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Abstract
Interest in multimodal function optimization is expanding rapidly since real-world optimization problems often require location of multiple

optima in a search space. In this paper, we propose a novel genetic algorithm which combines crowding and clustering for multimodal function

optimization, and analyze convergence properties of the algorithm. The crowding clustering genetic algorithm employs standard crowding strategy

to form multiple niches and clustering operation to eliminate genetic drift. Numerical experiments on standard test functions indicate that crowding

clustering genetic algorithm is superior to both standard crowding and deterministic crowding in quantity, quality and precision of multi-optimum

search. The proposed algorithm is applied to the practical optimal design of varied-line-spacing holographic grating and achieves satisfactory

results.

# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In practical optimization problems, objective functions often

lead to multimodal domains. If the problem has several global

optima or some local optima that might be good alternatives to

the global optima, it is desirable to locate some of them during

search process [1,2]. Traditional genetic algorithms (GAs)

perform well in locating a single optimum but fail to provide

multiple solutions. Various niching methods have been

introduced into GAs to promote formation of stable sub-

populations in neighborhood of optimal solutions. Therefore,

multiple solutions can be identified at the end of optimization

with certain extent of diversity.

There are many widely adopted niching techniques, such as

standard crowding, deterministic crowding [3], sharing [4,5],

clearing [6], dynamic niche clustering (DNC) [7,8], and so on.
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Standard crowding and deterministic crowding both suffer

greatly from genetic drift, i.e. individuals are inclined to

converge to several eminent solutions. In sharing and clearing,

prior knowledge about fitness landscape is needed to set niche

radius. Dynamic niche clustering uses clustering operation to

set niche radius dynamically. But the set of cluster number will

affect the quality and quantity of identified optimal solutions

greatly.

In this paper, a novel multimodal optimization method

combining crowding and clustering is proposed. Crowding

clustering genetic algorithm (CCGA) employs a standard

crowding strategy to form multiple niches and provide

estimated landscape characteristics. On the other hand,

clustering operation is intended to eliminate genetic drift and

promote exploration in the whole fitness landscape. Both

theoretical results and numerical experiments illuminate the

satisfactory convergence properties of CCGA.

This paper is arranged as follows. Section 2 briefly reviews

several main niching methods. CCGA is described in detail in

Section 3 and its convergence properties are discussed in

Section 4. In Section 5, the proposed algorithm is compared

with standard crowding and deterministic crowding in several
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Fig. 1. Scheme of standard crowding. Six clusters are formed in this situation.
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multimodal functions. CCGA is applied to the practical

optimization of varied-line-spacing holographic grating for

the National Synchrotron Radiation Laboratory (NSRL) in

Section 6. Section 7 provides conclusion and discussion of the

future development of CCGA.

Without loss of generality, this paper deals with minimiza-

tion problems only.

2. Niching techniques in multimodal optimization

2.1. Crowding

Standard crowding proposed by De Jong updates population

through replacing similar parent [3]. For each child C, select CF

(crowding factor) individuals in parent, choose the nearest

parent P under some distance metric. If the objective function

value of P is larger than that of C, use C to replace P, else

preserve P. When CF is too small, standard crowding introduces

great selection error. When CF equals to the number of

population PopNum, selection error is eliminated but genetic

drift still exists.

In deterministic crowding of Mahfoud [9], two parents P1

and P2 generate two children C1 and C2. For some distance

metric D, if D(P1, C1)+ D(P2, C2) is smaller than D(P1,

C2) + D(P2, C1), then introduce competition between P1 and C1,

P2 and C2, else compete between P1 and C2, P2 and C1.

Deterministic crowding is a special standard crowding strategy

where CF equals to 2, therefore selection error and genetic drift

are both significant.

2.2. Sharing

Fitness sharing method modifies fitness landscape by

reducing the payoff in densely populated regions [3]. For

each individual, find all other individuals in its niche radius and

share their fitness using the sharing function. The main

disadvantage of fitness sharing is that it requires a niche radius

related to the prior knowledge of objective function.

Clearing proposed by Petrowski is a special fitness sharing

method. By comparing all individuals in the niche radius,

several best individuals survive and the others are all cleared

[6]. The disadvantage of clearing is similar to that of fitness

sharing.

2.3. Other methods

Gan and Warwick combined clustering and fitness sharing

and proposed a dynamic niche clustering algorithm [7,8]. For

each generation, a clustering operation is executed with a

dynamically updated cluster number. Among a cluster, fitness

sharing is implemented with the niche radius provided by

clustering. DNC algorithm does not require any prior knowl-

edge of the objective function. But it is not an easy task to

calculate the cluster number, which will affect the quantity and

quality of identified optimal solutions greatly.

Other niching techniques, such as sequential niching,

restricted tournament selection, dynamic niching, etc., all have
their own merits and shortages [3]. But their application is

relatively limited due to the existence of genetic drift,

especially in the complicated multimodal function optimization

problems without any prior knowledge of fitness landscape.

3. Crowding clustering genetic algorithm

3.1. Clustering in crowding algorithm

The basic idea in CCGA is using a standard crowding

method to form niches and a clustering strategy to eliminate

genetic drift. In fact, the idea of clustering has already been

contained in crowding algorithm. For each child Ci, i = 1, 2, . . .,
CF, assume that its nearest parent is Pj under a certain distance

metric, we define Ci compete with Pj. Therefore, for each parent

Pj, j = 1, 2, . . ., PopNum, there is a set of children {CSj} which

compete with Pj. Then the 2 � PopNum solutions which

comprise parent and children form PopNum clusters {Pj, CSj},

j = 1, 2, . . ., PopNum, and the fittest solution in each cluster

survives to enter the next generation, as shown in Fig. 1. When

CF < PopNum, selection error is inevitable. When CF = Pop-

Num, selection error is eliminated. But in the same niche,

several different clusters can coexist and evolve to the same

optimal solution. This is the so-called genetic drift phenomena.

Crowding clustering genetic algorithm aims to prevent

multiple clusters from converging to a single optimal solution.

By introducing competition between clusters formed from a

standard crowding model with CF = PopNum in the same

niche, CCGA can avoid genetic drift effectively.

3.2. Procedure of CCGA

For a multimodal minimization problem:

min f ðx1; x2; :::; xnÞ
s:t: x ¼ ½x1; x2; :::; xn� 2 Z

(1)

Here, f is the objective function and Z is the feasible solution

space. The procedure of CCGA is stated as follows:

Step 1. Initialize uniformly distributed population in feasible

solution space. Number of population is PopNum.

Step 2. Recombine and mutate parents to generate PopNum

children.

Step 3. For each parent Pj, j = 1, 2, . . ., PopNum, construct

PopNum clusters {Pj, CSj} using a standard crowding model



L. Qing et al. / Applied Soft Computing 8 (2008) 88–9590
with CF = PopNum under a certain distance metric, as intro-

duced in Section 3.1.

Step 4. For each cluster {Pj, CSj}, select the fittest individual

(individual with lowest objective value) CCj as the center of

cluster. The objective value of cluster CVj is defined as the

objective value of CCj. For the other solutions in the cluster,

calculate their distances from CCj, select the largest distance as

the radius of cluster CRj.

Step 5. Sort all clusters according to their objective values in

ascending order. Define a set of reserved clusters RC = Ø, each

element in RC has a center of cluster RCCi, and a radius of

cluster RCRi. For j = 1, 2, . . ., PopNum, compare the jth cluster

with all clusters RCCi in RC, if for all i, D(CCj, RCCi) > RCRi

or Peak(CCj, RCCi) = 1, then place CCj into RC, and set the

radius of cluster as min(CRj, D(CCj, RCCi)). Here, D() is the

distance metric, Peak() is the peak detection condition. Here,

we choose:

PeakðCCi;RCC jÞ

¼
1; f

CCi þ RCC j

2

� �
>

f ðCCiÞ þ f ðRCC jÞ
2

0; f
CCi þ RCC j

2

� �
� f ðCCiÞ þ f ðRCC jÞ

2

8>>><
>>>:

(2)

Step 6. Define the number of elements in set of reserved

clusters RC as NRC, generate (PopNum � NRC) uniformly

distributed individuals in the feasible solution space. These

individuals and the centers of clusters in RC enter the next

generation.

Step 7. Repeat step 2 to step 6 until the maximum generation

number MaxGen reaches.

4. Theoretical analysis of CCGA

4.1. Convergence properties

In the minimization problem Eq. (1), let D: Z � Z! R be a

certain distance metric in Z. For any Mi in Z, if 8 x in Z, 9e > 0:

D(x, Mi) < e) f(x) � f(Mi), Mi is defined as a minimum of

f(x). M = {M1, . . ., Mm} is defined as the minima set of f(x). For

any Mj in M, if 8 i, i = 1, 2, . . ., m, f(Mi) � f(Mj), Mj is defined

as a global minimum of f(x) and the global minima set G = {G1,

. . ., Gn} of f(x) contains all global minimum of f(x). Any non-

global minimum in M is defined as the local minimum Li.

L = {L1, . . ., Lm–n} is defined as the local minima set of f(x).

Now we introduce a new concept of stable minimum of f(x).

Firstly, all solutions in the global minima set G are elements in

the stable minima set S. Secondly, for any Lk in L, if 8 x in Z,

9Si in S, f(Si) < f(Lk) such that f(x) < f(Lk)) D(x, Si) < D(x,

Lk), Lk is called a stable minimum of f(x) and is a element in S.

Property 1. Assume that there are r stable minima in the

minimization problem Eq. (1), n = min(r, PopNum). If in some

generation, the parents of CCGA occupy n best stable minima
A = {Ai, i = 1, 2, . . ., n}, then these parents will not be

substituted by any child.

Proof. For any Ai and any new generated child Cj, if

f(Cj) < f(Ai), then according to the definition of stable minima

set, 9Ak in A, f(Ak) < f(Ai) such that D(Cj, Ak) < D(Cj, Ai).

Therefore, each element in A will be the best one in corre-

sponding cluster and will not be substituted by any child.

Property 2. Assume that there are r stable minima in the

minimization problem Eq. (1), n = min(r, PopNum). If in some

generation, the parents of CCGA occupy n best stable minima

A = {Ai}, i = 1, 2, . . ., n, and for any Ai in A, 8x in Z,

f(Ai) � f(x)) Peak(x, Ai) = 1, then each element in A will

not be cleared by any current parent.

Proof. For any Ai in A and any Pj, Ai 6¼ Pj, if f(Ai) < f(Pj), Ai

will not be cleared by Pj. If f(Ai) � f(Pj), from the assumption

that 8 x in Z, f(Ai) � f(x)) Peak(x, Ai) = 1, Peak(Ai, Pj) = 1,

Ai will not be cleared by Pj. Therefore, each element in A will

not be cleared by any current parent.

Property 3. There is no more than one individual which

converges to a single point in the minimization problem Eq. (1).

Proof. Suppose there are two centers of clusters CCi and CCj,

CCi = CCj, CCi ranks before CCj in the sorting operation. Then

in the Step 5, D(CCi, CCj) = 0 and Peak(CCi, CCj) = 0. There-

fore, CCj is cleared by CCi.

Remark 1. Property 1 indicates that stable minima solutions

will not be affected by the children in the crowding algorithm.

Generally speaking, a stable minimum has a relatively satisfy-

ing objective value, which is not excessively inferior to the

objective value of any neighboring minimum.

Remark 2. Property 2 indicates that the fitness landscape

which satisfies the peak detection condition can prevent stable

minima from being affected by the parents in the clustering

algorithm. The assumption of peak detection condition is a very

critical requirement about fitness landscape. But in most cases,

the radii of clusters are relatively small and the peak detection

condition is not needed to protect other niches.

Remark 3. Summarizing Remarks 1 and 2, the n best stable

minima cannot be affected by both children and parents under the

assumptions above. Therefore, the set A is the absorption state of

CCGA. In conclusion, CCGA uses the peak detection condition

to protect the niches which contains the best stable minima.

Remark 4. Property 3 shows how CCGA eliminates genetic

drift in the crowding algorithm. The competition between clus-

ters prevents multiple individuals from residing in a single niche.

Remark 5. Property 3 also shows how CCGA preserves

diversity of population. Each cleared individual will be regen-

erated and evolve forward, until it reaches an unexplored niche.
4.2. Peak detection condition

The concept of peak detection condition is similar to the

hill–valley function proposed by Ursem [11]. In minimization
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problem in Eq. (1), a hill–valley function can be calculated for a

series of points {z1, z2, . . ., zn} in the line segment between x1

and x2:

HVðx1; x2Þ ¼
Yn

i¼1

HVi (3)

HVi ¼
1;

0;

f ðziÞ>maxð f ðx1Þ; f ðx2ÞÞ
f ðziÞ � maxð f ðx1Þ; f ðx2ÞÞ

�
(4)

When the number of sample points {z1, z2, . . ., zn} increases,

computation time in objective function evaluation will increase

proportionally. Therefore, we use only one sample point

(x1 + x2)/2 here:

HVðx1; x2Þ ¼
1; f

x1 þ x2

2

� �
>maxð f ðx1Þ; f ðx2ÞÞ

0; f
x1 þ x2

2

� �
� maxð f ðx1Þ; f ðx2ÞÞ

8><
>: (5)

Hill–valley function never returns 1 when two individuals are in

the same niche. Peak detection condition is possible to return 1

at that time, but it runs less risk of returning 0 when two

individuals are in different niches, because:

f

�
x1 þ x2

2

�
>maxð f ðx1Þ; f ðx2ÞÞ

) f

�
x1 þ x2

2

�
>

f ðx1Þ þ f ðx2Þ
2

(6)

Eq. (6) means that if HV() equals to 1 then Peak() equals to 1.

According to Remark 2, we tend to protect current clusters with

Peak() = 1, therefore peak detection condition is more proper

here than hill–valley function here, as seen in Fig. 2.

Actually, there are many other forms of peak detection

conditions by varying sample point or varying scaling method.

The choice of the different peak detection condition reflects the

different estimation of fitness landscape and influences the

optimization results greatly.

4.3. Settings in CCGA

From description in Section 3.2, we can see that CCGA is a

simple combination of standard crowding and clustering

method and no prior knowledge of fitness landscape is needed.

There are only two control parameters PopNum and MaxGen

and their roles are easy to understand.
Fig. 2. Demonstration of peak detection condition and hill–valley function.
Here, we are going to discuss several detailed strategies in

CCGA, such as crossover, mutation, boundary handling, and

distance metric.

There are various crossover and mutation strategies in

genetic algorithms. We adopt the linear crossover with random

parameter for real coded GA [10]. We do not use any mutation

operation here for convenience because crossover operation has

introduced randomness already.

In dealing with solutions which exceed the boundary of

feasible solution space, we simply place them in the nearest

boundary other than randomly regeneration.

CCGA is originally proposed for real coding. Therefore

Euclidean distance metric is a natural choice. When CCGA is

adapted for binary coding, there are much more choices, such as

genotype metrics, phenotype metrics, and so on.

5. Numerical results

5.1. Performance criteria

We evaluate the multimodal optimization algorithm in three

aspects: quantity, quality, and precision of solutions.

Quantity: Number of detected ‘‘valleys’’ in feasible solution

space. In other words, run a certain local search using each

solution as the initial point, calculate the number of different

minima in feasible solution space, and name it as niche

number NN. Here, we use simplex method as a local search

operator.

Quality: Sum of objective values of the corresponding

minima in all detected niches, named as niche quality NQ.

NQ/NN indicates the average quality of niches.

Precision: Sum of objective function values of the best

solutions in all detected niches, named as niche precision

NP. NP/NN indicates the average precision of niches.
5.2. Test environment

There are three multimodal function optimization algo-

rithms to compare: (a) CC, crowding clustering GA; (b) SC,

standard crowding GA with CF = PopNum; (c) DC, determi-

nistic crowding GA. Public parameters of algorithms are:

population number PopNum = 40, maximum generation

number MaxGen = 100. Strategies of crossover, mutation,

boundary handling and distance metric are as introduced in

Section 4.3.

Two standard test functions are used here. The first one is

Ackley function [2], which has more than 40 global and local

minima:

min f 1ðx; yÞ ¼ 20� 20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

2

r !

�exp
cosð2pxÞ þ cosð2pyÞ

2

� �
þ e

s:t: � 30 � x; y � 30

(7)



Fig. 3. (a) Comparison of niche number of three algorithms on Ackley. (b)

Comparison of niche quality of three algorithms on Ackley. (c) Comparison of

niche precision of three algorithms on Ackley.
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The second one is Six-Hump Camel function [2], which has two

global minima, two stable local minima, two unstable local

minima:

min f 2ðx; yÞ ¼ 4� 2:1 x2 þ x4

3

� �
xþ xyþ ð�4þ 4 y2Þy2

s:t: � 1:9 � x � 1:9; �1:1 � y � 1:1

(8)

5.3. Test results

The typical optimization results of the three algorithms on test

functions are shown in Figs. 3 and 4. Run the three algorithms on

test functions 10 times, and calculate the mean values and

variances of each criterion, as shown in Tables 1 and 2.

In both two functions, DC can find only one minimum due to

selection error and genetic drift. SC finds fewer minima than

CC, which eliminates the genetic drift in SC with clustering

operator. The criteria NQ/NN and NP/NN of CC are worse than

those of SC, it is because that CC finds more niches than SC.

It is interesting to consider the Six-Hump Camel function. DC

converges to a single global minimum quickly. SC converges to

equal or less than four stable minima, and then never reaches the

unstable minima. But CC can still reach the unstable minima after

converges to four stable minima. This phenomenon shows that

CC can prevent genetic drift, and preserve diversity efficiently.

6. CCGA in holographic grating design

6.1. Varied-line-spacing holographic grating design

Holographic gratings are the main diffractive elements in

vacuum ultraviolet and soft X-ray spectrum. In recent years,

varied-line-spacing (VLS) holographic gratings have been

widely used in high-resolution spectrometers and monochro-

mators due to their excellent self-focusing and aberration-

eliminating properties [12,13]. Application of VLS holographic

gratings will reduce the number of auxiliary optical elements,

simplify the structure of diffractive instruments, and increase

the light throughput and optical resolution efficiently.

The schematic recording optical system of VLS holographic

grating is shown in Fig. 5 [14]. It consists of two coherent light

sources C and D, two spherical mirrors M1 and M2, and a

spherical grating blank G. Given the radii of M1, M2 and G, and

the recording wavelength l0, the groove shape of G is decided

by eight recording parameters: hC, g, hD, d, pC, pD, qC, qD.

The aim of optimal design is to find several sets of recording

parameters to form the expected groove shape, which is

generally represented by the groove density in the Y-axis:

ne ¼ n0ð1þ b2wþ b3w2 þ b4w3Þ
¼ n0 þ n0b2wþ n0b3w2 þ n0b4w3 (9)

While the practical groove density can be calculated from a

complicated function f of recording parameters:

np ¼ f ðhC; g; hD; d; pC; pD; qC; qDÞ (10)
Consider minimizing the integration of square error of groove

density in Y-axis [15]:

min J ¼
Z w0

�w0

ðnp � neÞ2 dw (11)

where w0 is the half-width of the grating to record.



Fig. 4. (a) Comparison of niche number of three algorithms on Six-Hump

Camel. (b) Comparison of niche quality of three algorithms on Six-Hump

Camel. (c) Comparison of niche precision of three algorithms on Six-Hump

Camel.

Table 1

Average test results of three algorithms on Ackley

NN NQ/NN NP/NN

Mean Variance Mean Variance Mean Variance

CC 38.4000 2.4000 8.8173 0.8055 9.2027 0.8005

SC 35.2000 5.6000 7.9321 0.3309 8.2280 0.3251

DC 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2

Average test results of three algorithms on Six-Hump Camel

NN NQ/NN NP/NN

Mean Variance Mean Variance Mean Variance

CC 4.4000 0.2667 �0.4053 0.0794 �0.3992 0.0817

SC 3.9000 0.1000 �0.6371 0.0000 �0.6345 0.0002

DC 1.0000 0.0000 �1.0316 0.0000 �1.0316 0.0000

Fig. 5. Schematic diagram of recording holographic grating.
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It is a basic requirement of recording parameter optimization

to locate multiple solutions. Because in practical recording

system, there are many other auxiliary optical elements, such as

beam splitter, light filter, and so on, which are not shown in the

schematic diagram. If the recording parameters are not properly
selected, these auxiliary elements will interfere with each other.

But this kind of constraints is difficult to express in a

mathematical form. Therefore, it is reasonable to provide the

optical engineers with multiple solutions for trials.

6.2. Holographic grating design with CCGA

For the VLS planar holographic grating in soft X-ray

magnetic circular dichroism (SXMCD) beamline in National

Synchrotron Radiation Laboratory (NSRL), the groove density

is described as:

n0 ¼ 1:4000� 103ðline=mmÞ (12.1)

b2 ¼ 8:2453� 10�4ð1=mmÞ (12.2)

b3 ¼ 3:0015� 10�7ð1=mm2Þ (12.3)

b4 ¼ 0:0000� 10�10ð1=mm3Þ (12.4)



Table 3

Recording parameters from CCGA and consequential simplex search

g (rad) hC (rad) d (rad) hD (rad) pC (m) qC (m) pD (m) qD (m)

1 0.3082 �1.3339 1.0794 0.0269 0.3124 1.6512 1.4833 2.3038

2 �0.0765 0.2291 0.5258 1.1235 0.7871 1.9206 0.4583 1.1105

3 0.4292 �0.9632 1.4662 0.0188 0.0136 1.7104 0.4376 0.3658
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Half-width w0 equals to 90 mm. The radii of auxiliary spherical

mirrors are both 1000 mm and the recording wavelength is

413.1 nm.

In this paper, CCGA is used to optimize the recording

parameters, with PopNum = 100 and MaxGen = 200. At the

end of CCGA, a consequential simplex local search method is

applied to each solution to improve the optimization precision.

Table 3 lists the best three sets of recording parameters and the

corresponding groove density is shown in Table 4.
Table 4

Corresponding groove density of optimized recording parameters

n0 (line/mm) b2 (1/mm) b3 (1/mm2) b4 (1/mm2)

1 1.4000 � 103 8.2456 � 10�4 3.0014 � 10�7 8.2387 � 10�14

2 1.4000 � 103 8.2506 � 10�4 3.0296 � 10�7 1.3889 � 10�11

3 1.4001 � 103 8.2463 � 10�4 2.9836 � 10�7 �1.9006 � 10�11

Fig. 6. (a) Schematic diagram with recording parameters in group 1. (b)

Schematic diagram with recording parameters in group 2.
Group 1 is a typical set of recording parameters which is

superior in objective function value but does not satisfy the

implicit constraints. As shown in Fig. 6(a), incident arm pD and

reflective arm qD are too close to realize in practical adjustment.

In another example of group 3, incident arm pC is very small.

Therefore, it is not a reasonable solution in the fabrication too.

On the contrary, recording parameters of group 2 perform

well in both achieving the groove density requirement and

satisfying the implicit constraints. The optical schematic

diagram is shown in Fig. 6(b).

7. Conclusion

In this paper, we propose a novel crowding clustering

genetic algorithm (CCGA) for multimodal function optimi-

zation. By combining standard crowding and clustering,

CCGA conquers both genetic drift in standard crowding and

niche radius problem in clustering algorithm. The peak

detection condition links crowding and clustering, and

prevents niches from being destroyed by mistake. On the

other hand, CCGA does not need any prior knowledge of

fitness landscape in the optimization process. Therefore,

CCGA is a proper choice in optimization of complicated

multimodal functions.

The convergence properties of CCGA are analyzed

theoretically in this paper. Numerical results on standard test

functions indicate that CCGA is superior to both standard

crowding and deterministic crowding algorithm in quantity,

quality and precision of multi-optimum search. The successful

application in the practical varied-line-spacing holographic

grating design problem illustrates the satisfactory multimodal

search ability of CCGA.

Future development of CCGA will focus on improvement of

its convergence rate. For example, to combine crowding

clustering with evolutionary algorithms of rapid convergence

rate, such as differential evolution [2]. Furthermore, competi-

tion between clusters can be introduced as in the restricted

evolution model [15,16] to improve both convergence rate and

niche quality of CCGA.
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