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a b s t r a c t

For a multi-hop wireless sensor network, the limited sensing and communication resources give rise to
distinct challenges to the task of tracking mobile targets, which is traditionally treated primarily from the
data fusion perspective. This paper investigates the impact of sensor management on data fusion in a
resource-limited network. A localized multi-sensor multi-target tracking framework is presented, con-
sisting of four intertwined modules: data acquisition, data fusion, information propagation, and sensor
management. The sensor management module, which boils down to a constrained binary optimization
problem, is emphasized for efficient sensing resource allocation. Given limited bandwidth and power
in the network, a localized greedy-selection sensor management (GSSM) algorithm is proposed to
dynamically select a subset of sensors that contributes most effectively to the tracking accuracy. Using
only localized information propagation among one-hop neighbors, the proposed framework obviates
the need for a fusion center or multi-hop relays, and thus improves network robustness and scalability.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Tracking of mobile targets is an important application of wire-
less sensor networks, e.g., in intrusion detection and habitat mon-
itoring. The target tracking task in a traditional multi-sensor
system primarily concerns the data fusion module, which pro-
cesses the sensed data and provides the trajectories of targets.
From a Bayesian perspective, the goal of data fusion is to recur-
sively calculate belief of the state vector based on the measure-
ments up to current observation time. The Kalman filter,
extended Kalman filter and particle filter have been widely used
herein [5,15,16]. An extensive survey of various filtering tech-
niques can be found in [8].

In wireless sensor networks, it has become essential for a target
tracking task to incorporate a sensor management module, in order
to cope with the limited bandwidth and power [8,14,20]. Sensor
management aims to save energy in sensing and communication
by assigning a proper subset of sensors to track a target in the sub-
sequent time slot, while guaranteeing the tracking quality.

For sensor-target assignment, centralized algorithms are dis-
cussed in [3,9,19,21], where a single target is tracked by several as-
signed sensors, and the sensor selection is based on the predicted
tracking quality at the next time slot. Tracking quality over a future
ll rights reserved.
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horizon is discussed in [1,6,11]. However, centralized target track-
ing and sensor management suffer from two main disadvantages.
Firstly, they critically rely on a fusion center that is subject to fail-
ure. Secondly, when the network size is large, both communication
overhead and computational load of the fusion center can be
excessive [22]. For network robustness and scalability, localized
decision making and information processing are expected
[10,14]. Meanwhile, proper information propagation mechanisms
need to be designed to ensure sensor collaboration at affordable
communication costs.

This paper presents a localized multi-target tracking frame-
work, and emphasizes the localized sensor management problem
in order to efficiently allocate the limited network resources for
sensing, computation and communication. The main contributions
are:

(1) The framework is developed for multi-sensor multi-target
scenarios. A tracking task is vertically decomposed into four
modules: data acquisition, data fusion, information propaga-
tion, and sensor management. In each module, the task is
horizontally decomposed and assigned to sensors, other
than to a fusion center. Decision making and information
processing only require local data exchange, i.e., one-hop
communication. This localized structure offers improved
robustness and scalability over a centralized one.

(2) A constrained binary optimization problem is formulated for
optimal sensor-target assignment, which takes into account
of the limited sensing and fusion capacities, as well as the
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target coverage requirement. A greedy-selection sensor
management (GSSM) algorithm is proposed to efficiently
solve the binary optimization problem in a localized
manner.

(3) For localized implementation of the GSSM algorithm, two
information propagation mechanisms, predicted subset
mechanism and nearest subset mechanism, are discussed.
The predicted subset mechanism entails multi-hop commu-
nication, and the resulting localized GSSM algorithm attains
the same performance as its centralized counterpart under
certain mild condition. The nearest subset mechanism
requires one-hop local communication only, and the corre-
sponding localized GSSM algorithm offers the same asymp-
totic performance as the centralized one, in the limit of time.

The rest of this paper is organized as follows. In Section 2, a lit-
erature survey is provided. Section 3 describes the basic assump-
tions and models. The localized multi-target tracking framework
is discussed in Section 4. Section 5 formulates the sensor manage-
ment problem and proposes the localized GSSM algorithm. Simula-
tion results are provided in Section 6 to verify the effectiveness of
the proposed framework. Section 7 summarizes the paper along
with future work.
2. Related works

Basic structures of sensor management can be broadly catego-
rized into centralized, hierarchical and localized, as discussed in
[8,14,20]. A centralized sensor management structure is intro-
duced in [8]. Sensors collect target measurements and transmit
them to a fusion center. At each time slot, the fusion center pro-
cesses the data, decides which sensor to track which target at the
next time slot based on a global objective function, and feeds the
decisions back to the sensors. A hierarchical sensor management
structure is considered in [20]. Several local sensor managers, con-
trolled by a fusion center, are responsible for managing several
subsets of sensors. Given the distributed nature of wireless sensor
networks, localized sensor management is most appropriate, but
research on this structure is still lagging [14].

Centralized sensor management algorithms are discussed in
[3,9,19,21]. Most of the work confines to the single-target case,
in which the goal is to assign several sensors to track the target,
and the sensor selection is based on the predicted tracking quality
at the next time slot. Specifically, [3] considers the constraints of
maximum allowable cost and maximum number of assigned sen-
sors. An outer approximation algorithm is used to solve the formu-
lated binary convex programming problem. Similarly, [9] limits the
target to be tracked by a given number of sensors. Detection prob-
ability is emphasized in [19] as the objective function of sensor
management. In [21], the sensors are mobile, thus the motion con-
trol parameters of sensors are also decision variables.

Tracking quality over a future time horizon is discussed in
[1,6,11]. The centralized sensor management problem is modelled
as a partially observable Markov decision process, and solved with
an adaptive dynamic strategy in [1] and a Monte Carlo sampling
approach in [6]. The hidden Markov model is considered in [11],
where a stochastic dynamic programming algorithm is applied to
select an optimal measurement scheduling, aiming at minimizing
estimate errors and measurement costs.

There has been little work on localized sensor management.
Limited to the single-target case, [10] discusses the localized algo-
rithm as an extension of [9]. In the autonomous node selection
algorithm, a candidate subset Cj collaboratively selects two sen-
sors, which optimize the overall predicted utility function. Then
these two nodes communicate with their neighbors and elect Nsmax
sensors to track the target j at the next time slot. However, the pro-
posed autonomous node selection algorithm is not directly appli-
cable to the multi-target case, where sensors are facing the
competition among multiple targets. Furthermore, connectivity of
the elected Nsmax sensors cannot be guaranteed. This fact indicates
the significance of a proper information propagation mechanism,
which is an important element in our proposed multi-target track-
ing framework.

This paper considers sensor management for the more compli-
cated multi-target tracking case, under the assumption that sen-
sors exactly know the tags of targets in tracking. When target
tags are not available in tracking, sensors need to associate the
measurements with different targets, which is known as the data
association problem [13]. The multiple hypotheses tracking algo-
rithm [2] and the joint probabilistic data association algorithm
[17] enumerate all possibilities of the targets, known as hypothe-
ses. The best hypothesis is accepted based on the associated prob-
ability. In the Monte Carlo Markov Chain data association
algorithm, a hypothesis is randomly selected, and compared with
random samples generated from a proposal function. The hypoth-
esis is then accepted, discarded or modified according to the com-
parisons [18]. In this work we assume the knowledge of target tags
in order to highlight the design issues in sensor management for
multiple targets independent of the impact of data association.
With the aid of the data association techniques, we can extend
our current work to the multi-target tracking case without the
assumption of target tags.

Another relevant line of work is information-driven sensor que-
rying, which focuses on scalable information querying and data
routing in a distributed network [4,22]. A user query is initially
routed to sensor a, which performs initial estimate of the target po-
sition. Sensor a then selects the next sensor b, which is believed to
offer the best tracking accuracy at the next time slot, and provides
the current estimate to b. Periodically, the state estimate is sent
back to the user using a shortest path routing algorithm. Informa-
tion-driven sensor querying is essentially a cross-layer information
acquisition framework, where sensor management amounts to the
single-target handoff and does not concern the management of
multiple targets. Similar idea appears in [12], where a tree struc-
ture is proposed for in-network information querying. Our pro-
posed localized multi-target tracking framework and localized
sensor management algorithm are also compatible to the informa-
tion querying and data routing framework.
3. System models

In this section, we discuss the basic assumptions and models of
the mobile target tracking task in wireless sensor networks. An
information filter is introduced for multi-sensor data fusion.

3.1. Basic assumptions

We make the following assumptions on sensors and targets
throughout this paper:

(1) There are Ns sensors and Nt targets with tags in a two-
dimensional sensing field. Each sensor has the knowledge
of its own location information.

(2) Each sensor has an adjustable communication range rc, with
a maximum value rcmax. Two sensors can communicate in
one hop, if and only if they are within the communication
range of each other.

(3) Data association has been fulfilled. Namely, a sensor exactly
knows the tag of a target in tracking.

(4) The system time is slotted and the network is synchronized.
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(5) The sensing capacity of each sensor is set as Ntmax, i.e., each
sensor can track no more than Ntmax targets per time slot.
Meanwhile, each target should be tracked by no more than
Nsmax sensors to save network resources, but must be tracked
by at least one sensor to ensure target coverage.

3.2. Target model and sensor model

We model the motion of each target j as a linear discrete-time
Markov process:

xjðtÞ ¼ FjðtÞxjðt � 1Þ þwjðtÞ: ð1Þ

Here xj(t) is the state vector of target j, Fj(t) is the state transition
matrix, and wj(t) is the process noise which is assumed to be zero
mean Gaussian noise with covariance Qj(t), i.e., wj(t) � N(0, Qj(t)).

At time t, sensor i measures target j according to the following
measurement equation:

zijðtÞ ¼ HijðtÞxjðtÞ þ vijðtÞ: ð2Þ

Here Hij(t) is the observation model which maps the true state space
onto the observed space, and vij(t) is the observation noise which is
assumed to be zero mean Gaussian noise with covariance Rij(t), i.e.,
vij(t) � N(0, Rij(t)). We also assume that the initial state, and the
noise vectors at each step are mutually independent.

Without loss of generality, we assume the observation covari-
ance depends on the distance as RijðtÞ ¼ KijðtÞd2

ijðtÞ, where Kij(t) is
a distance-independent coefficient, and dij(t) is the distance from
sensor i to target j.

3.3. Information filter

In this paper, we use an information filter [16], an equivalent
form of the Kalman filter, for multi-sensor data fusion. Assume that
at time t, sensor i tracks target j and estimates its state xj(t). Our
objective is to obtain the estimated state vector x̂jðtjtÞ and the pre-
dicted state vector x̂jðt þ 1jtÞ. The covariances of estimation error
xjðtjtÞ � x̂jðtjtÞ and prediction error xjðt þ 1jtÞ � x̂jðt þ 1jtÞ are de-
noted as Pj(t—t) and Pj(t + 1—t), respectively. Based on the informa-
tion filter structure, we define the information state vectors as
ŷjðtjtÞ ¼ P�1

j ðtjtÞx̂jðtjtÞ and ŷjðt þ 1jtÞ ¼ P�1
j ðt þ 1jtÞx̂jðt þ 1jtÞ, and

the information matrices as YjðtjtÞ ¼ P�1
j ðtjtÞ and

Yjðt þ 1jtÞ ¼ P�1
j ðt þ 1jtÞ. The process of information filter includes

the following two steps, i.e., estimation and prediction:

(1) Estimation. Estimate the information state vector ŷjðtjtÞ from
current measurement zij(t), and estimate the associated
information matrix Yj(t—t), as follows:
ŷjðtjtÞ ¼ ŷjðtjt � 1Þ þHT
ijðtÞR

�1
ij ðtÞzijðtÞ; ð3Þ

YjðtjtÞ ¼ Yjðtjt � 1Þ þHT
ijðtÞR

�1
ij ðtÞHijðtÞ: ð4Þ
(2) Prediction. Predict the information vector ŷjðt þ 1jtÞ and pre-
dict the information matrix Yj(t + 1—t):
ŷjðt þ 1jtÞ ¼ Yjðt þ 1jtÞFjðt þ 1ÞY�1
j ðt þ 1jtÞŷjðtjtÞ; ð5Þ

Yjðt þ 1jtÞ ¼ FjðtÞY�1
j ðtjtÞF

T
j ðtÞ þ Q jðtÞ

� ��1
: ð6Þ
For the multi-sensor data fusion case, if a subset Sj of sensors track
the target j, then the estimation rules (3) and (4) are replaced by (7)
and (8):
ŷjðtjtÞ ¼ ŷjðtjt � 1Þ þ
X
i2Sj

HT
ijðtÞR

�1
ij ðtÞzijðtÞ; ð7Þ

YjðtjtÞ ¼ Yjðtjt � 1Þ þ
X
i2Sj

HT
ijðtÞR

�1
ij ðtÞHijðtÞ: ð8Þ
One important property of the information filter is, when the model
is accurate and the values for any x̂jð0j0Þ and Pjð0j0Þ ¼ Y�1

j ð0j0Þ
accurately reflect the distribution of the initial state xj(0), the
covariance matrix PjðtjtÞ ¼ Y�1

j ðtjtÞ can accurately reflect the covari-
ance of estimation error ejðtjtÞ ¼ xjðtÞ � x̂jðtjtÞ, that is,
PjðtjtÞ ¼ EfejðtjtÞT ejðtjtÞg: ð9Þ
4. Localized multi-target tracking

In this section, we discuss the challenges in designing localized
multi-target tracking algorithms under constrained network re-
sources, and propose a practical framework that effectively tackles
these challenges.

4.1. Challenges in localized multi-target tracking

A localized multi-target tracking framework generally consists
of the following modules:

(1) Data acquisition. At time t, for each target j, a previously
selected subset of sensors, denoted as Sj, measure the target
positions.

(2) Data fusion. At time t, for each target j, sensors in Sj process
their measurements and provide estimations and predic-
tions of targets using (5)–(8).

(3) Information propagation. At time t, for each target j, the pre-
dictions ŷjðt þ 1jtÞ and Yj(t + 1—t) are propagated to a subset
of candidate sensors Cj.

(4) Sensor management. At time t, for each target j, an updated
subset of sensors Sj is selected from Cj to track target j at
time t + 1.

Assuming reliable multi-hop communication and data routing
to a fusion center, centralized decision making and information
processing have been discussed in wireless sensor network scenar-
ios [3,9]. However, to achieve better scalability, higher robustness
and lower latency, we prefer a localized multi-target tracking
framework which features in autonomous in-network decision
making and information processing. The framework is localized
in the sense that only one-hop local communication among neigh-
boring sensors is required, while the goal is to attain network-wide
cooperation. The main challenges in the localized multi-target
tracking framework are as follows:

(1) Challenge in data fusion. As shown in (7) and (8), the informa-
tion filter can be easily implemented in a sequential way.
However, for each target j, sensors in Sj should be organized
to exchange information one-by-one, using only one-hop
local communication.

(2) Challenge in information propagation. For each target j, the
predictions should be propagated efficiently to the subset
Cj, i.e., via one-hop local communication.

(3) Challenge in sensor management. For each target j, sensors in
the candidate subset Cj should be able to directly communi-
cate with each other, and locally elect a subset of sensors Sj

to track target j at the next time slot.

4.2. Localized multi-target tracking framework

To tackle the aforementioned challenges, we propose a localized
multi-target tracking framework as follows:

Step 1:
Sensor management.
At time t � 1, sensors in Cj locally decide Sj, i.e., the subset of
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sensors to track target j at time t. Sensors in Sj coordinate to set a
sequence for data fusion. One possible rule of setting the sequence
is by sorting the tags of sensors.
Step 2:
Data acquisition.
At time t, for each target j, sensors in Sj measure positions of the
targets.
Step 3:
Data fusion.
At time t, for each target j, sensors in Sj sequentially process the
measurements using the information filter, according to the
sequence decided in Step 1.
Step 4:
Information propagation.
At time t, for each target j, we propose two mechanisms to decide
the current candidate sensor subset Cj, i.e., the subset of sensors
which receive the target information:
Mechanism A: Nearest subset. For each target j, the last sensor in the
data fusion sequence broadcasts the predictions ŷjðt þ 1jtÞ and
Yj(t + 1—t) to its neighbors within the communication range
rcmax/2. These neighbors form the candidate sensor subset Cj.
Mechanism B: Predicted subset. For each target j, the last sensor in
the data fusion sequence broadcasts the predictions ŷjðt þ 1jtÞ
and Yj(t + 1—t) to all other sensors in the network. The subset Cj

is composed of the sensors whose distances to the predicted target
position are smaller than or equal to rcmax/2.
Step 5:
Iteration.
Go to Step 1 until the tracking mission ends.

This localized framework tackles the challenge in data fusion by
introducing a sensor coordination mechanism in the sensor man-
agement module. In the information propagation module, the
nearest subset mechanism is a localized operation. The predicted
subset mechanism requires multi-hop communication to flood
the network with predictions; nevertheless, it is discussed here
to aid performance analysis.

With both of the information propagation mechanisms, any two
sensors in the candidate sensor subset Cj have a distance no larger
than rcmax. Therefore, sensors in the candidate subset can locally
decide the tracking subset Sj in the sensor management step.
However, in a distributed network setting, the sensor management
problem essentially aims at a global objective under global con-
straints. Hence a non-trivial problem arises: is it possible to
decompose the objective and constraints for autonomous and
localized decision making? We will answer this question in the
subsequent section.

5. Localized sensor management

In this section, sensor management is formulated as a con-
strained binary optimization problem, and a localized greedy-
selection sensor management (GSSM) algorithm is proposed.

5.1. Sensor management problem

In the localized multi-target tracking framework, the remaining
issue is the sensor management problem, which aims at preserving
the limited sensing resources and prolonging the network lifetime.
Intuitively, it is energy-efficient to select only a subset of sensors to
track one target, since the measurements collected from some dis-
tant sensors do not contribute much to the tracking accuracy. To
formulate this sensor selection problem, we construct the decision
variables as a binary matrix a = {aij}, where aij = 1 denotes that sen-
sor i tracks target j, while aij = 0 denotes that sensor i does not track
target j. Hence we relate Sj to a with Sj ¼ fijaij ¼ 1g.
From the global network perspective, the goal of sensor man-
agement is to minimize the future estimation error. At each time
t, the collecting tracking error is

PNt
j¼1trfEfejðt þ 1jt þ 1ÞT ej

ðt þ 1jt þ 1Þgg. According to (9), we have Efejðt þ 1jt þ 1ÞT ej

ðt þ 1jt þ 1Þg ¼ Pjðt þ 1jt þ 1Þ ¼ Y�1
j ðt þ 1jt þ 1Þ. Thus, substituting

(8) into (9), the inverse of the tracking error boils down to

XNt

j¼1

tr P�1
j ðt þ 1jtÞ þ

X
i2Sj

HT
ijðt þ 1ÞR�1

ij ðt þ 1ÞHijðt þ 1Þ

8<
:

9=
;:

Clearly, P�1
j ðt þ 1jtÞ is the prediction term common to all sensors,

while HT
ijðt þ 1ÞR�1

ij ðt þ 1ÞHijðt þ 1Þ quantifies the contribution of
sensor i to the tracking error of target j at time t + 1.

From the analysis above, we omit the common prediction terms
and set the global objective function as maximizing the information
contribution [7,8], as follows:

max
a

JðaÞ ¼
XNt

j¼1

X
i2Sj

tr HT
ijðt þ 1ÞR�1

ij ðt þ 1ÞHijðt þ 1Þ
n o

: ð10Þ

Under this objective function, contributions of all sensor-target
pairs are decoupled, and the profit of each sensor-target pair (i, j)
is the information contribution trfHT

ijðt þ 1ÞR�1
ij ðt þ 1ÞHijðt þ 1Þg.

At each time t;HT
ijðt þ 1Þ is known, while R�1

ij ðt þ 1Þ ¼
Kijd

2
ijðt þ 1Þ is related to the distance from sensor i to target j. Here

we use the predicted state vector x̂jðt þ 1jtÞ to approximate the real
state vector xj(t + 1), which yields the predicted position of target j
and correspondingly Rij(t + 1). Both Hij(t + 1) and Rij(t + 1) are
known locally to sensor i.

The sensor selection problem is subject to a set of constraints
due to limited network resources. The first constraint is the sensing
capacity of sensors:

XNt

j¼1

aij 6 Ntmax;8i: ð11Þ

Because the sensing task is time- and energy-consuming, the sens-
ing capacity constraint is necessary for resource conservation. The
second set of constraints describes the lower and upper bounds
for the number of sensors tracking each target:

XNs

i¼1

aij 6 Nsmax; 8j; ð12Þ

XNs

i¼1

aij P 1; 8j: ð13Þ

When too many sensors track one target, both communication and
computation overhead will be too high, whereas the tracking qual-
ity only enhances slightly when distant sensors join the tracking
task. On the other hand, one target should be tracked by at least
one sensor to prevent loss of tracking.

5.2. Greedy-selection sensor management

Let us consider the sensor management problem (10)–(13),
which is a constrained binary optimization problem, and can be
solved by the branch-and-bound method. However, it is difficult
to implement the branch-and-bound method in a localized manner
as it requires global information exchange.

In this section, we propose a greedy-selection sensor manage-
ment (GSSM) algorithm, which reaches a near-optimal solution
to the constrained binary optimization problem. Specifically, we
firstly introduce a centralized GSSM algorithm, which requires glo-
bal information exchange too. The centralized GSSM algorithm is
then implemented locally. Interestingly, the localized GSSM algo-
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rithm achieves the same performance as the centralized GSSM
algorithm under certain mild conditions.

The centralized GSSM algorithm adopts an iterative assignment
strategy:

Step 1: Initialization. Construct a Nt � Ns profit matrix for sensor-
target pairs. The profit for a sensor-target
pair (i, j) is defined as trfHT

ijðt þ 1ÞR�1
ij ðt þ 1Þ

Hijðt þ 1Þg.
Step 2: Assignment. Find the best sensor-target pair that corre-

sponds to the highest profit, set the corre-
sponding element in a as 1, and set the
corresponding profit as minus infinite.
Repeat this process for min(Nt, Ns) times,
but guarantee that one sensor or one target
is selected at most for one time.

Step 3: Iteration. Go to Step 2 and repeat for min(Ntmax,Nsmax)
times.

It should be noted that, when two sensor-target pairs have the
same profits, we may simply choose the pair with smaller sensor
tag or smaller target tag to avoid ambiguity. It is not difficult to
show that the centralized GSSM algorithm, though sub-optimal,
satisfies the resource constraints (11)–(13).

In Step 2 the individual assignment process is repeated for
min(Nt, Ns) times, since we need to guarantee that one sensor or
one target is selected for no more than one time in each round.
In Step 3 we have min(Ntmax,Nsmax) iterations, such that one sensor
or one target is selected for at most min(Ntmax,Nsmax). Therefore
constraints Eqs. (11) and (12) can be satisfied. Furthermore, if
Ns P Nt, Eq. (13) also hold according to Step 2. Apparently, the cen-
tralized GSSM algorithm requires global information exchange for
the tracking profits. For the purpose of localized implementation,
we limit information exchange within each candidate sensor sub-
set Cj. As discussed in the previous section, each sensor exactly
knows which candidate subsets it belongs to after the information
propagation step. Furthermore, sensors in one candidate subset
can communicate with each other within one-hop. Therefore we
have a localized GSSM algorithm, represented as a localized itera-
tive greedy selection process, which contains min(Ntmax, Nsmax)
rounds:

Step 1: Initialization. Each sensor i calculates its profit to track tar-
get j, if i 2 Cj. The profit is represented as
trfHT

ijðt þ 1ÞR�1
ij ðt þ 1ÞHijðt þ 1Þg.

Step 2: Assignment. This step is similar to a cooperative game,
and contains at most Nt rounds:v>

(2a) Each sensor i selects the best target, for
example, j, to track, and broadcasts its sensor
tag, target tag and profit to all other sensors,
with communication range rcmax. Upon
receiving a packet, sensor i checks whether
it is in the candidate subset of the corre-
sponding target. If it is true, sensor i accepts
the packet; otherwise drops the packet.

(2b) Sensor i compares its current profit with the
accepted profits of other sensors. If the profit
of i is the best one among the profits, then i
tracks j in this round, and does not attend
the successive rounds in this game. Other-
wise i finds the best sensor-target pair, and
remembers not to track the corresponding
target in the successive rounds in this game.
(2c) Each sensor i repeats Steps (2a) and (2b),
until it tracks one target in this game, or all
targets which look i as the candidate sensor,
namely fjji 2 Cjg, have been tracked by other
sensors in this game.

Step 3: Iteration. Each sensor saves its current assignment,
and set the corresponding profit as minus
infinite. Then go to Step 2 and repeat for
min(Nsmax, Ntmax) times.
The localized GSSM algorithm features in the
localized decision making and information
exchange. Furthermore, the communication
load of a single sensor is at most Nt �min(Ns-

max, Ntmax), thus the network is energy-effi-
cient from the communication perspective.

5.3. Discussions

Here we analyze the impact of information propagation on the
localized algorithm. Specifically, we prove that, if the information
propagation adopts the predicted subset mechanism, the localized
GSSM algorithm achieves the same performance as the centralized
version. Then we discuss the case in which the information propa-
gation adopts the nearest subset mechanism. Intuitively the local-
ized GSSM algorithm asymptotically reaches the performance of
the centralized algorithm in this case.

Property 1. With the predicted subset mechanism, the localized
GSSM algorithm reaches the same solution as the centralized version,
if any circle of radius rcmax/2 in the sensing area contains at least
Nt + min(Nsmax, Ntmax) � 1 sensors.
Proof. We firstly prove that for each target j, the assigned
min(Nsmax, Ntmax) sensors are among the Nt + min(Nsmax, Ntmax) � 1
sensors nearest to the predicted position of j in the centralized
GSSM algorithm. The nearest Nt + min(Nsmax, Ntmax) � 1 sensors
means the best Nt + min(Nsmax, Ntmax) � 1 profits in tracking target
j. After the first round of the centralized GSSM algorithm, the
selected sensor is at least among the nearest Nt sensors. Thus after
min(Nsmax, Ntmax) rounds, the selected sensors are among the near-
est Nt + min(Nsmax, Ntmax) � 1 sensors to the predicted position of j.

If any circle of radius rcmax/2 in the sensing area contains at least
Nt + min(Nsmax, Ntmax) � 1 sensors, then for any target j, the nearest
Nt + min(Nsmax, Ntmax) � 1 sensors are included in Cj under the
predicted subset mechanism.

Now both the localized and centralized GSSM algorithms select
sensor-target pairs in the same sets. Since the two algorithms
follow the same greedy selection rule, they both reach the same
solution. h

In the information propagation step, the predicted subset mech-
anism requires multi-hop data transmission to the whole network
in order to select a candidate subset of sensors local to the pre-
dicted target position, and thus results in extra communication
overload and information delay. Therefore, although data acquisi-
tion, data fusion and sensor management are done locally, infor-
mation propagation is actually not a localized operation.
However, we have discussed that the localized framework based
on this mechanism achieves the same performance as the central-
ized method under certain mild condition.

Alternatively, the nearest subset mechanism requires only one-
hop broadcast to neighboring sensors, therefore the communica-
tion load and information delay are minimum. The disadvantage
of this mechanism is the loss of optimality. Namely, when the opti-
mal sensor selection Sj is not in the candidate subset Cj, system
performance will be degraded. But intuitively, each local decision
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Fig. 1. The true trajectory (a) and the estimated trajectory (b) of the target.
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Fig. 2. The covariances of position error (a) and velocity error (b) of the target.
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Fig. 3. Ratio of the objective function value of the localized GSSM solution to that of
the optimal solution.
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tends to select the Sj near to the predicted position of j, thus the
final sensor selection will converge to the solution of the predicted
subset mechanism, as shown in the following simulation results.
6. Simulation results

In this section, we provide extensive simulation results to illus-
trate the effectiveness of the localized multi-target tracking frame-
work and the embedded localized sensor management algorithm.
We discuss a single-target tracking case with a small network
and a multi-target tracking case with a large network.
6.1. General settings

We adopt the same target state model and sensor measurement
model throughout the simulations. The initial positions and
velocities of the targets are randomly generated in a two-dimen-
sional area. The total simulation time is set as 40, and the length
of one time slot as Dt = 1. For each target j, its state vector xj(t) con-
tains the positions of x and y axes, and velocities of x and y axes.
Parameters pertinent to the target state model in (1) are:

FjðtÞ ¼

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

0
BBB@

1
CCCA; Q jðtÞ ¼

4 0 0 0
0 4 0 0
0 0 0:04 0
0 0 0 0:04

0
BBB@

1
CCCA:

Measurement of sensor i on target j is the position of j, as modelled
by:

HijðtÞ ¼
1 0 0 0
0 1 0 0

� �
:

The measurement noise covariance is RijðtÞ ¼ Kijd
2
ijðtÞ, where dij(t) is

the distance from sensor i to target j, and

Kij ¼
1� 10�6 0

0 1� 10�6

 !
:

Note that when utilizing the objective function (10) for sensor
management, we set the same weights to the position error and
the velocity error. It is straightforward to scale the trace operator
tr with weighting factors, which allows to treat the position error
and the velocity error discriminately.

6.2. Small network for single-target tracking

We firstly consider a simple multi-sensor single-target case in a
small grid network. Let Ns = 4, Nt = 1, Nsmax = 2, and Ntmax = 1. Sen-
sors are deployed in a two-dimensional area at positions (0, 0),
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(0, 100), (100, 0), (100, 100). The maximum communication range
of sensors are set to be rcmax =1, i.e., sensors can communicate
with each other directly in this small network. Furthermore, the
predicted subset mechanism and the nearest subset mechanism
both select all sensors into the candidate subset. Therefore, the
sensor management solutions are the same under these two
mechanisms.

The true trajectory and estimated trajectory of the target are
illustrated in Fig. 1. At t = 0, sensors have no prior knowledge about
the initial position and velocity of the target, and hence initialize
the estimated position as (0, 0). When more information is
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Fig. 4. Assignment of sensors 1–4 through the simulation.

−500 0 500

−500

0

500

X Axis

Y
 A

xi
s

(a)

Fig. 5. The true trajectories (a) and the es

0 10 20 30 40
10

−2

10
0

10
2

10
4

Time

Po
si

tio
n 

E
rr

or

(a)

Fig. 6. The covariances of position errors (a
acquired, the estimate becomes more accurate. The estimated tra-
jectory coincides with the true trajectory eventually.

The position error and velocity error are shown in Fig. 2. When
t = 0, the tracking error is large without any prior knowledge about
the initial position and velocity of the target. As the simulation pro-
ceeds, the tracking error reaches a steady level. Note that the sharp
decrease of the position error in the beginning is caused by over-
fitting. In summary, Figs. 1 and 2 prove the effectiveness of the
localized target tracking framework.

Next we consider the performance bound of the localized GSSM
algorithm. The performance ratio, defined as the ratio of the objec-
tive function value of the localized GSSM solution to that of the
optimal solution, is shown in Fig. 3. The localized GSSM algorithm,
though sub-optimal, still achieves acceptable performance.

Fig. 4 shows the sensor assignment through the simulation,
with 1 denotes tracking and 0 denotes no tracking. At the first five
time slot, the predicted target position is near to sensor 1, thus sen-
sor 1 is assigned to track the target. Gradually the target moves to
near sensor 3 or sensor 4, and the network assigns sensor 3 or sen-
sor 4 to track it accordingly. Here the proposed sensor manage-
ment algorithm reduces to the single-target handoff in [4,22] for
this multi-sensor single-target tracking case.

It should be noted that we permit Nsmax = 2 sensors to track the
target, while the localized GSSM algorithm only assigns 1 sensor at
each time. The reason is that the localized GSSM algorithm allows
only min(Nsmax, Ntmax) sensors to track the target.
6.3. Large network for multi-target tracking

We now consider a multi-sensor multi-target case in a large
random network, with Ns = 500, Nt = 4, Nsmax = 4 and Ntmax = 2. Sen-
sors have a common maximum communication range rcmax = 200,
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) and velocity errors (b) of the targets.



0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Time

Pe
rf

or
m

an
ce

 R
at

io

 

 

Predicted Subset
Nearest Subset

Fig. 7. Ratio of the objective function value of the localized GSSM solution to that of
the optimal solution, under both the predicted subset mechanism and the nearest
subset mechanism.
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and are randomly deployed in a 1000 � 1000 area. In this case,
centralized decision making and information processing are
impractical for both vast communication overhead and unafford-
able computation load. On the contrary, the proposed localized
multi-target tracking framework and the embedded localized sen-
sor management algorithm are scalable for this large network.

In the simulation we adopt the nearest subset mechanism in the
information propagation step. We also provide the sensor manage-
ment results for the localized GSSM algorithm with the predicted
subset mechanism and the centralized branch-and-bound algo-
rithm for performance comparison.

The true trajectories and estimated trajectories of the targets
are illustrated in Fig. 5. The estimated trajectories accurately coin-
cides with the true trajectories while filtering out the noise. The
summations of position errors and velocity errors are shown in
Fig. 6. It proves that the localized target tracking framework can
achieve satisfactory tracking accuracy for the multi-target case.

Fig. 7 shows the performance gap between the localized GSSM
algorithm and the optimal solution. For the nearest subset mecha-
nism, the performance ratio converges to that of the predicted sub-
set mechanism case after a short transient state. It verifies our
intuitive assessment in the previous section.

7. Conclusions

In a wireless sensor network setup, this paper develops a local-
ized multi-sensor multi-target tracking framework. Conservation
of sensing, computation and communication resources features
in all four modules of this framework: data acquisition, data fusion,
information propagation, and sensor management. With a fully
localized nearest subset mechanism for information propagation,
a localized greedy-selection sensor management algorithm is pro-
posed to allocate sensing resources using only local information.
Compared to the centralized optimal solution, the localized solu-
tion outperforms in robustness and scalability, at the cost of
acceptable performance degradation.

By combining the advanced filtering techniques, the current
framework can be easily extended to the cases of non-linear
models and non-Gaussian noises [8]. Another interesting future
direction is to introduce mobile sensors to enhance the flexibility
of the network, and improve the tracking accuracy [21].
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