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Uniform line spacing plane gratings are introduced into a recording system to generate aspherical
wavefronts for recording varied line spacing plane holographic gratings. Analytical expressions of groove
parameters are derived to the fourth order. A ray-tracing validation algorithm is provided based on
Fermat’s principle and a local search method. The recording parameters are optimized to record a varied
line spacing plane holographic grating with the aid of derived analytical expressions. A design example
demonstrates the exactness of the analytical expressions and the superiority of recording optics with
auxiliary gratings. © 2006 Optical Society of America
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1. Introduction

Holographic gratings are fabricated by recording the
interference fringes of two light beams in a photore-
sist coating on grating blanks. Given the shape of
blanks, their focal properties can be adjusted by al-
tering the properties of the two recording sources.
The interference of two plane wavefronts in plane
blanks results in conventional gratings with uniform
line spacing (ULS) and straight grooves. The inter-
ference of spherical wavefronts results in grating
grooves with varied line spacing (VLS) and curved
grooves. It adds a degree of freedom to eliminate
certain types of aberrations.1 Koike and Harada2 and
Duban3 introduced aspherical wavefronts to the fab-
rication of holographic gratings. This method added a
greater degree of freedom and produced more power-
ful aberration-corrected holographic gratings. Holo-
graphic gratings recorded with aspherical wavefronts
are the trend in fabrication and will play an impor-
tant role in high-resolution spectrometers and mono-
chromators.

There are three main methods to generate aspheri-
cal wavefronts in holographic recording.

(i) The first method uses auxiliary mirrors.
Namioka and Koike4 derived analytical expressions
of groove parameters to the fourth order for the re-
cording system that uses two ellipsoidal mirrors to
generate aspherical wavefronts and an ellipsoidal
blank as the grating blank. This type of holographic
grating has been widely used in spectrographs and
monochromators.5–8 One of the disadvantages of this
mounting is that it is sensitive to the tolerances of
distance parameters and angle parameters in the re-
cording optics.9

(ii) The second method uses multimode deform-
able mirrors (MDMs). Duban studied the theory,10,11

discussed the realization,12 and simulated the perfor-
mance in the cosmic origins spectrograph (COS) grat-
ings.13,14 The main difficulty of this mounting comes
from the fabrication of the MDMs.

(iii) The third method uses auxiliary gratings.
Duban15,16 investigated the holographic Rowland
mounting, which consists of a Rowland-mounted and
optimally recorded holographic spherical grating, re-
ferred to as an optimized Rowland grating (ORG),
whose recording sources are aberrated by two auxil-
iary ORGs. There are two points at which its astig-
matism and spherical aberration are canceled in the
spectrum of the ORG, therefore the theoretical equa-
tions for the mounting are simple. But it is difficult to
realize in practical recording because the condition of
the ORG is hard to be satisfy.

Sokolova and coworkers17,18 studied the two-step
method which uses a grating objective to generate an
aspherical wavefront. But the use of this method is
limited to transparent substrates. On the other hand,
the theoretical equations are very complicated for the
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mounting. Therefore the numerical ray-tracing algo-
rithm is applied for the optimal design of recording
parameters.

Jobin-Yvon recorded VLS gratings by using auxil-
iary ULS gratings.19 But the optimization of the re-
cording parameters was based on numerical ray
tracing,19 which is time consuming and produces the
best solutions with difficulty. It is necessary to estab-
lish the theoretical equations of groove parameters
for the convenience of optimal design.

In this paper the analytical expressions of groove
parameters to the fourth order for a recording sys-
tem where two ULS plane gratings are utilized to
generate aspherical wavefronts and a plane blank
is regarded as the grating blank are derived. The
recording parameters are optimized to record a var-
ied line spacing plane holographic grating with the
aid of derived analytical expressions. Section 2 intro-
duces the geometry of recording optics. Section 3
expands the analytical expressions of groove param-
eters to the fourth order. Section 4 transforms the
ray-tracing validation of recording optics to an opti-
mization problem so that it can be solved by a local
search method. Section 5 gives an example of a holo-
graphic grating recorded in this method and vali-
dates the results through the proposed ray-tracing
method.

2. Geometry of Recording Optics

The recording optical system is shown in Fig. 1. It
consists of two coherent point sources, C and D, two
uniform line spacing plane gratings, G1 and G2, and a
plane grating blank G. C, D, G1, G2, and G are ar-
ranged so that C, D, and the normal of G1, G2, and G
at their vertices O1, O2, and O lie in a common plane
�. The incident principal rays CO1 and DO2 pass
through O after being diffracted at O1 and O2, respec-
tively. The distances pC � �CO1�, qC � �O1O�, pD

� �DO2�, and qD � �O2O�, the angles of incidence �C,
�, �D, and � of the principle rays CO1, O1O, DO2, and

O2O and the angles of diffraction �C and �D of the
principal rays O1O and O2O, are called recording pa-
rameters.

We introduce two rectangular coordinate systems,
one attached to G1 and the other to G2. In the x1y1z1
�or x2y2z2� coordinate system of G1 (or G2) the origin is
located at O1 (or O2), the x1 (or x2) axis is the mirror
normal at O1 (or O2), and the y1 (or y2) axis lies in the
common plane �. Points C and Q1 on G1 are desig-
nated in the G1 coordinate system by C�xC, yC, 0� and
Q1�0, w1, l1�. Points D and Q2 on G2 are designated in
the G2 coordinate system by D�xD, yD, 0� and
Q2�0, w2, l2� similarly. Then

xC � pC cos �C, xD � pD cos �D,

yC � pC sin �C, yD � pD sin �D. (1)

The sign of �C (or �D) is positive or negative accord-
ing to the way the principal ray, CO1 (or DO2) lies in
the first or the fourth quadrant of the x1y1, (or the
x2y2) plane in the x1y1z1 (or x2y2z2) coordinate system.

We introduce an additional rectangular coordinate
system xyz attached to the grating blank G. In this
system the origin is at O, the x axis is the grating
blank normal, and the y axis lies in plane �. Points Q1
on G1 and Q2 on G2 are designated in the G coordinate
system by Q� 1��̄1, w� 1, l�1� and Q� 2��̄2, w� 2, l�2�. The sign of �
(or �) is positive or negative according to the way the
principal ray, OO1 (or OO2) lies in the first or the
fourth quadrant of the xy plane in the xyz coordinate
system.

3. Groove Parameters

A ray of wavelength �0 originated from C is diffracted
at Q1�0, w1, l1� toward point P�0, w, l� on G. Ray DQ2
of �0 travels toward point P�0, w, l� after being dif-
fracted at Q2�0, w2, l2�. The groove densities of G1 and
G2 are 1��1 and 1��2, respectively. According to the
grating equation

Fig. 1. Schematic diagram of the re-
cording system consists of two coherent
point sources, C and D, two uniform line
spacing plane gratings, G1 and G2, and
a plane grating blank G. C, D, G1, G2,
and G are arranged so that C, D, and
the normal of G1, G2, and G at their
vertices O1, O2, and O, lie in a common
plane. The incident principal rays CO1

and DO2 pass through O after being dif-
fracted at O1 and O2, respectively. The
distances pC, qC, pD, and qD, the angles
of incidence �C, �, �D, and � of the prin-
ciple rays CO1, O1O, DO2, and O2O, and
the angles of diffraction �C and �D of the
principle rays O1O and O2O are named
as recording parameters.
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sin �C � sin �C � m1�0��1, (2a)

sin �D � sin �D � m2�0��2, (2b)

m1 �or m2� is the diffraction order of G1 (or G2). The
sign of �C (or �D) is positive or negative according to
the way the principal ray, O1O (or O2O) lies in the
first or the fourth quadrant of the x1y1 (or x2y2) plane
in the x1y1z1 (or x2y2z2) coordinate system.

Then interference fringes are formed on the grating
blank G, i.e., the grating grooves, are expressed by

H �
1
�0

��CQ1 � Q1P� � w1m1�0��1 	 �CO1 � O1O��

	
1
�0

��DQ2 � Q2P� � w2m2�0��2 	 �DO2 � O2O��.

(3)

Here H is the groove number of point P counted from
the zeroth groove that passes through O. H is positive
(or negative) when the central point �0, wH, 0� of the
gth groove lies in the first (or fourth) quadrant of the
xy plane in the xyz coordinate system.

Substituting Eq. (2) into Eq. (3), and writing Eq. (3)
explicitly:

H �
1
�0

�HC 	 HD�, (4a)

HC � 	xC
2 � �w1 	 yC�2 � l1

2

� 	�̄1
2 � �w� 1 	 w�2 � �l�1 	 l�2

	 �pC � qC�
� w1�sin �C � sin �C�, (4b)

HD � 	xD
2 � �w2 	 yD�2 � l2

2

� 	�̄2
2 � �w� 2 	 w�2 � �l�2 	 l�2

	 �pD � qD�
� w2�sin �D � sin �D�. (4c)

Consider HC only. Point Q� 1��̄1, w� 1, l�1� can be calcu-
lated through a coordinate transform from
Q1�0, w1, l1�:

�̄1 � w1 sin�	�C � �� � qC cos �,

w� 1 � 	w1 cos�	�C � �� � qC sin �,

l�1 � l1. (5)

Express groove number H in a power series to the
fourth order:

H �
1
�0



i�0

4



j�0

4	i

cijHijw
ilj

�
1
�0



i�0

4



j�0

4	i

cij�Hij�Cwilj 	
1
�0



i�0

4



j�0

4	i

cij�Hij�Dwilj,

(6a)

HC � 

i�0

4



j�0

4	i

cij�Hij�Cwilj, HD�

i�0

4



j�0

4	i

cij�Hij�Dwilj.

(6b)

Coefficients cij are constant. Coefficients Hij are
called groove parameters, which are the functions of
recording parameters. Consider �Hij�C only. To obtain
�Hij�C we must express w1 and l1 as the functions of w
and l:

w1 � 

i�0

4



j�0

4	i

�Aij�Cwilj, l1�

i�0

4



j�0

4	i

�Bij�Cwilj. (7)

Now we need to calculate the expressions of �Aij�C

and �Bij�C with i � j 
 4. Applying Fermat’s principle
to the light path function:

Min FC � CQ1 � Q1P � �1w1m1�0

� CQ1 � Q1P � w1�sin �C � sin �C�, (8)

yielding the following relationship between direction
cosines �L1, M1, N1� of incident ray CQ1, and the di-
rection cosines (L1=, M1=, N1=) of diffracted ray Q1P,
both defined in the G1 coordinate system:

L1�

� 	L1
2 	 2�sin �C � sin �C�M1 	 �sin �C � sin �C�2,

(9a)

M1� � M1 � sin �C � sin �C, (9b)

N1� � N1, (9c)

where

L1 � 	xC�CQ1, M1 � �w1 	 yC��CQ1, N1 � l1�CQ1.
(10)

The direction cosines �LC, MC, NC� of ray Q1P in the
xyz coordinate system are related to (L1=, M1=, N1=)
with simple coordinate transform:

LC � 	L1� cos�	�C � �� � M1� sin��C � ��, (11a)

MC � 	L1� sin�	�C � �� � M1� cos��C � ��, (11b)

NC � N1�. (11c)

From the definition of direction cosines:
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LC � 	�1�Q1P,

MC � �w 	 w� 1��Q1P,

NC � �l 	 l�1��Q1P. (12)

Then

w � w� 1 	 �̄1MC�LC, l � l�1 	 �̄1NC�LC. (13)

Substituting Eqs. (1), (5), (7), (8), (10), (11), and (12)
into Eq. (13) yields

w � fw�w, l, �Aij�C, �Bij�C, �C, �C, �, pC, qC�,
(14a)

l � fl�w, l, �Aij�C, �Bij�C, �C, �C, �, pC, qC�,
(14b)

Expanding Eq. (14) to the fourth order:

w � 

i�0

4



j�0

4	i

�fw�ijw
ilj, l � 


i�0

4



j�0

4	i

�fl�ijw
ilj. (15)

�fw�ij and �fl�ij are the functions of �Aij�C, �Bij�C, �C, �C, �,
pC, and qC. By solving equations

�fw�ij ��1 i � 1, j � 0
0 else , �fl�ij ��1 i � 1, j � 0

0 else ,

(16)

we can calculate the expressions of �Aij�C and �Bij�C

with i � j 
 4. Substituting �Aij�C and �Bij�C and Eqs.
(5) and (7) into Eq. (4), we can calculate the expres-
sions of �Hij�C as defined in Eq. (6). But it should be
noted that the terms of �Aij�C and �Bij�C with i � j
� 3 and i � j � 4 will vanish in the expressions of
�Hij�C.

The expressions of �Hij�D can be derived similarly.
Hij � �Hij�C 	 �Hij�D in Eq. (6). Rewrite Eq. (6) as

H �
1
�0

�H10w � 1⁄2 �H20w
2 � H02l

2 � H30w
3 � H12wl2�

� 1⁄8 �H40w
4 � 2H22w

2l2 � H04l
4��. (17)

The forms of �Aij�C, �Aij�D, �Bij�C, �Bij�D, �Hij�C, and
�Hij�D are shown in Appendix A.

4. Ray-Tracing Validation Algorithm

In fact, we can obtain H through a numerical method
other than analytical expansion. Consider HC only.
Substituting Eqs. (1) and (5) into Eq. (4), HC is the
function of w, l, w1, l1, �C, �C, �, pC, and qC:

HC � fHC�w, l, w1, l1, �C, �C, �, pC, qC�. (18)

Given the recording parameters �C, �C, �, pC and qC,
and coordinates w, l of point P on the grating G, HC is
the function of w1 and l1. Then

HC � gHC�w1, l1�. (19)

According to Fermat’s principle, HC must be the
minimum. HC can be calculated from the following
optimization problem:

HC � Min gHC�w1, l1�. (20)

Applying a local search method with the proper
initial value, we can calculate HC and the correspond-
ing reflecting points Q1�0, w1, l1� for given coordinates
w, l of point P on the grating G.

5. Numerical Results

For the VLS plane grating used in a soft x-ray mag-
netic circular dichroism beamline of the National
Synchroton Radiation Laboratory (NSRL), the re-
quired groove density is expressed as n � n0�1 �
b2w � b3w

2 � b4w
3�, n0 � 1400 �grooves�mm�, b2 �

8.2453 � 10	4�1�mm�, b3 � 3.0015 � 10	7 �1�mm2�,
b4 � 0.0000 � 10	10 �1�mm3�, where

n0 � H10��0, b2 � H20��0n0,

b3 � 3H30�2�0n0, b4 � H40�2�0n0. (21)

The required recording area is 180 mm � 30 mm.
Consider a recording system consisting of an auxil-

iary plane mirror with a groove density of 1��1 � 0 and
an auxiliary uniform line spacing plane grating with
a groove density of 1��2 � 1000 grooves�mm. The
recording wavelength is �0 � 413.1 mm. The diffrac-

Table 1. Optimized Recording Parameters of Holographic Grating

�
(rad)

�
(rad)

�D

(rad)
pc�qc

(mm)
pD

(mm)
qD

(mm)

1 0.0667 0.7010 0.5690 1470.1 461.5 998.5
2 �0.0999 0.4990 1.1427 1326.4 427.8 989.9
3 �0.1748 0.4164 0.9876 1028.0 520.9 380.8
4 �0.0395 0.5690 0.9704 1183.0 601.0 369.8

Table 2. Corresponding Groove Density Parameters of Optimization Results

n0 (groove/mm) b2 (1/mm) b3 (1/mm2) b4 (1/mm3)

1 1.4000 � 103 8.2459 � 10�4 3.0017 � 10�7 �2.7332 � 10�14

2 1.3999 � 103 8.2457 � 10�4 3.0028 � 10�7 �5.2081 � 10�14

3 1.4001 � 103 8.2453 � 10�4 3.0017 � 10�7 1.9194 � 10�14

4 1.3999 � 103 8.2460 � 10�4 3.0027 � 10�7 �0.6761 � 10�14
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tion order of the auxiliary grating is �1. Considering
the existence of an auxiliary plane mirror, there are
six variable recording parameters for optimization: �,
�, �D, pC � qC, pD, and qD. �C, �C, and �D can be
calculated according to the relationship of diffraction.

We optimized the recording parameters by using
the analytical expressions derived in Appendix A
with the evolutionary algorithm.20 Four groups of
optimized recording parameters are shown in Table
1. The corresponding groove density parameters are
in Table 2. The theoretical groove density parameters
are very close to the required value.

We choose the second group as the practical record-
ing parameters. We checked the design results with
the ray-tracing validation algorithm. HA is the groove
number computed from the analytical expressions
and HN is the groove number computed from the
ray-tracing validation, at l � 0 mm. The error be-
tween HA and HN is shown in Fig. 2. The ray-tracing
results are consistent with those predicted by the
theoretical equations. The groove number error,
which comes from the truncation error of series ex-
pansion, is less than 1.5 lines in the recording area.
This proves the exactness of the analytical expres-
sions derived in this paper.

In practical manufacturing, fabrication tolerances
are inevitable for any recording parameters, and de-
sign results will degrade at that time. Table 3 gives
the groove density parameters when the tolerances of
distances are 1 mm and the tolerances of angles are

0.001 rad. We can see this mounting is not sensitive
to the errors in the recording optics.

The two-dimensional schematic of the recording op-
tics is shown in Fig. 3. The light that originated from D
is diffracted at auxiliary grating G2, and the �1 order
diffractive light reaches G. The light that originated
from C reaches G directly because the auxiliary plane
mirror can be omitted. It is clear that the other dif-
fractive light will not disturb the recording process
when the recording parameters are properly selected.

6. Conclusions

Analytical expressions of the groove parameters were
derived to the fourth order for recording optics con-
sisting of two uniform line spacing plane auxiliary
gratings and a plane grating blank. The derivation of
theoretical equations simplifies the optimization of
the recording parameters. Based on Fermat’s princi-
ple and local search, a ray-tracing validation algo-
rithm was provided and proved the exactness of the
theoretical equations.

Fig. 2. Groove number error between HA (computed from analyt-
ical expressions) and HN (computed from exact ray-tracing) l 	
0 mm is less than 1.5 lines.

Fig. 3. Two-dimensional schematic recording optics is designed
for the varied line spacing holographic grating. Light originating
from D is diffracted at auxiliary grating G2, and the �1 order
diffractive light reaches G. Light originating from C reaches G
directly because the auxiliary plane mirror can be omitted. It is
clear that the other diffractive light will not disturb the recording
process when the recording parameters are properly selected.

Table 3. Design Results Considering Tolerances for Recording Parameters Group 2

Parameter Required Value Design Value

n0 (groove�mm) 1.4000 � 103 1.4000 � 103 
 0.0047 � 103

b2 (1�mm) 8.2453 � 10�4 8.2453 � 10�4 
 0.0550 � 10�4

b3 (1�mm2) 3.0015 � 10�7 3.0015 � 10�7 
 0.0656 � 10�7

b4 (1�mm3) 0.0000 � 10�10 0.0000 � 10�10 
 0.0680 � 10�10
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There are some interesting properties in this
mounting:

(i) If the groove densities of two auxiliary gratings
are arbitrary, the degree of freedom in this mounting
is 10. If the groove densities are fixed, the degree of
freedom is 8.

(ii) If the distances pC and qC shrink k times si-
multaneously, the term �Hij�C will expand ki�j	1 times.
It is the same for �Hij�D, pD, and qD. This is one reason
that this mounting is not sensitive to the tolerances of
distance parameters.

(iii) The diffraction area in the auxiliary grating is
smaller than the recording area because the dif-
fracted rays are divergent. Therefore groove param-
eters were not affected heavily by the truncation
error of the series expansion in this mounting. On the
other hand, in the mounting introduced in Ref. 4,
the truncation error is remarkable if the width of the
holographic grating to be recorded is too large.

(iv) The recording wavefront is not aberrated in
the direction of the auxiliary grating grooves because
the grooves are straight. This results in an inability
to alter the term H02 and H04. Use of varied line
spacing or nonplanar auxiliary gratings will solve
this problem and will introduce a greater degree of
freedom into holographic recording. But apparently it
will increase the difficulty in derivation of the ana-
lytical expressions and adjustment in practical re-
cording optics.

Appendix A

�A01�C � �A11�C � 0, (A1)

�A10�C � 	pC cos � cos �C�rC, (A2)

�A20�C � 1⁄2�A10�2 cos2 �C�cos2 �C�	2qC cos �C sin �

	 qC sin �C cos �� � cos2 �C�	2pC cos �C

� sin � � 2pC sin �C cos � 	 3qC cos �

� sin �C���rCpC cos2 �C cos �, (A3)

�A02�C � 	1⁄2�B01�2qC�sin �C � sin �C��rCpC, (A4)

�B10�C � �B20�C � �B02�C � 0, (A5)

�B01�C � 1�pC�pC � qC�, (A6)

�B11�C � 	�A10�C�rC sin � � cos �C�qC cos � sin �C

	 pC sin �C cos ����cos � cos �C, (A7)

�H10�C � 	sin �, (A8)

�H20�C � ��A10�C
2rC � p cos ��cos �

� 2�A10�C cos �C���pCqC, (A9)

�H30�C � �2�A10�C�A20�CrCpCqC

� �A10�C
3�qC

2 sin �C cos2 �C

� pC
2 sin �C cos2 �C�

� �A10�C
2pC

2 cos �C�2 cos � sin �C

� sin � cos �C� � �A10�CpC
2 cos ��cos � sin �C

� 2 sin � cos �C� � pC
2 cos ��2qC�A20�C cos �C

� sin � cos ����pC
2qC

2, (A10)

�H40�C � �4�A20�C
2rCpC

2qC
2 � 4�A10�C

2pC
3�cos2 �

� cos2 �C�
� 12�A10�C

2�A20�CpCqC�qC
2 cos2 �C sin �C

� pC
2 cos2 �C sin �C� 	 5�A10�C

4�qC
3 cos4 �C

� pC
3 cos4 �C� � pC

3 cos2 ��4 	 5 cos2 ��
� �A10�C

3pC
3 cos �C�8 cos �

	 12 cos2 �C cos � � 8 sin � sin �C cos �C�
� �A10�C

2pC
3 cos �C cos ��	14cos �C cos �

� 16 sin �C sin �� � �A10�CpC
3 cos ��8 cos �C

	 12 cos2 �C cos � � 8 sin � sin �C cos ��
� 8�A10�C�A20�CpC

3 qC cos �C�sin �

� 2 cos � sin �C� � 4�A10�C
4�qC

3 cos2 �C

� pC
3 cos2 �C�

� 4�A20�C
qCpC

3cos ��cos � sin �C

� 2 sin � cos �C���pC
2qC

2, (A11)

�H02�C � ��B01�C
2qC � �B01�C

2pC � pC

	 2�B01�CpC��pCqC, (A12)

�H12�C � ��A10�C�B01�C
2�pC

2 sin �C � qC
2 sin �C�

� 2�B10�C�B11�CpCqC�pC � qC�
� �A10�CpC

2 sin �C�1 	 2�B01�C�
� �B01�CpC

2 sin ���B01�C 	 2�
� 2�A10�C�A02�CrCpCqC 	 2�B11�CpC

2qC

� pC
2 sin �

� 2�A02�CpC
2qC cos � cos �C�pC

2qC
2,
(A13)

�H22�C � pC
3�2 	 4�B01�C � 2�B01�C

2 � 2�A10�C
2

	 3 cos2 �� � 2�B11�C
2pC

2qC
2�pC � qC�

	 3�A10�C
2�B01�C

2�qC
3 cos2 �C � pC

3 cos2 �C�
� 4�A10�C�B01�CpC

3�cos �C cos �

	 2 sin �C sin ��
	 2�A10�C�B01�C

2pC
3�cos �C cos �

	 2 sin �C sin �� � 4�B11�CpC
3qC sin ���B01�C

	 1� 	 2�A10�CpC
3�cos �C cos �

	 2 sin �C sin �� � 2�A10�C
2�B01�C

2�pC
3 � qC

3�
� 4�A10�C�B01�C�B11�CpCqC�pC

2 sin �C

� qC
2 sin �C� 	 3�A10�C

2 pC
3 cos2 �C
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� 2�A10�C
2�B01�CpC

3�3 cos 2 �C 	 2�
	 4�A10�C�B11�CpC

3qC sin �C

� 6�A10�C
2�A02�CpCqC�pC

2 cos 2 �C sin �C

� qC
2 cos 2 �C sin �C�

� 4�A10�C�A02�CpC
3qC cos �C�2 cos � sin �C

� sin � cos �C� � 4�A20�C�A02�CrC�pC � qC�
� 2�A20�C�B01�C

2pCqC�pC
2 sin �C � qC

2 sin �C�
� 2�A02�CpC

3qC cos ��cos � sin �C � 2 sin � cos �C�
� 3�B01�CpC

3 cos2 ��2 	 �B01�C�
� 2�A20�CpC

3qC sin �C�1 	 2�B01�C��pC
3qC

3, (A14)

�H04�C � �pC
3�	1 � 4�B01�C 	 6�B01�C

2 � 4�B01�C
3�

	 �B01�C
4�pC

3 � qC
3�

� 4�A02�C�B01�C
2pCqC�pC

2 sin �C

� qC
2 sin �C� � 4�A02�C

2rCpCqC

� 4�A02�CpC
3qC sin �C�1 	 2�B01�C���pC

3qC
3,

(A15)

where

rC � qC cos2 �C � pC cos2 �C. (A16)

For the expression �Aij�D, �Bij�D, and �Hij�D, change
�C, �C, �, pC, qC, and rC to �D, �D, �, pD, qD, and rD.
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