced to the structure. A
typical spatial distribution of the damage sensitive coefficients,
namely b, is shown in Figure 7.

Figure 6 Two-dimensional model of a steel frame structure with
12 stories and 9 bays. Gaussian random white noise is
imposed to the foundation to simulate ambient
vibrations (see online version for colours)

The measurement matrix F is decided through simulating the
structure. Denoting the positions of vi and vj as (mi, ni)
and (mj , nj), respectively, simulation results indicate that the
measurement coefficient fij ≃ exp(−(mi −mj)

2 − (ni −
nj)

2). The communication range rC is set to be slightly larger
than 24 feet, such that each sensor can communicate with
4 neighbouring sensors. The threshold θ = 0.03 in the DLP
algorithm. As depicted in Figure 8, even when the matrix
F under these setting is not diagonally dominant, we can
still successfully detect damages at (7,5) and (8,5) with the

DLP algorithm. We can also observe that the DLP algorithm
converges within 8 iterations, a tremendously fast convergence
rate.

Figure 7 Spatial distribution of the damage sensitive coefficients
after reducing stiffness for the column between (7,5) and
(8,5) (see online version for colours)
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Figure 8 Convergence of the damage severity coefficients for

sensors (7, 5) and (8, 5) when θ = 0.03 (see online
version for colours)

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

iterations

d
e
c
is

io
n
 v

a
ri
a
b
le

s

events at (7r,5r)

events at (8r,5r)

7 Conclusion

In this paper, we consider energy-efficient event detection with
a WSN. We formulate the event detection problem as a linear
program and design a heuristic DLP algorithm to solve it. The
DLP algorithm is with light-weight communication cost per
iteration and fast convergence rate. The convergence property
of the DLP algorithm is analysed theoretically. Numerical
simulation in both the synthetic examples and the SHM
application shows that the DLP algorithm outperforms the
ADMM-based consensus optimisation method.

References

Bazerque, J. and Giannakis, G. (2010) ‘Distributed spectrum sensing
for cognitive radio networks by exploiting sparsity’, IEEE
Transactions on Signal Processing, Vol. 58, pp.1847–1862.



A decentralised linear programming approach to energy-efficient event detection 59

Bertsekas, D. and Tsitsiklis, J. (1997) Parallel and Distributed
Computation: Numerical Methods, 2nd ed., Athena Scientific.

Dantzig, G. (1963) Linear Programming and Extensions, Princeton
University Press, Princeton, New Jersey, USA.

Donoho, D. (2006) ‘Compressed sensing’, IEEE Transactions on
Signal Processing, Vol. 52, pp.1289–1306.

Jakovetic, D., Xavier, J. and Moura, J. (2011) ‘Cooperative convex
optimization in networked systems: augmented Lagrangian
algorithms with direct gossip communication’, IEEE
Transactions on Signal Processing, Vol. 59, pp.3889–3902.

Ling, Q. and Tian, Z. (2009) ‘A decentralized Gauss-Seidel approach
for in-network sparse signal recovery’, Information Fusion,
2009. FUSION’09. 12th International Conference on, IEEE,
Seattle, USA, pp.380–387.

Ling, Q. and Tian, Z. (2010) ‘Decentralized sparse signal recovery
for compressive sleeping wireless sensor networks’, IEEE
Transactions on Signal Processing, Vol. 58, pp.3816–3827.

Ling, Q., Fanzi, Z. and Tian, Z. (2010) ‘Energy-efficient decentralized
event detection in large-scale wireless sensor networks’,
Acoustics Speech and Signal Processing (ICASSP), 2010
IEEE International Conference on, IEEE, Dallas, USA,
pp.3386–3389.

Ling, Q., Tian, Z., Yin, Y. and Li, Y. (2009) ‘Localized
structural health monitoring using energy-efficient wireless
sensor networks’, IEEE Sensor Journal, Vol. 9, pp.1596–1604.

Liu, Y., He, Y., Li, M., Wang, J., Liu, K., Mo, L., Dong, W., Yang, Z.,
Xi, M., Zhao, J. and Li, X. (2011) ‘Does wireless sensor network
scale? A measurement study on GreenOrbs’, INFOCOM, 2011
Proceedings IEEE, IEEE, Shanghai, China, pp.873–881.

Lynch, J. (2007) ‘An overview of wireless structural health
monitoring for civil structures’, Philosophical Transactions of
the Royal Society A, Vol. 365, pp.345–372.

Mangasarian, O. (1976) ‘Solution of linear complementarity
problems by linear programming’, Numerical Analysis,
Vol. 506, pp.166–175.

Mangasarian, O. (1991) ‘Convergence of iterates of an inexact
matrix splitting algorithm for the symmetric monotone linear
complementarity problem’, SIAM Journal of Optimization,
Vol. 1, pp.114–112.

Nedic, A. and Ozdaglar, A. (2009) ‘Distributed subgradient methods
for multi-agent optimization’, IEEE Transactions on Automatic
Control, Vol. 54, pp.48–61.

Pacific Earthquake Engineering Research Center (1999) OpenSees:
Open System for Earthquake Engineering Simulation.

Predd, J., Kulkarni, S. and Poor, V. (2007) ‘Distributed learning in
wireless sensor networks’, IEEE Signal Processing Magazine,
Vol. 24, pp.56–69.

Rabbat, M. and Nowak, R. (2006) ‘Quantized incremental algorithms
for distributed optimization’, IEEE Journal on Selected Areas
in Communications, Vol. 23, pp.798–808.

Schizas, I., Ribeiro, A. and Giannakis, G. (2008) ‘Consensus in
ad hoc WSNs with noisy links – Part I: distributed estimation of
deterministic signals’, IEEE Transactions on Signal Processing,
Vol. 56, pp.350–364.

Sun, X. and Coyle, E. (2010) ‘Low-complexity algorithms for
event detection in wireless sensor networks’, IEEE Journal on
Selected Areas in Communications, Vol. 28, pp.1138–1148.

Sundaresan, A., Varshney, P.K. and Rao, N.S.V. (2007) ‘Distributed
detection of a nuclear radioactive source using fusion
of correlated decisions’, Information Fusion, 2007 10th
International Conference on, IEEE, Quebec, Canada, pp.1–7.

Zhu, Y., Liu, Y., Ni, L.M. and Zhang, Z. (2007) ‘Low-power
distributed event detection in wireless sensor networks’,
INFOCOM 2007. 26th IEEE International Conference on
Computer Communications. IEEE, IEEE, Anchorage, USA,
pp.2401–2405.

Appendix A

Notations: In this part upper curlicue letters are used for index
set. By projecting the elements of the column vector a, the
rows and the columns of the matrix A on the index set I, we
achieve aI , A(I,:) and A(:,I) respectively. Further, we always
use AI in place of A(:,I) for simplicity.

I. Preliminary: the simplex method

Introduce slack variables cL+1, cL+2, ..., c2L and rewrite
equation (8) into

max
x

eTx

s.t. Ax = d
x ≥ 0,

(10)

where e = [−1T ,0T ]T with −1 = [−1, · · · ,−1]T and
0 = [0, · · · , 0]T both being L× 1 vectors, d = [−b1 +
θ, · · · ,−bL + θ]T , x = [c1, · · · , cL, cL+1, · · · , c2L]T , and
A = [−F, I].

Let B and N denote the index set of basic variables and
nonbasic variables, respectively. Besides, defineB = AB and
N = AN , then equation (10) can be transformed into:

max
xB,xN

eTBxB + eTNxN

s.t. BxB +NxN = d
{xB,xN } ≥ 0

(11)

SinceB is nonsingular, equation (11) can be transformed into:

max
xB,xN

eTBB
−1d− ((B−1N)TeB − eN )TxN

s.t. xB = B−1d−B−1NxN
{xB,xN } ≥ 0

(12)

Lemma 4: Suppose x∗ ∈ R2L. If B−1d ≥ 0 and
(B−1N)TeB − eN ≥ 0, let x∗

B = B−1d and x∗
N = 0, then

x∗ is optimal for problem (10).

Proof: See Dantzig (1963). �
Define the index set I = {1, 2, ..., 2L}, I1 = {1, 2, ..., L} and
I2 = {L+ 1, L+ 2, ..., 2L}, B1 = {j ∈ I1, j ∈ B}, B2 =
{j ∈ I2, j ∈ B}, N1 = {j ∈ I1, j ∈ N} and N2 = {j ∈
I2, j ∈ N}.

Lemma 5: Suppose x∗ is optimal for problem (10), then x∗
I1

is optimal for equation (8). If FB1x
∗
B1

≤ b+ θ1, the solution
of equation (8) equals that of equation (4).
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Proof: The first half is obvious, we now prove the
second half. Note that the objective functions of the two
problem are exactly the same, and hence we just need to
prove Fx∗

I1
≤ b+ θ1. Since Fx∗

I1
= FB1x

∗
B1

+ FN1x
∗
N1

=
FB1x

∗
B1

≤ b+ θ1, and hence the lemma is established. �

II. Preliminary: property of the matrix F

Lemma 6: Suppose that F is symmetric non-negative,
strictly diagonally dominant, all of its diagonal elements are
equal to 1. Then

• 0 ≤ F−11 ≤ 1.

• Denote smax and smin as the maximum and minimum
row’s sums of matrix F. Given that smin−1

smax−1 > 1
β > 0,

then if θ ≥ β∥n∥∞, we have
0 ≤ F−1(θ1− n) ≤ θ1− n.

Proof: See Appendix B. �

III. Proof of the equivalence between equations (4)
and (8)

Suppose that c0 is the true event vector. Define Z =
{i ∈ I1 : c0i = 0}, Z̄ = {i ∈ I1 : c0i > 0}, Z + L = {j :
j = i+ L, ∀ i ∈ Z} and Z̄ + L = {j : j = i+ L, ∀ i ∈ Z̄}.
The train of thought to prove Proposition 2 is as follows:

Let N = Z ∪ (Z̄ + L) and B = Z̄ ∪ (Z + L).
Meanwhile, define B = AB and N = AN . Suppose x∗ ∈
R2L, let x∗

B = B−1d and x∗
N = 0. We first prove x∗ is

optimal for (10) and hence x∗
I1

is optimal for (8). Next, we
will prove FB1x

∗
B1

≤ b+ θ1, which leads to Proposition 2.

Proof: Step 1. To prove x∗ is optimal for equation (10).

It is sufficient to prove B−1d ≥ 0 and (B−1N)TeB −
eN ≥ 0 from Lemma 1, and we will prove (B−1N)TeB −
eN ≥ 0 first. It is easy to show that there always exist
permutation matrices P1 and P2 to make B̄ = BP1 and N̄ =
NP2, where B̄ and N̄ all have unit-absolute value diagonal
elements. Meanwhile, let ēB = PT

1 eB and ēN = PT
2 eN .

Then (B−1N)TeB − eN ≥ 0 can be shown equivalent to

(B̄−1N̄)T ēB − ēN ≥ 0. (13)

Let b̄ij and n̄ij denote the element of matrices B̄ and N̄ in the
ith row and jth column. Then we have

b̄ij =

1 if j ∈ N1 and i = j
0 if j ∈ N1 and i ̸= j
−fij if j ∈ B1

, (14)

n̄ij =

1 if j ∈ B1 and i = j
0 if j ∈ B1 and i ̸= j
−fij if j ∈ N1

. (15)

Let w̄ij denote the element of matrices B̄−1 in the ith row and
jth column. Due to the special structure of B̄, we have

w̄ij =

1 if j ∈ N1 and i = j
0 if j ∈ N1 and i ̸= j
w̄ij if j ∈ B1

. (16)

Since B̄−1B̄ = I, combining equations (14) and (16) we have
the following equations:

(1) when i ∈ N1, j ∈ B1 : −fij −
∑

k∈B1
w̄ikfkj = 0

(2) when i ∈ B1, j ∈ B1 and i = j : −
∑

k∈B1
w̄ikfkj = 1

(3) when i ∈ B1, j ∈ B1 and i ̸= j : −
∑

k∈B1
w̄ikfkj = 0

.

(17)

Let D̄ = B̄−1N̄. For the special structure of ēB and ēN ,
inequality (13) can be equivalent to:{

1T
B1
D(B1,B1) ≤ 0T

B1

1T
B1
D(B1,N1) ≤ 1T

N1

. (18)

From equations (14) and (16), we have:

D(B1,B1) = (B̄−1)(B1,B1),
D(B1,N1) = −(B̄−1)(B1,B1)F(B1,N1).

(19)

From equation (17), we have:

(B̄−1)(B1,B1)F(B1,B1) = −I. (20)

Combining equations (19) and (20), inequality (18) is
equivalent to:{

1T
B1
F−1

(B1,B1)
≥ 0T

B1

1T
B1
F−1

(B1,B1)
F(B1,N1) ≤ 1T

N1

. (21)

Since F(B1,B1) is with the same characteristics with F, and
the column sums of F(B1,N1) are less than 1. From Lemma 3
we can achieve (21), and hence (B−1N)TeB − eN ≥ 0 is
established.

Next we will prove B−1d ≥ 0, which is equivalent to
B̄−1d ≥ 0. Recall that d = −b+ θ1 = −Fc0 − n+ θ1,
and hence B̄−1d ≥ 0 is equivalent to B̄−1Fc0 ≤ B̄−1(θ1−
n).

Let L = B̄−1F and lij denotes the element of matrices L.
From equations (16) and (17), it is easy to verify:

lij =

−1 if j ∈ B1 and i = j
0 if j ∈ B1 and i ̸= j
lij if j ∈ N1

. (22)

Recall that the special structure of c0, we haveEc0 = −c0 and
B̄−1Fc0 ≤ B̄−1(θ1− n) is equivalent to B̄−1(θ1− n) ≥
−c0, which, considering (16), is also equivalent to:

(B̄−1)(B1,B1)(θ1− n)B1 ≥ −(c0)B1 (23)

(B̄−1)(N1,:)(θ1− n) ≥ 0. (24)

To prove (23), recall that (B̄−1)(B1,B1) = −F−1
(B1,B1)

, and
from Lemma 3 it is sufficient to prove (θ1− n)B1 ≤ (c0)B1
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when θ ≥ β∥n∥∞. The inequality clearly holds because
(c0)B1 ≥ (β + 1) ∥n∥∞.

Inequality (24) is equivalent to (B̄−1)(N1,B1)(θ1−
n)B1 ≥ −(θ1− n)N1 . Combining equations (17); this
inequality is also equivalent to F(N1,B1)F

−1
(B1,B1)

(θ1−
n)B1 ≤ (θ1− n)N1 , which will hold if F(N1,B1)

(θ1− n)B1
≤ (θ1− n)N1

holds when θ ≥ β∥n∥∞ from
Lemma 3. Since ∥F(N1,B1)∥∞ ≤ 1

2 , which can be easily
verified, we have F(N1,B1)(θ1− n)B1 ≤ (θ1− n)N1 is
established, so is (24). Finally, B−1d ≥ 0 can be reached.

Step 2. To prove FB1x
∗
B1

≤ b+ θ1.

Recall that b = Fc0 + n and d = −Fc0 − n+ θ1, and
define G = FB1(B

−1)(B1,:), then FB1x
∗
B1

≤ b+ θ1 is
equivalent to (G+ I)Fc0 ≥ G(θ1− n)− (θ1− n).

DefineH = G+ I, from equations (16) and (17), we have:

gij =


0 if j ∈ N1

−1 if j ∈ B1, i ∈ B1 and i = j
0 if j ∈ B1, i ∈ B1 and i ̸= j∑

k∈B1
fikw̄kj if j ∈ B1, i ∈ N1

, (25)

hij =


1 if j ∈ N1, and i = j
0 if j ∈ N1, and i ̸= j
0 if j ∈ B1, i ∈ B1∑

k∈B1
fikw̄kj if j ∈ B1, i ∈ N1

. (26)

DefineR = HF, combining equations (17) and (25), we have:

rij =

{
0 if j ∈ B1

rij if j ∈ N1
. (27)

Recall that the special structure of c0, we have Rc0 = 0.
Therefore, all we need to prove is G(θ1− n)− (θ1− n) ≤
0. Note that:

G(θ1− n) = FB1(B̄
−1)(B1,B1)(θ1− n)B1

= −FB1F
−1
(B1,B1)

(θ1− n)B1

≤ 0.

(28)

Since θ ≥ β ∥n∥∞, we have G(θ1− n) ≤ 0 ≤ θ1− n, and
hence FB1x

∗
B1

≤ b+ θ1. �

IV. Proof of the equivalent between equation (5)
and (8)

Proof: Proving the equivalence between equations (5) and (8)
is actually a problem concerning sensitivity analysis in linear
programming, where coefficients in the objective function
are perturbed. Under the assumptions in Proposition 2, we
know, from Appendix A.III, that the basic variables set B =
Z̄ ∪ (Z + L) and nonbasic variables set N = Z ∪ (Z̄ + L)
are optimal for problem (5). Suppose that x∗ is the optimal
solution of problem (5), then we have x∗

B = B−1d and x∗
N =

0. Now we prove x∗ is also optimal to problem (8).
Problem (8) can also be transformed into equations (10)–

(12), with e = [−1TF,0T ]T . Since x∗
B = B−1d ≥ 0 and

x∗
N = 0, it is obvious that x∗ is feasible for problem (8). If we

can further prove that (B−1N)TeB − eN ≥ 0, the conclusion
that x∗ is also optimal to problem (8) is established.

Similar to (21), to prove (B−1N)TeB − eN ≥ 0 is
equivalent to prove{

1TFB1F
−1
(B1,B1)

≥ 0T
B1

1TFB1F
−1
(B1,B1)

F(B1,N1) ≤ 1TFN1

. (29)

For the first inequality in equation (29), note that

1TFB1F
−1
(B1,B1)

= 1T [FT
(B1,B1)

FT
(N1,B1)

]TF−1
(B1,B1)

= 1T [I FT
(N1,B1)

]TF−1
(B1,B1)

.

(30)

It is easy to show F(N1,B1)F
−1
(B1,B1)

≥ 0. Suppose
to the contrary that F(N1,B1)F

−1
(B1,B1)

< 0, after
multiplying F(B1,B1) to the right side we achieve
F(N1,B1)F

−1
(B1,B1)

F(B1,B1) < 0 F(B1,B1), i.e. F(N1,B1) < 0,
which is impossible. Now we can conclude (30) is positive.

For the second inequality in equation (29), it is established
if we can prove:{

1T
B1
F(B1,B1)F

−1
(B1,B1)

F(B1,N1) ≤ 1T
B1
F(B1,N1)

1T
N1

F(N1,B1)F
−1
(B1,B1)

F(B1,N1) ≤ 1T
N1

F(N1,N1)
. (31)

The first inequality in equation (31) holds clearly.
For the second inequality, since F−1

(B1,B1)
F(B1,N1) ≥ 0,

1T
N1

F(N1,B1) ≤ 1T
B1

and 1T
B1
F−1

(B1,B1)
≤ 1T

B1
, we have

1T
N1

F(N1,B1)F
−1
(B1,B1)

F(B1,N1) ≤ 1T
B1
F−1

(B1,B1)
F(B1,N1) ≤

1T
B1
F(B1,N1) < 1T

N1
F(N1,N1), and hence equation (31) holds

and so does (29). Therefore (B−1N)TeB − eN ≥ 0 is
established and x∗ is also optimal for problem (8). �

Appendix B

First we show two obvious but useful lemmas, both of which
are easy to verify.

Lemma 7: If A ∈ Rn×n is nonsingular with all its row’s
sums equal to s, then the row’s sums of A−1 all equal to 1

s .

Lemma 8: Suppose A0,△A,B0,△B ∈ Rn×n, and both
A0 and A0 +△A are nonsingular, besides, suppose A−1

0 =
B0, then we have (A0 +△A)−1 = B0 +△B, where△B =
−B0△AB0 −B0△A△B.

The following lemma is important to later theoretical analysis.

Lemma 9: SupposeF is nonsingular. SplitF intoF = F0 +
△F, where F0 is nonsingular with all row’s sums equal.
If ∥△F∥∞ ≤ α∥F0∥∞, where α ∈ [0, 1

2 ), then when θ ≥
1

1−2α∥n∥∞, we have F−1(θ1− n) ≥ 0.

Proof: Suppose G0,△G ∈ RL×L, and G0 = F−1
0 , (G0 +

△G) = (F0 +△F)−1. By Lemma 5, we have △G =
−G0△FG0 −G0△F△G. It is easy to achieve

(1− ∥G0∥∞∥△F∥∞)∥△G∥∞ ≤ ∥G0∥∞∥△F∥∞∥G0∥∞.
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Note that ∥F0∥∞∥G0∥∞ = 1 and 1− ∥G0∥∞∥△F∥∞ >
0, and hence we can achieve ∥△G∥∞ ≤ α

1−α∥G0∥∞ <

∥G0∥∞ for α ∈ [0, 1
2 ).

On the other hand, note that F−1(θ1− n) = (G0 +
△G)(θ1− n), and to prove F−1(θ1− n) ≥ 0 it is
sufficient to prove (∥G0∥∞ + ∥△G∥∞)∥n∥∞ ≤ (∥G0∥∞ −
∥△G∥∞) θ, which is equivalent to

θ ≥ (1 + ∥F0∥∞∥△G∥∞)∥n∥∞/(1− ∥F0∥∞∥△G∥∞).

It is easy to show (1 + ∥F0∥∞∥△G∥∞)∥n∥∞/(1−
∥F0∥∞∥△G∥∞) ≤ ∥n∥∞/(1− 2α), and (32) holds for θ ≥

1
(1−2α)∥n∥∞. �
Now we prove Lemma 6.

Proof: Split F into F = F0 +△F, where in F0 all row
sums equal smax and all diagonal elements equal one,

and △F is nonnegative with zero diagonal elements.
It is noted that such split will always exists. Let
smax = 1 + x and smin = 1 + y, we have 1 > x > y ≥
0. Note that ∥△F∥∞ = (1 + x)− (1 + y) = x− y, thus
we have 1

2∥F0∥∞ − ∥△F∥∞ = 1
2smax − (x− y) = 1

2 (1−
x) + y > 0, i.e., ∥△F∥∞ < 1

2∥F0∥∞. That is to say, the
perturbation matrix△F satisfies the assumptions of Lemma 6.
Letn = 0, we haveF−11 ≥ 0. Because ifFx = 1 andx ≥ 0,
then x ≤ 1, and hence F−11 ≤ 1.

Second, since y
x > 1

β , α = ∥△F∥∞/∥F0∥∞ = (x−
y)/(1 + x) < (1− 1

β ) x
1+x < 1

2 (1−
1
β ). From Lemma 6

WE know if θ ≥ β∥n∥∞, we have F−1(θ1− n) ≥ 0. And
F−1(θ1− n) ≤ 1 is easy to verify. �


